

RASEN - 316853

Deliverable D4.2.3

Techniques for Compositional Risk-Based
Security Testing v.3

RASEN - 316853 Page 2 / 32

Project title: RASEN

Project number: 316853

Call identifier: FP7-ICT-2011-8

Objective: ICT-8-1.4 Trustworthy ICT

Funding scheme: STREP – Small or medium scale focused research project

Work package: WP4

Deliverable number: D4.2.3

Nature of deliverable: Report

Dissemination level: PU

Internal version number: 1.0

Contractual delivery date: 2015-09-30

Actual delivery date: 2015-09-30

Responsible partner: Fraunhofer

RASEN - 316853 Page 3 / 32

Contributors

Editor Jürgen Großmann (FOKUS)

Contributors Fredrik Seehusen (SINTEF), Fabien Peureux (UFC), Alexandre Vernotte
(UFC), Martin Schneider (FOKUS), Johannes Viehmann (FOKUS)

Quality assurors Frank Werner (SAG), Samson Yoseph Esayas (UiO)

Version history

Version Date Description

0.1 15-06-06 ToC proposition

0.2 15-06-06 Initial content Fraunhofer FOKUS

0.3 15-09-09 Input Testing Dashboard

0.4 15-09-17 API and implementation guidelines of Dashboard

0.5 15-09-17 Test purpose chapter finalized – overall review

1.0 15-09-25 Final version

Abstract

Work package 4 has developed a framework for security testing guided by risk assessment. This
framework, starting from security test patterns and test generation models, allows for a compositional
security testing approach that is able to deal with large-scale networked systems. This deliverable is
the final part of a series of three deliverables (D4.2.1, D4.2.2, D4.2.3) that document how the RASEN
approach for risk-based security testing has been evolved through continuous and iterative updates.
It provides the final update for the RASEN approach of formalizing test patterns using the Test
Purpose Language, and it introduces the RASEN Testing Dash Board for Test Result Aggregation.

Keywords

Security testing, risk-based security testing, Test Purpose Language, fuzzing on security models,
security testing metrics, large-scale networked systems, test selection, test prioritization

RASEN - 316853 Page 4 / 32

Executive Summary

The overall objective of RASEN WP4 is to develop techniques for the use of risk assessment as
guidance and basis for security testing, and to develop an approach that supports a systematic
aggregation of security testing results by means of security testing metrics. This comprises the
development of a tool-based integrated process for guiding security testing by means of reasonable
risk coverage and probability metrics. This deliverable is the third and final part of a series of three
deliverables that define the overall RASEN approach for risk-based security testing. The earlier
deliverables have introduced approaches for risk-based test identification and selection, the notion of
test pattern, new fuzz testing techniques and the RASEN approach for pattern-driven and model-
based vulnerability testing (PMVT). This deliverables updates the PMVT approach by showing the
formalization and operationalization of test patterns using the Test Purpose Language. Moreover, it
introduces metrics that classify test results at the testing level and show their implementation by the
RASEN Testing Dashboard. The RASEN Testing Dashboard allows for a concise visualization of
metric results.

RASEN - 316853 Page 5 / 32

Table of contents

TABLE OF CONTENTS .. 5

1 INTRODUCTION ... 6

2 FORMALIZING TEST PATTERNS WITH TEST PURPOSE LANGUAGE 7

2.1 EXTENSION OF THE TEST PURPOSE LANGUAGE ... 7
2.1.1 Keyword Lists ... 9
2.1.2 Iterating the Result of an OCL Expression .. 9
2.1.3 Variable Usage in Nested “for_each”Loops .. 10
2.1.4 Variable Usage in OCL Expressions ... 10
2.1.5 Stage Loops ... 10
2.1.6 Test Purpose Catalog ... 11

2.2 VULNERABILITY TEST PURPOSES .. 11
2.2.1 Cross-Site Scripting... 11
2.2.2 SQL Injections .. 13

2.2.2.1 Error-Based SQL Injections .. 13
2.2.2.2 Time Delay SQL Injections .. 14
2.2.2.3 Boolean-Based SQL Injections ... 15

2.2.3 Cross-Site Request Forgeries .. 16
2.2.4 Privilege Escalation ... 18

2.2.4.1 Privilege Escalation of Pages .. 18
2.2.4.2 Privilege Escalation of Action .. 19

2.3 SYNTHESIS ... 19

3 SECURITY TEST RESULT AGGREGATION ... 21

3.1 LIST UP METRICS .. 21
3.2 COVERAGE METRICS ... 22
3.3 EFFICIENCY METRICS .. 24
3.4 PROCESS/PROGRESS RELATED METRICS ... 25
3.5 THE RASEN TESTING DASHBOARD .. 25

3.5.1 Principles ... 25
3.5.2 Architecture ... 25
3.5.3 GUI .. 27
3.5.4 API and Implementation Guidelines ... 29

4 SUMMARY .. 31

REFERENCES .. 32

RASEN - 316853 Page 6 / 32

1 Introduction

The overall objective of RASEN WP4 is to develop techniques for risk-based security testing. Risk
assessment is used to provide guidance and yield as basis for security testing and to develop an
approach that supports a systematic aggregation of security testing results. The objective includes the
development of a tool-based integrated process for guiding security testing by means of reasonable
risk coverage and probability metrics.

This deliverable is the third and final deliverable in a series of three deliverables that presents
techniques to address compositional security testing guided by risk assessment. Risk assessment is
used to provide a systematic guidance for planning, structuring and organizing the security testing
process. The overall RASEN approach for risk-based security testing, that defines the Innovation 3 of
the project, has been described and detailed in the previous deliverable of this series [2]. The process
is recalled in Figure 1.

Figure 1 – Overall process of security testing based on risk assessment results

This process starts with a risk model, a result obtained from the risk assessment that is created by
using the CORAS method from SINTEF. This risk model allows identifying potential threat scenarios
and vulnerabilities, and is used for the identification and prioritization of appropriate security test
patterns. Based on the selected security test patterns, test cases are generated by combining
information from the risk model, a test model and test generation techniques. The latter are composed
of test purposes (formalizing the security test patterns) developed by UFC for Smartesting CertifyIt and
fuzzing techniques implemented by the Fraunhofer FOKUS’s fuzzing library Fuzzino. Finally, test
scripts are generated, compiled and executed against the application under test, and related test
results are gathered and displayed in a Dashboard that provides various security testing metrics.

This deliverable focuses on results from the task dealing with automating test execution based on risk
assessment in a compositional way and the task to develop metrics and a dashboard for security
testing results based on risk assessment. In this way, Section 2 provides an update for the RASEN
approach of formalizing test pattern using the Test Purpose Language. Section 3 shows metrics that
classify test results at the testing level and their implementation by the RASEN Testing Dashboard that
allows for a concise visualization of test results and test metric results.

RASEN - 316853 Page 7 / 32

2 Formalizing Test Patterns with Test Purpose Language

Security test patterns, based on prioritized vulnerabilities from the CORAS model, provide a starting
point for security test case generation by giving information on how appropriate security test cases can
be created from risk analysis results. The security test patterns express in a textual manner the testing
procedures to detect Web application threats. This way, they propose solutions to improve testing
automation (data vector libraries, test metrics to complete test coverage criteria, etc.). Therefore they
are imported from the risk model elements and then formalized to drive and automate the test
generation process. To enable automation, the test generation tool CertifyIt proposes a catalogue of
generic test purposes that formalize test patterns. To summarize, a test purpose formalizes the
intention of a given security test pattern and thus allows to automatically generate the expected test
cases with model-based testing techniques.

A test purpose is a high-level expression that formalizes a testing objective to drive the automated test
generation on the test model. As introduced in deliverable D4.2.1 [1], such a test purpose can be seen
as a partial algorithm (some steps may be not explicit) defining a sequence of significant steps that
has to be executed by the test case scenario. Each step takes the form of a set of operations or
behaviors to be covered, or specific state to be reached on the test model in order to assess the
robustness of the application under test with respect to the related vulnerability to be tested.

A typical test purpose is composed of two main entities: iterators and stages.

 Stages define execution steps (in terms of states to be reached and operations to be
executed) that the test generation engine must activate.

 Iterators specify the various contexts within which stages must be activated.

Thus, a typical test purpose has the construction introduced inListing 1.

for_eachContexts

activatestage1

activatestage2

activatestage3

. . .

Listing 1 – Test purpose construction

A first version of the syntax and examples of practical use of the test purpose language is described in
the Deliverable D4.2.1 [1] and its grammar is recalled in Figure 2. However, to make generic test
purposes and to formalize complex and sophisticated attacks (required to conduct the RASEN case-
studies and thus to validate the proposed approach), this initial version has been extended. The next
subsections respectively detail these additions and introduce the generic test purposes that formalize
the four vulnerabilities identified during risk assessment of the RASEN case-studies and targeted by
test generation (namely Cross-Site Scripting, SQL Injections, CSRF, and Privilege Escalation).

2.1 Extension of the Test Purpose Language

Within RASEN vulnerability testing approach, a test purpose formalizes the expression of the essence
of a well-understood solution to a recurring software vulnerability testing problem and how it can be
solved. To reach this goal, a test purpose captures in a generic way the test pattern part that concerns
the test intention with one or several operational test purposes, in order to automatically produce the
corresponding test cases with model-based testing.

Such a test purpose aims to be generic (meaning that it can be applied without update whatever the
test model is) in order to be applied on several models to generate test sequences. However, current
test purposes contain information coming directly from the current test model, which makes them
reliant on it. To avoid any dependence, several additions were made to the test purpose language to
allow and improve their genericity.

RASEN - 316853 Page 8 / 32

Namely, these contributions to the language are the following:

 Creation of the lists of keywords, referring to model entities, to externalize the use of data;

 Improvement of “for_each” statements to iterate the results of an OCL expression;

 Addition of variable usage for nested iterators on a set of instances, to use the instance
obtained from the outer iterator as context for the OCL expression of the inner iterator;

 Addition of variable usage in OCL expressions throughout a test purpose;

 Introduction of stage loops so that one or several stages can be activated more than once;

 Creation of a test purpose catalogue that allows automatic import/export of existing test
purposes from one testing project to another.

test_purpose
quantifier_list

quantifier

::=
::=

::=

|

(quantifier_list,)?seq
quantifier(,quantifier)*

for_each_behaviorvarfrombehavior_choicefor_
each_operationvarfromoperation_choice

operation_choice

|
|

|

|

::=

for_each_literalvarfromliteral_choice
for_each_instancevarfrominstance_choicefo

r_each_integervarfrominteger_choicefor_ea

ch_callvarfromcall_choiceany_operation

call_choice

|
|

::=

operation_list
any_operation_butoperation_list

call_list

behavior_choice ::= any_behavior_to_cover

literal_choice

|
|

::=

behavior_list
any_behavior_butbehavior_list

<identifier>(or<identifier>)*

instance_choice ::= instance(orinstance)*

integer_choice
var

::=
::=

{<number>(,<number>)*}
$<identifier>

state ::= ocl_constrainton_instanceinstance
ocl_constraint ::= <string>

instance ::= <identifier>

seq ::= bloc(thenbloc)*

bloc ::= usecontrolrestriction?target?
restriction ::= at_least_once

target

|
|

|
::=

any_number_of_time
<number>timesv

artimesto_reach
state

control

|
|

::=

to_activatebehavior
to_activatevarop

eration_choice

call_list

|
|

|
::=

behavior_choice
varcall_choi

ce
call(orcall)*

call ::= instance.operation(parameter_list)
operation_list ::= operation(oroperation)*

operation ::= <identifier>

parameter_list ::= (parameter(,parameter)*)?

parameter ::= free_value

behavior_list

|
|
|

::=

<identifier>
<number>
var

behavior(orbehavior)*

behavior ::= behavior_with_tagtag_list

tag_list

|
::=

behavior_without_tagtag_list
{tag(,tag)*}

tag ::= @REQ:<identifier>

 | @AIM:<identifier>

Figure 2 – Grammar of the test purpose language

RASEN - 316853 Page 9 / 32

The next sections introduce each of these additions that enable a sufficient expressiveness to
formalize generic test purposes targeting the four vulnerability types handled during the RASEN case
studies.

2.1.1 Keyword Lists

The keywords mechanism, which has initially been introduced in [1], consists of using specific
arguments, called keywords, in test purposes to represent generic artifacts of a test model. They can
represent behaviors, calls, instances, integers, literals, operations, or a state regarding a specific
instance of the model. Test engineers only have to link keywords with the specific elements of the
current test model.

Keywords are contained in lists, and a list may only contain keywords that point to elements of the
same nature (behaviors, instances, literals, etc.). Keywords lists can be used both in the iteration and
stage phases to replace any of this model information preceded by the character “#”.

For instance, considering an enumeration, a keyword list enables to only apply test purposes to literals
of the enumeration that share the same properties or restrictions (e.g., selecting only keywords that
point to user actions and excluding unnecessary actions that represent for instance search forms).

In theListing 2, the iterator for_each goes through all the keywords from the #KEYWORD_LIST,

each keyword pointing to a certain enumeration literal.

for_each literal $lit from #KEYWORD_LIST

Listing 2 – Literal iteration construction

As introduced in Listing 3, a test purpose stage can require the test generation engine to call an
operation from a restricted set, or prohibit the call to a given set of operations. This is done as follows:

useany_operation #RELEVANT_OPS to_reach OCL_EXPR1 on_instance$inst1

useany_operation_but #UNWANTED_OPS to_reach OCL_EXPR2 on_instance $inst2

Listing 3 – Operation call construction

The first state expresses to only use any operation that have a corresponding keyword in

#RELEVANT_OPS. Contrariwise, the second stage expresses to use any operation, except the ones

that have a corresponding keyword in #UNWANTED_OPS.

2.1.2 Iterating the Result of an OCL Expression

Keywords lists provide a first level of genericity to test purposes. The use of such lists is necessary
when the objects they contain must be selected manually. However, when the keywords from a list
can be deduced based on the information from the model, it is thus possible to extract their
corresponding element automatically. Hence the language has been extended to iterate the results of
an OCL expression. It is constructed as shown in Listing 4.

for_each instance $instfrom “self.all_users->select(u:User|u.att1= 2)” on_instance User1

Listing 4 – OCL result iteration construction

First the OCL expression is evaluated, in the context of the User1 instance. The expression returns all

User instances such that att1 is equal to 2. Then, the results are transmitted to the iterator to be

used in the stage phase. This construction preserves the generic features of test purposes and
automates the test data selection to be used for test generation.

RASEN - 316853 Page 10 / 32

2.1.3 Variable Usage in Nested “for_each”Loops

Certain types of attack require to consider several data types as well as the relationships between
them (e.g., testing for multi-step XSS implies, for a given page, to retrieve all the user inputs that are

rendered back on this page). To meet this need, variable usage between for_each loops has been

implemented. In case where the outer loop iterates instances and the inner loop iterates the results of
an OCL expression, it is possible to use the instance from the first loop as the OCL context for the
second loop as described in Listing 5.

for_eachinstance $inst1from#INST_LIST

for_eachinstance $inst2from“self.all_items” on_instance $inst1

Listing 5 – Variable usage in nested iteration construction

In this example, the outer for_each iterates a list of instance. The inner for_each is reliant on the

value coming from its parent as it uses it for defining the context of its OCL expression. Thereby, the

self variable from the OCL expression corresponds to $inst1.

Usage of data-dependent nested loops is for instance necessary to compute abstract test cases for
multi-step XSS, as it avoids the production of unreachable targets.

2.1.4 Variable Usage in OCL Expressions

In more sophisticated attacks, data dependency goes beyond their selection and must be carried
throughout the test purpose. For instance, Privilege Escalation attacks involve session types, pages,
and their relations, in order to test that access control policies are not flawed. In these cases, it needs
to use the value from the iterator to configure OCL expressions in order to make test purposes more
precise and avoid the submission of irrelevant or unreachable test targets to the test generation
engine. As introduced in Listing 6, variables can be used in the iteration phase in cases of nested

for_each statements, thus:

for_each literal $lit from #LITERAL_LIST

for_each instance $instfrom “self.all_users->select(u:User|u.att1= 2)” on_instance User1

Listing 6 – Variable usage in OCL expressions within nested iteration

Moreover, variables can also be used in OCL expressions from the restriction part of stages as shown
in Listing 7

useany_operationto_reach “self.status = STATUS::$lit” on_instance SUT

Listing 7 – Variable usage in OCL expressions within stages

This stage expresses that any operation from the model can be used, with the goal that the status

attribute from the system under test is valuated with the content of $lit, which contains an

enumeration literal from the enumeration STATUS.

2.1.5 Stage Loops

In some cases, it is necessary to reproduce the exact same set of steps several times, in order to
conduct an attack. This is the case especially for time-based and Boolean-based SQL injections,
which require the injection of several vectors in the same user input and compare the results.

To make the design of such test purpose simpler while reducing test generation time, the notion of
stage loops has been introduced in the test purpose language. As introduced in Listing 8, stage loops

are defined using the declaration keyword repeat, followed by a integer and the keyword times,

expressing the number of loop to accomplish:

RASEN - 316853 Page 11 / 32

repeat 3 times

use …

thenuse...

end_repeat

Listing 8 – Stage loop construction

In this sequence, the stages “use...” enclosed in the loop must be repeated three times.

2.1.6 Test Purpose Catalog

Test purposes are stored in a test purpose catalogue (in XML format), with a reference to the pattern it
belongs to. Within the RASEN project, test purpose selection is directly conducted based on a risk
assessment: regarding the information present in the CORAS model, the corresponding test purposes
are chosen for test generation. It should be noted that test engineers can also manually select relevant
test purposes to be applied, depending on the test objective or motivated by a test selection criteria.

2.2 Vulnerability Test Purposes

This section introduces the generic test purposes designed during the RASEN project to tackle the
four vulnerabilities targeted during the conducted case studies (Cross-Site Scripting, SQL Injections,
CSRF, and Privilege Escalation). Some vulnerability required the design of several test purposes
when the implementation of multiple attack subcategories was necessary for efficient testing (e.g., for
SQL injections and Privilege Escalation). For each test purpose, we first present the test purpose used
to design it, and describe next its functionality by going through each of its steps.

2.2.1 Cross-Site Scripting

Cross-Site Scripting vulnerability (XSS for short) consists of an attacker injecting a hostile browser
executable code (e.g., JavaScript, VBScript) into Web pages through user inputs, typically Web forms,
or through parameters, which value can be modified by clients, such as cookie values. This
vulnerability type is one of the consequences due to the lack of proper user-supplied input data
analysis from the web application under test.

As stated in the XSS test pattern, it is possible to perform XSS attack by applying the following testing
strategy that is composed of three steps: (i) locate a user-supplied input, (ii) inject an XSS vector, and
(iii) analyze the server response. However, to tackle all XSS types at once, the XSS test purpose
makes use of the structure information that is specified in the model: links between user-supplied
inputs and the pages of the Web application under test that use them to compute an output. Thereby,
for the testing of a particular user input, the test purpose for XSS proceeds as follows:

1. Locate the user input: Following proper user interactions, the Web application is put in a
state where the current page is the page where the user input can be provided. It can be a
form field, a parameter in the “href” attribute of an anchor, a cookie value, etc.

2. Fill nominal values: Often, the user input under test is part of a form or URL, which contains
multiple parameters. These parameters need to be assigned with relevant values to prevent
any data validation functions (e.g., some parameter must not be left empty, or must be only
assigned with a specific data type) to block the submission of the form/request.

3. Replace input with attack vector: Here, the initial nominal content of the user input under
test is erased and an attack vector is injected instead.

4. Submit the crafted request: Once the attack vector has been inserted, the crafted request is
submitted. Depending on the type of user input, it means submitting the form, or clicking on
the link.

5. Locate an output point: Instead of simply waiting for the next server response, the test
model is used to determine which page uses the user input under test to compute its output,
and the Web application state is changed such that it displays the page.

RASEN - 316853 Page 12 / 32

6. Analyze the result: The content of the page is then analyzed to assess whether the attack
vector has been inserted in the page. If it has not undergone any modification, it can be
concluded that the Web application is vulnerable to XSS, from this particular user input and on
this particular page.

This test procedure has been translated into a test purpose in order to give each instruction to the test
generation engine from Smartesting. The test purpose for multi-step XSS is shown in Listing 9.

1 for_eachinstance$pagefrom

2 "self.all_pages->select(p:Page|not(p.all_outputs->isEmpty())" on_instancewas,

3 for_eachinstance$paramfrom"self.all_outputs"on_instance$page,

4 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

5 "WebAppStructure.allInstances()->any(true).

6 ongoingAction.all_inputs->exists(d:Data|d=self))"on_instance$param

7 thenusethreat.injectXSS($param)

8 thenusewas.finalizeAction()

9 thenuseany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

10 "self.was_p.current_page=selfand

11 self.was_p.ongoingAction.oclIsUndefined()" on_instance$page

12 thenusethreat.checkXSS()

Listing 9 – Test purpose for cross-site scripting

The first three lines of the test purpose for XSS compose the first phase. Because this is about XSS,

the first for_each statement selects all the pages that are using at least one user input as output.

The selection is done using the OCL expression “Pages.allInstances()-

>select(p:Page|not(p.all_outputs->isEmpty()))” executed from the context of the SUT

instance, that defines the Web application under test. This OCL expression can be split as follows:

from all the pages “Pages.allInstances()”, all the pages “->select(p:Page|” that are linked to

one or more data instances “not(p.all_outputs->isEmpty())” are selected. The result of the

OCL expression is a set of page instances.

Afterwards the for_each statement selects all the data instances linked to the page instance

contained in $page, i.e. all the user inputs that $page uses to compute its output. Here, the selection is

done using the OCL expression “self.all_ouputs” from the context of $page. Therefore, the

second stage of the test purpose handles two elements, a user input and one of the pages that
outputs it.

The second phase starts on lines 4-5-6 by putting the Web application in a state where the page

displayed to the user is the injection page, and where the action containing $param is ongoing,

meaning all other fields (in the case of a form) or parameters (in the case of a link) have been filled

with nominal values, ready to be submitted. In the context of the selected user input (“on_instance

$param”), the test purpose tells the test generation engine to satisfy the OCL expression

“WebAppStructure.allInstances()->any(true).ongoingAction.all_inputs-

>exists(d:data|d=self)”. First, the instance of the Web application under test is retrieved

“WebAppStructure.allInstances()->any(true)”. Second, we navigate in the model until the

ongoing action “ongoingAction” is reached. Third, one check that the user input $param is

contained in the action “all_inputs->exists(d:data|data=self)”.

To satisfy this expression, the test generation engine must animate the model by executing the

instructions “use any_operation_but #UNWANTED_OPS any_number_of_times”, which

means that any behavioral or navigational operation from the Web application can be called, as many
times as needed, in order to find the right state. Indeed, each designed test purpose possesses a

keyword list, named #UNWANTED_OPS, which contains all the operations from the WebAppStructure

classes except those to exercise an attack. Those operations are not meant to be called during the
computation of navigational and behavioral steps, therefore they are excluded to find the right state,

RASEN - 316853 Page 13 / 32

but they are used to complete XSS injections in line 7 by calling the operation

“threat.injectXSS($param)”, which targets the user input $param.

Lines there after (8 to 12) handle verdict assignment. The goal is to put the Web application such that

it displays the page ($page) that outputs the user input and analyze its content. This is done by

satisfying the OCL expression in lines 10 and 11, defined in the context of $page. The first part of the

expression is about verifying that no action is pending, and the second part specifies that the current

page is equal to self, i.e. $page. Again, the test generator engine may use any behavioral or

navigational operation of the model, as much as necessary. The last line of the test purpose is a call to

the operation “threat.checkXSS()”, which scans the page content to look for the injected vector.

2.2.2 SQL Injections

Like XSS, SQL Injections are another consequence of poor input data validation. This class of
vulnerability exploits the trust a Web application has in its users by triggering unwanted interactions
between the application and its database. This is done by injecting SQL fragments through user
inputs, such as form fields or cookie variables, to alter the semantic of hardcoded SQL queries. Of
course, SQL injections are only possible when the value contained in the user input lacks sanitization
used by the application to configure a SQL query.

However, the discovery of SQL injections is much more complex than XSS. Indeed, XSS targets Web
browsers and therefore happens on the client-side, where it is easily possible to assess the existence
of a vulnerability. On the contrary, SQL injections affect the database of the Web application, to which
users (and test engineers) do not have direct access. Moreover, in many cases the database is
installed on another server. For these reasons, probing the database is out of question.

Test purpose approach follows the same verdict assignment process as penetration testers, which
consists of “taking what the Web application gives you”. The amount of information about the database
that is leaked by the application varies a lot. Hence, SQL injections cannot be tackled with only one
test purpose but with a set of three test purposes, each one implementing a dedicated SQL injection.

2.2.2.1 Error-Based SQL Injections

This is the best case scenario for a hacker / test engineer. Error-based SQL injection means that
syntax error messages from the database (e.g., “You have an error in your SQL syntax” for MYSQL)
are displayed to end-users. It can be default error messages from the database but also custom ones,
designed for development purposes. Consequently, the main objective of error-based SQL injections,
when limited to vulnerability discovery only

1
, is about breaking the syntactic correctness of the initial

query to generate an error message. The reception of an error message is a strong indicator of the
presence of a vulnerability, because it means we were able to temper with the query.

1 for_eachliteral$paramfrom#DATA

2 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

3 "not(self.ongoingAction.oclIsUndefined()and

4 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"

5 on_instancewas

6 thenusethreat.injectSQLi($param)

7 thenusewas.finalizeAction()

8 thenusethreat.checkErrorBasedSQLi()

Listing 10 – Test purpose for error-based SQL injection

Listing 10 shows the test purpose for Standard SQL injections. There is only one iterator for the first
phase (line 1) that receives user input identifiers, since all user inputs must be tested regardless of

their possible resurgence. To perform such a testing coverage, the for_each iterates a keyword list,

1
See https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-

005%29#Standard_SQL_Injection_Testing [Last visited: September 2015]

https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Standard_SQL_Injection_Testing
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Standard_SQL_Injection_Testing

RASEN - 316853 Page 14 / 32

called #SQLI_VULN_PARAMETERS, that lists all the SQL injections vulnerable parameters referenced

in the test model.

The second phase starts on lines 2 to 5: the test purpose instructs the test generation engine to
satisfy, in the context of the Web application instance, an OCL expression composed of two sub-
expressions. The first sub expression imposes that an action is ongoing to ensure that all other fields
that are part of the same request have been properly set. The second sub-expression imposes that

the ongoing action must involve the data instance, which identifier is contained in $param. This way, it

enables to reach the right state to inject the user input.

The injection is performed on line 6, with the dedicated operation “threat.injectSQLi()”. Then,

the data is submitted by calling the finalize operation in line 7, and result is assigned in line 8 with the

operation “threat.checkErrorBasedSQLi()”.

2.2.2.2 Time Delay SQL Injections

When error messages from the database are not passed on to end-users, another solution for the
detection of SQL injection vulnerabilities is to conduct a temporal differential analysis between several
injections. This is performed with the injection of two vectors.

The role of the first vector is to disrupt the syntax of the SQL query in order to cause an immediate
response from the database, i.e. with little latency, such as

SELECT * FROM products WHERE name LIKE ’’’;

that uses a single quote, which effect is to disrupt the syntactic correctness of the query.

The role of the second vector is to alter the initial query to generate delay while being processed by
the database. It can be done by modifying the query to make the database returns as much data as
possible, or by injecting built-in methods such as sleep(10), which stalls the database for 10 seconds:

SELECT * FROM products WHERE name LIKE ’1’ or sleep(10)#’;

The objective is to observe a variation in response time from the Web application between the two
injections. The test purpose for time delay SQL injections is depicted in Listing 11.

1 for_eachliteral$paramfrom#DATA

2 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

3 "not(self.ongoingAction.oclIsUndefined()and

4 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"

5 on_instancewas

6 thenusewas.finalizeAction()

7 repeat2times

8 thenusewas.reset()

9 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

10 "not(self.ongoingAction.oclIsUndefined()and

11 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"

12 on_instancewas

13 thenusethreat.injectSQLi($param)

14 thenusewas.finalizeAction()

15 end_repeat

16 thenusethreat.checkTimeDelaySQLi()

Listing 11 – Test purpose for time delay SQL injection

This test purpose has a similar logic as the one for error-based injections. The iterator in the first
phase collects all user input identifiers from a keywords list, which contains only the identifiers that are
intended to be tested for SQL injections.

RASEN - 316853 Page 15 / 32

The second phase is composed of a stage sequence meant to be executed two times under the same
conditions, one execution dedicated to each injection. During this repeated sequence, the test purpose
instructs the test generation engine to drive the model in a state where the current page is the page

displaying the user input, then a call to “threat.injectSQLi()” performs the attack by replacing

the nominal value with an attack vector, to finally submit the data by calling the

“was.finalizeAction()”.

Note that the sequence starts with a call to “sut.reset()”, which goal is to reset the Web application

in order to perform another injection within the same conditions. Once the sequence has been

executed two times, the injections results are assessed by calling the “threat.checkTBSQLI()”.

2.2.2.3 Boolean-Based SQL Injections

Another technique for Blind SQL injections is to perform several attacks and conduct a differential
analysis between the server responses. The test pattern we rely on to create this test purpose has
been designed following the testing strategy

2
 proposed by IBM and implemented in its scanning tool,

AppScan. Indeed, by injecting SQL fragments that will cause singular changes to the initial SQL query,
the objective is to observe a difference of behavior from the Web application under test.

Consider a Web application with a search page containing a text field. The content of this field

$inputvalue is sent to the database in order to configure the following SQL query:

SELECT * FROM products WHERE name LIKE ’$inputvalue’;

The response contains the product entries whose name is close to the content of the search field. The
result is sent to the user, in the form of a Web page that lists the content.

A Boolean-Based SQL injection is therefore composed of four injections, as follows:

1. Nominal Injection: This is the intended interaction with the Web application. The server
response is used as “control group” and its objective is to compare the nominal behavior of the
application with its behavior when receiving SQL fragments as input.

2. AND TRUE: The objective is to inject an SQL fragment that is always evaluated to true and
does not change the overall value of the query, such as:

SELECT * FROM products WHERE name LIKE ’NOM’ AND 1=1;

Based on the monotone law of identity for AND, since the Boolean sub expression1=1 is always true

and because it is tied to a conjunction, the result of the expression depends on the other sub-
expression of the conjunction

3. AND FALSE: The objective is to inject an SQL fragment that that is always evaluated to false
and changes the overall value of the query, such as:

SELECT * FROM products WHERE name LIKE ’NOM’ AND 1=2;

Based on the monotone law of identity for AND, since the Boolean sub-expression1=2 is always false

and because it is tied to a conjunction, then the result of the expression is always false.

4. OR FALSE: This injection is similar to the AND TRUE injection, and is mainly used to rule out
the possibility of SQL injections by reinforcing the verdict:

SELECT * FROM products WHERE name LIKE ’NOM’ OR 1=2;

Based on the monotone law of identity for OR, since the Boolean sub-expression1=2 is always false

and because it is tied to a disjunction, then the result of the expression depends on the other sub-
expression of the disjunction.

2
http://www-01.ibm.com/support/docview.wss?uid=swg21659226 [Last visited: September 2015]

http://www-01.ibm.com/support/docview.wss?uid=swg21659226

RASEN - 316853 Page 16 / 32

Verdict is assigned by comparing the responses from the server. If all responses are equivalents, it
can be assumed that SQL injections are not possible. However, if the results from the nominal and
AND TRUE injections are equivalents, but there is a difference in the responses between the AND
TRUE and AND FALSE injections, it can be assumed that there is a strong possibility that the injected
user input is vulnerable to SQL injections.

This attack has been translated into a test purpose, as shown in Listing 12.

1 for_eachliteral$paramfrom#DATA

2 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

3 "not(self.ongoingAction.oclIsUndefined()and

4 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"

5 on_instancewas

6 thenusewas.finalizeAction()

7 repeat3times

8 thenusewas.reset()

9 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

10 "not(self.ongoingAction.oclIsUndefined()and

11 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"

12 on_instancewas

13 thenusethreat.injectSQLi($param)

14 thenusewas.finalizeAction()

15 end_repeat

16 thenusethreat.checkBooleanBasedSQLi()

Listing 12 – Test purpose for Boolean-based SQL injection

First phase consists of collecting all the user input identifiers that are intended to be tested for SQL

injections, and assigning them one after another to $param to compute attack traces.

Second phase is composed of two main sequences. The first one consists of sending nominal values
and collecting the resulting page. First, the test purpose in line 2 proposes to use any behavioral or
navigational operation, as many times as necessary, to satisfy the OCL expression defined in lines 3-
4. This expression requires, on the one hand, that an action must be ongoing, and on the other hand

that this action involves the user input whose identifier is $param. Satisfying this expression will take

the hypothetical user to the injection page, with all fields filled (in the case of a Web form).

Then, the test purpose instructs to use any behavioral or navigational operation, as many times as
necessary, to satisfy the OCL expression defined in line 8. Satisfying this expression means finalizing
the ongoing action, which implies the submission of the form, or click on the link.

The second sequence is responsible for the completion of the three SQL injections. Since the protocol
is the same for each injection, the repeat keyword is used to simplify the test purpose and save test
generation time.

Therefore, each attack starts by calling the “was.reset()” operation, in order to put the test model

back to its initial state. Then, similarly to the nominal sequence, the second step is to put the model in

a state where the current ongoing action is this action involving the user input under test ($param).

Then, the injection is performed in line 13, and the crafted request is submitted to the server in line 14.

Once the attack sequence has been executed three times, a call to the

“threat.checkBlindSQLI()” operation in line 16 compares the responses to assign a verdict.

2.2.3 Cross-Site Request Forgeries

A Cross-Site Request Forgery attack (CSRF for short) consists of tricking a victim into making a
specific request through his browser that will ultimately lead to unwanted consequences on a trusted
Web application. It is qualified as malicious because it indirectly impersonate a user to perform actions
only him or a restricted group of users is allowed to do, and without him knowing. It is due to the fact
that browsers automatically append user credentials (session data) to each request made towards a
Web application where a user session has been started. These attacks are made possible when the

RASEN - 316853 Page 17 / 32

targeted Web application does not check whether an incoming request is really originating from the
user owning the active session.

The test pattern strategy in use consists of conducting an actual CSRF attack by cloning the action
being tested on an external server, to assess whether this action can be triggered from outside the
application. The logic is similar to BURP’s CSRF PoC

3
, and goes as follows:

1. Nominal Action: The objective is to follow the intended behavior of the application and
perform the action from inside, using the GUI.

2. Information collect: The link / form being responsible for the triggering of the action is
retrieved, the output page for later comparison is also collected.

3. Reset: The application is reinitialized and the current user session is closed.

4. Login: The user authenticates to the application to open a new session.

5. External Action: The action is submitted from an external Web server, using the same
browser. To do this, a dedicated java program starts a local Web server, which takes as input
the data gathered during information collect. The server recreates the form or link based on
the received data, and sends the result to the user, in the form of an interactive Web page.

6. Result Comparison: The results from the nominal and the external actions are compared. If
both results are similar, it can be concluded that CSRF attacks are possible.

This strategy has been translated into the test purpose described in Listing 13.

1 for_eachliteral$actionfrom#CSRF_(SESSION_TYPE)_ACTIONS

2 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

3 "not(self.ongoingAction.oclIsUndefined()andself.ongoingAction.id=ACTION_IDS::$action

4 "andself.session_type=(SESSION_TYPE))"on_instancewas

5 thenusethreat.gatherCSRFInfo()

6 thenusewas.finalizeAction()

7 thenusewas.reset()

8 thenuseany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

9 "not(self.ongoingAction.oclIsUndefined()and

10 andself.session_type=(SESSION_TYPE))"on_instancewas

11 thenusewas.finalizeAction()

12 thenusethreat.performCSRFAttack()

13 thenusethreat.checkCSRF()

Listing 13 – Test purpose for cross-site request forgery

In the first phase, all the actions that are part of the test objective regarding CSRF are collected. Each

action will be affected to the $action variable to configure the second phase of the test purpose. The

second phase starts by triggering the action as intended by the application. This is performed by
satisfying the OCL expression in line 3-4 that requires to put the model in a state where the action is

ongoing. Then in line 5, The “threat.gatherCSRFInfo()” operation is called to retrieve the Web

form or link that is used to submit the action. In line 6, the actions are finalized and then the application
is reset in line 7. The attack sequence starts in line 8-10 by instructing the test generation engine to
satisfy an OCL expression that expresses that a new user session should be started, with the same
privileges as during the nominal sequence, and that no action should be ongoing (i.e., the login form
has been submitted). This is done with an OCL expression, that can be satisfied using any behavioral
or navigation operation from the model, as many times as necessary. Finally, the CSRF attack is
performed in line 12, and the two results are compared in line 13, by calling the

“threat.checkCSRF()”operation.

3
https://support.portswigger.net/customer/portal/articles/1965674-using-burp-to-test-for-cross-site-request-forgery-

csrf- [Last visited: September 2015]

https://support.portswigger.net/customer/portal/articles/1965674-using-burp-to-test-for-cross-site-request-forgery-csrf-
https://support.portswigger.net/customer/portal/articles/1965674-using-burp-to-test-for-cross-site-request-forgery-csrf-

RASEN - 316853 Page 18 / 32

2.2.4 Privilege Escalation

Applications do not always protect application functions properly. As anyone with network access to a
Web application can send a request to it, such application should verify action level access rights for
all incoming requests. When designing a Web application front-end, developers must build restrictions
that define which users can see various links, buttons, forms, and pages. Although developers usually
manage to restrict Web interface, they often forget to put access controls in the business logic that
actually performs business actions: sensitive actions are hidden but the application fail to enforce
sufficient authorization for these actions. If checks are not performed and enforced, malicious users
may be able to penetrate critical areas without the proper authorization.

The strategy implemented to test Privilege Escalation is called Forced Browsing. The objective is to
obtain a direct URL to trigger an action or access a page of the Web application that is supposed to be
available only to users with sufficient rights. The underlying idea is that developers may have hidden
the access to such actions or pages in the GUI but forgot to enforce the restriction in the actions’ code.
Thus, the test pattern strategy for Privilege Escalation consists of the following steps:

1. Access the page / Trigger the action as intended, from the GUI, with a session that has the
sufficient rights.

2. Save the direct URL that point to that page / action.

3. Save the output result for later comparison.

4. Logout from the Web application, or change the session state (from admin to regular user, for
instance).

5. Access the URL directly, and save the output result.

6. Compare the two outputs.

If the output results are equivalent, it constitutes an indicator that the restricted page or action can be
accessed. This strategy has been formalized in two test purposes: the first one for pages and the
second one for actions.

2.2.4.1 Privilege Escalation of Pages

As shown in Listing 14, the first phase of the test purpose for Privilege Escalation of pages, is

composed of two nested for_each. The first iterator retrieves all the possible session types, and the

second iterator retrieves all the pages that are not accessible to the currently iterated session type. To

do this, a dedicated private operation “isAccessible()” of the test model is used to define whether

a given session type can access to a given page.

In the second phase, the test purpose first instructs the test generation engine to satisfy an OCL
expression that requires to put the model in a state where the current page is $page, and no action is

ongoing. Then, the relevant information is collected using the “collectPage()” operation. The next

step is then to reset the system, and start the attack part. This is done by instructing the test
generation engine to satisfy an OCL expression, which is evaluated to true when the current session
type of the Web application under test is the session type from the iterator. Once the system is in the

right state, the restricted page is accessed using the “accessPage()” operation. The last step is

verdict assignment, thanks to the “checkPrivilegeEscalation()” operation.

1 for_eachliteral$sessionfrom#SESSION_TYPES,

2 for_eachinstance$pagefrom

3 "self.all_pages->select(p:Page|not(self.isAccessible(SESSION_TYPES::$role,p.id)))"

4 on_instancewas,

5 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

6 "self.was_p.current_page=selfandself.was_p.ongoingAction.oclIsUndefined()"

7 on_instance$page

8 thenusethreat.collectPage()

9 thenusewas.reset()

RASEN - 316853 Page 19 / 32

10 thenuseany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

11 "self.ongoingAction.oclIsUndefined()and

12 "andself.session_type=SESSION_TYPES::$role"

13 on_instancewas

14 thenusethreat.accessPage()

15 thenusethreat.checkPrivilegeEscalation()

Listing 14 – Test purpose for privilege escalation of pages

2.2.4.2 Privilege Escalation of Action

The test purpose for privilege escalation of restricted actions, introduced in Listing 15, shares a similar
structure with the one for pages.

1 for_eachliteral$sessionfrom#SESSION_TYPES,

2 for_eachinstance$actionfrom

3 "self.all_pages->select(p:Page|not(self.isAccessible(SESSION_TYPES::$role,p.id)))

4 ->collect(p:Page|p.all_actions" on_instancewas,

5 useany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

6 "self.was_ca.ongoingAction=self"on_instance$action

7 thenusethreat.activateCapture()

8 thenusewas.finalize()

9 thenusethreat.collectPage()

10 thenusewas.reset()

11 thenuseany_operation_but#UNWANTED_OPSany_number_of_timesto_reach

12 "self.ongoingAction.oclIsUndefined()and

13 "andself.session_type=SESSION_TYPES::$role"on_instancewas

14 thenusethreat.triggerAction()

15 thenusethreat.checkPrivilegeEscalation()

Listing 15 – Test purpose for privilege escalation of actions

In the first phase, the outer loop retrieves all possible session types and for each session type, the
inner loop retrieves all the actions that cannot be triggered by users under this session type.

The second phase starts by requesting to put the model in a state where the iterated action is
ongoing, which means the current page is the page owning this action. In line 7, the

“activateCapture()“ is for concretization purposes: it tells the test harness to start capturing the

outgoing request made by the test script, in order to collect relevant information (targeted URL,
parameters, etc.). Then, the action is submitted, the page result collected, and the application reset in
lines 8-10.

The attack sequence first requests to put the model in a state where the current session type of the
Web application corresponds to the one from the iterator, and where no action is on-going (meaning
the authentication credentials has been submitted). Line 14 tries to trigger the action by calling the

“triggerAction()” operation, using the information collected by the “activateCapture()”

operation. Finally, the two outputs from the server are compared by calling the

“checkPrivilegeEscalation()” operation.

2.3 Synthesis

This section describes the update regarding test purpose language expressiveness. These updates
allow on the one hand to make the vulnerability test purposes generic, and on the other hand to make
them more efficient in detecting vulnerabilities. More precisely, the section details the test purposes of
the four vulnerabilities that have been mostly targeted during the RASEN case studies: Cross-Site
Scripting, SQL Injections (error-based, time-based and Boolean-based), Cross-Site Request Forgeries
and Privilege Escalation (page-based and action-based).

RASEN - 316853 Page 20 / 32

Each of these test purposes allows producing one or several abstract test cases verifying the test
purpose specification and the behavioral test model constraints. Such a test case takes the form of a
sequence of steps, where a step corresponds to an operation call representing either an action or an
observation of the system under test. It also embeds the security test strategies (from security test
patterns) that is next used to apply data fuzzing strategies on attack vectors during test scripts
generation and execution, as described in the testing process illustration depicted in Figure 1.

The next and last phase of the testing process consists of exporting and executing the test cases in
the execution environment in order to provide test results. In the present case, it consists of creating a
JUnit test suite, where each abstract fuzzed test case is exported as a JUnit test case, and creating an
interface. This interface defines the prototype of each operation of the application and links the
abstract structures / data of the test cases to the concrete ones. Since this process ensures the
traceability between the verdict of the test case execution and the targeted vulnerabilities identified
during risk assessment, the test results can be gathered and processed to provide testing metrics that
help engineers to complement the risk picture of the system under test. The next section introduces
the test result aggregation that makes it possible to deliver such relevant and useful testing metrics.

RASEN - 316853 Page 21 / 32

3 Security Test Result Aggregation

Security test result aggregation is the process of summarizing test results in a meaningful way. Within
the RASEN context, testing metrics is a concept to transfer the information from security testing to risk
assessment. Test metrics in general can serve as an important indicator of the efficiency and
effectiveness of a software testing process. In RASEN test result aggregation is specified on basis of
metrics that use the information contained in the RASEN Test Result Exchange Format (see
Deliverables D5.4.2 and D5.4.3). The aggregation is processed by the RASEN Testing Dashboard that
is described in Section 3.5. The aggregation results are propagated via the RASEN Aggregated Test
Result Exchange Format so that they can be processed in Security Risk Assessment Tools according
to the integration scenarios defined in Deliverable D5.4.3. The Sections 3.1, 3.2, and 3.3 specify a set
of testing metrics that could be used for test aggregation. The definitions show ID, Name and
Description of the metric. The Metric Description uses references to items from the RASEN conceptual
model and the RASEN Exchange Format. These references are denoted with a starting backslash
(e.g. \testItem). Section 3.5 shows the implementation of the test metrics and the process of test
aggregation by means of the RASEN Testing Dashboard.

3.1 List Up Metrics

List up metrics are the most basic kind of a testing metrics. Applying their functions does nothing but
listing up a summary of the most important test results in a format specified by the metric. The results
are used as documentation in the risk graphs. Additionally, list up metrics can be used to identify any
unexpected incidents. These can be suggested as potential new unwanted incidents to the risk
analysts. Table 1 specifies a set of simple list up metrics.

ID Name Description

LU1 # of specified
test cases

counts up all specified test cases for a certain \testItem,
/testCoverageItem. The # of specified test cases is usually an indicator
for the intended coverage of the \testItem or \testCoverageItemwith test
cases.

LU2 # executed test
cases

counts up all specified test cases for a certain \testItem,
/testCoverageItem. The # of executed test cases is usually an indicator
for the actual coverage of the \testItem or \testCoverageItemwith test
cases.

LU3 # of passed test
cases

counts up all test cases for a certain \testItem, \testCoverageItemthat
have been executed and passed. The # of passed test cases is usually
an indicator for a lower probability of the existence of errors or
vulnerabilities in covered functions of the \testItem.

LU4 # failed test
cases

counts up all test cases for a certain \testItem, \testCoverageItemthat
have been executed and failed. The # of failed test cases is usually an
indicator for the existence of vulnerabilities in the \testItem.

LU5 # inconc test
cases

counts up all test cases for a certain \testItem, \testCoverageItemthat
have been executed and shows an inconclusive result. The # of
inconclusive test cases is usually an indicator for open issues that need
to be resolved manually.

LU6 # of error test
cases

counts up all test cases for a certain \testItem, \testCoverageItemthat
have been executed and shows an erroneous result. Erroneous results
are caused by errors in the test system and not by errors in the \testItem.
The # of erroneous test cases is usually an indicator for the quality of the
test system or its connection with the \testItem.

RASEN - 316853 Page 22 / 32

LU7 # incidents counts up all incidents that occur during the execution of test for a
\testItem, \testCoverageItem(an incident is indicated through test case
that result to fail and error).

LU8 # errors counts up all errors that occur during the execution of test for a \testItem,
/testCoverageItem.

LU9 Fail/pass ratio ratio of # of failed test cases to # passed test cases. The ratio is usually
an indicator for the effectiveness of the test cases and the stability of
the software.

LU10 Test execution
stats:
executed/specifi
ed ratio

ratio of # of executed test cases to # specified test cases. The ratio is
usually an indicator for the status of the test execution and the status of
the test implementation.

LU13 Vulnerability
discovery rate

ratio of total # of vulnerabilities discovered for \testItem,
\testCoverageItem to # of test cases.

LU14 Vulnerability
density

of vulnerabilities / total size of the system (e.g. loc, Mbyte of binary,
Mbyte of source code).

Table 1 – List up metrics

3.2 Coverage Metrics

This kind of metric tries to calculate how complete the testing was. Such metrics measure for example,
how much of the potential input value space has actually been created as test data or how much of
the code of the system under test has in fact been executed during the testing process. Coverage
metrics are widely used for all kinds of testing and there is a large amount of literature on that subject
[13][12][11].

Coverage metrics are typically used as an indicator for the overall test quality. Results can be used for
documentation purpose within the risk analysis. Eventually coverage of negative tests might be an
indicator for the likelihood that some vulnerability exists at all. Table 2 specifies a set of coverage
metrics by denoting the ID, a name, a description of the metric and by showing references to the list
up metrics from Table 1 that could be used to detail the respective coverage statements.

ID Name Description Combinations

C1 Requirements or
specification
coverage

percentage of requirements/features/specification
elements that are addressed by test cases/test
procedures. Can be used as an indicator for the
completeness of testing.

LU1 -LU10, E1,
E2

C2 Attack surface
coverage

percentage of the attack surface elements that
are addressed by test cases/test procedures. Can
be used as an indicator for the completeness of
testing. Can be extended by counting up # of test
cases/ resources used for each interface item of
the attack surface or by differentiating the
vulnerabilities (C3) and the respective attack
vector (see C4).

LU1 -LU10, E1,
E2

C3 Known/expected
vulnerability
coverage

percentage of the known/expected vulnerabilities
that are addressed by test cases/test procedures.
Can be extended by counting up # of test cases/
resources used for each known/expected
vulnerability. Can be weighted with factors
estimating severity, probability and detectability.

LU1 -LU10, E1,
E2

RASEN - 316853 Page 23 / 32

C4 Attack vector
(threat scenario)
coverage

counts up # of test cases/resources used for
each attack vector class/partition.
Classes/partitions are derived by
classification/equivalence partitioning of a given
attack vector. Each partition can be weighted with
factors estimating factors estimating severity,
probability and detectability.

LU1 -LU10, E1,
E2

C5 Attack path
coverage

percentage of the known/expected attack paths.
Can be extended by counting up # of test
cases/resources used to test for vulnerabilities in
the attack paths that lead to an unwanted incident.

LU1 -LU10, E1,
E2, C2-C4

C6 Vulnerability
coverage
efficiency of RA
model: #
vulnerabilities not
anticipated by RA/
(# vulnerabilities
anticipated by RA
+ # vulnerabilities
not anticipated by
RA)

ratio of # incidents not covered by RA to (#
vulnerabilities covered by RA + # vulnerabilities
not covered by RA) indicates whether the actual
RA covers the relevant vulnerabilities of the
system.

Table 2 – Coverage metrics

The metric C4(Attack Vector Coverage) is a variant of a metric that measures the coverage of the
input space equivalence partitioning. Equivalence partitioning is a software testing technique that
divides the input data or test scenarios into partitions. The data or scenarios within one partition are
considered to be equivalent with respect to the given testing problem, thus it is expected that the
results do not to differ for any of the data or scenarios in one partition. In theory, equivalence
partitioning requires only one test case for each partition to evaluate the software properties for the
related partition.

In the case of security testing, we propose to define partitions on basis of the attack vector for a given
vulnerability. The attack vector itself comprises all possible attacks to exploit a given vulnerability. By
means of decomposition we have tried to identify attack vector classifications to distinguish attack
vector partitions with equivalent attack vectors. Examples for vulnerabilities, the related attack vector
and the proposed attack vector classifications could be found in Table 3.

Vulnerability Attack vector Attack vector classification

CWE-89:
Improper Neutralization of
Special Elements used in
an SQL Command

SQL injection

1) Union exploitation
2) Boolean exploitation

a) Force usage of logical operations for
invalidating values

b) Force usage of big numbers for invalidating
values

3) Error-based exploitation
4) Out of band exploitation
5) Time delay exploitation

a) Use of escaping mechanism
b) Randomcase

6) Stored procedure exploitation
7) Obfuscation of the payload
8) Stacked queries exploitation

RASEN - 316853 Page 24 / 32

CWE-79:
Improper Neutralization of
Input During Web Page
Generation ('Cross-site
Scripting')

XSS attack

1) Server XSS
2) Client XSS

CWE-287:
Improper Authentication

Exploit weak
authentication
mechanism

1) Exploit use of default credentials
2) Exploit weak lock out mechanism
3) Bypassing authentication schema

a) Direct page request (forced browsing)
b) Parameter modification
c) Session ID prediction
d) SQL injection

4) Exploit remember password functionality
5) Exploit weak password policy
6) Exploit weak security question/answer
7) Exploit weak password change or reset

functionalities
8) Exploit weaker authentication in alternative

channel

CWE-77:
Improper Neutralization of
Special Elements used in
a Command ('Command
Injection')

Code injection 1) Direct injection
2) Indirect injection

Table 3 – Attack vector classification examples

3.3 Efficiency Metrics

Efficiency metrics are used to calculate how much effort has been spent for testing. These metrics are
especially interesting for the case that with the testing effort spend so far no fault or unwanted incident
has been triggered. The idea is that using the same attack strategy, which was used for testing, an
attacker will probably have to spend even more resources in order to trigger an unwanted incident.

The result of an efficiency metrics for security testing is an indicator for the costs of related threat
scenario. Taking the resources and the calculation power potential attackers have in relation to these
costs might be a good indicator for the likelihood that the threat scenario will be exploited successfully
within a given time period. Table 4 shows a set of efficiency metrics for testing.

ID Name Description

E1 Test
case/procedure
preparation
complexity:
Effort per test
case/procedure

sums up the efforts spent for specifying and implementing a test case or
a test procedure. The efforts spent could be used as an indicator for the
complexity of the testing problem and thus of the detectability of the
addressed vulnerability.

RASEN - 316853 Page 25 / 32

E2 Test
case/procedure
execution time

sums up the efforts/time spent for executing a test case or a test
procedure. The execution time might be an indicator for the complexity
of the testing problem and thus of the detectability of the addressed
vulnerability.

E3 Size of software
tested
/resources used
ratio

ratio of size of software tested to resources used might be used as an
indicator of test efficiency or sufficiency of tests.

Table 4 – Efficiency metrics

3.4 Process/Progress Related Metrics

Process/progress related metrics are used to measure the progress of the test process and the
respective quality improvements of the test item over time. Table 5 shows two process/progress
related testing metrics.

ID Name Description

P1 Vulnerability
discovery rate
increase/decrea
se

Compares vulnerability discovery rates over time. Can be used as an
indicator if additional test effort leads to the identification of more
vulnerabilities/failures.

P2 Test
case/procedure
preparation
complexity
increase/decrea
se

Compares test case/procedure preparation complexity over time. Can
be used as an indicator if additional test effort would lead a number of
reasonable new test cases.

Table 5 – Process/progress related metrics

3.5 The RASEN Testing Dashboard

The Testing Dashboard is designed to realize and visualize the security testing metrics defined in
Chapter 3 and to provide an exporter for aggregated test reports[8].

3.5.1 Principles

A RASEN security testing metric refers to multiple parts of security models like risk model and test
report. The RASEN Testing Dashboard manages the referenced models for such metrics, generates
metrics and measurements for the security elements of interest, visualizes them in different views and
provides an exporter for aggregated results.

3.5.2 Architecture

The Testing Dashboard is designed as a Java plugin for the Eclipse environment. It consists of a risk
test model analyzer, a metric generator and two different views embedded in the Eclipse workbench
(see Figure 3): a dashboard metric table view and a metric chart view. The risk test model analyzer
processes registered models for metric generation and visualization. The GUI part of the Testing
Dashboard provides different user interaction options, including selecting elements and metrics for the
analysis, and setting different parameters for their visualization. Selected elements and their metrics
can be exported as aggregated test reports.

RASEN - 316853 Page 26 / 32

Figure 3 – RASEN testing dashboard embedded in Eclipse

The dashboard architecture consists of the models to be analyzed and the aggregated report as the
analysis result in the bottom level, the analyzer and the test metric generator in the middle, and the
GUI part on the top level (see Figure 4).

Figure 4 – RASEN testing dashboard architecture

The central part of RASEN Testing Dashboard is the analyzer component compositing and working on
the associated risk test model, and the test metric generator processing the security metrics with help
of the analyzer. The analyzer collects all data from the model needed for single analysis requests from
the GUI or the test metric generator. The risk test model is a unified model of all registered models and
will be used by the analyzer. Such single model can be dynamically added to and removed from the
dashboard. Each model part, namely a risk model, a test report model and also a test pattern
catalogue must be defined in the exchange format [7], an XML Ecore format, and will be loaded by an
EMF loader. The risk test analyzer links such loaded EMF models together to the risk test model. To
identify a relation between a risk model and a test report model, for instance, these models contain
reference elements with only an identifier attribute for the related element in the related model. These
reference elements are required for tracking relationships between test results, metrics and the risk
test model.

The metric generator realizes the security testing metrics and enables the export into the aggregated
test report format. The test metric format and the aggregated test report format is in detail described
in [8]. The risk test analyzer will be used to resolve inquiries for the risk test model to create the metric
and measurement values. Such values are used for visualization in the GUI as well as for the

RASEN - 316853 Page 27 / 32

aggregated test report model. The exporter uses an appropriated EMF model adapter to export such
report model into an XML Ecore file, formatted to the according XML Schema specification.

Finally, the dashboard GUI on the top level represents the user interaction part of the dashboard. It
consists of two views and GUI elements for user configurations and will be described in the next
chapter in detail.

3.5.3 GUI

The dashboard GUI as the user interaction part is integrated in the Eclipse workbench and its views
are realized as Eclipse SWT view elements. The Testing Dashboard uses model parts, which are
dynamically registered, as described before. To register, the user can select files of such models in the
project explorer and also in the Java package explorer. By right-click on one or more selected files he
can select the option “Register Model for Testing Dashboard” in the popup menu dialog (see Figure 5)
for registration. The analyzer will try to load and register all selected files. If the loading fails, Eclipse
will open an information dialog and continue with the next file. If the loading succeeded, the risk test
model will be immediately updated, and also all dashboard views and shown metric values.

Figure 5 – Register model dialog

Only models in the exchange format defined in [7] are valid for the registration. Additionally, risk
models in the CORAS risk format [16] can also be directly registered. This is realized by an internal
transforming into the risk model exchange format. The registered models will be saved as property
values in the Eclipse storage so that all models will be loaded with the start of a new Eclipse
dashboard session.

The first view of the dashboard GUI is the dashboard metric table (see Figure 6). The view can be
found in Eclipse in Window -> Show View ->Other in the “Other” folder. The view lists categorized
elements and their metric values in a table format. Each line shows an element followed by the metric
values of all registered metric types. By selecting the option “select displaying object(s)...” (see Figure
7) the user can choose one or more categories for displaying elements in the dashboard. A category
can be “unwanted incidents” that displays all unwanted incidents of registered risk models and all
metrics related to each incident, or can be “test procedure” that displays test procedures of registered
test reports and all metrics related to them.

RASEN - 316853 Page 28 / 32

Figure 6 – Dashboard table view

Figure 7 – Select displaying object category dialog

The user can also remove registered models or clear the whole dashboard by selecting the
appropriate option in the option menu. Finally, all shown elements and metrics can be exported into a
XML file. The exported format conforms to the aggregated test report format.

The second view is the metric chart view (see Figure 8) and can be found in Eclipse in Window ->
Show View ->Other in the “Other” folder.

Figure 8 – Dashboard charts view

The chart view visualizes elements and their metric result in a chart diagram. The elements are
selected by the user in the dashboard table view or in the CORAS diagram editor. The metric type for
the charts is also selectable by users in the “select metric” dialog (see Figure 9). He can choose one of

RASEN - 316853 Page 29 / 32

all registered metrics in the dashboard. The user has also the option to switch between different chart
types, namely: a bar chart, a stacked bar chart, a line chart and an area chart.

Figure 9– Select metric for dashboard charts

Finally, all visualized elements in chart diagram can also be exported in the same way as in the
dashboard table view.

3.5.4 API and Implementation Guidelines

The RASEN security dashboard is designed to create new metrics and measurements with
customizable visualizations. The risk test model can be used to evaluate extensive risk inquiries such
as determining a risk value for a risk element or estimate the test effectiveness and test effort level by
considering related test patterns and test reports for the risk element. This can be inevitable when
complex metrics such as efficiency metrics are added to the dashboard.

The dashboard metric generator realizes the most of list up metrics in the current state. Other metrics,
particularly single coverage metrics and efficiency metrics, need complex analytical methods on the
risk test model for realization.

The underlying metric and measurement model handling intends to extend it for new metrics and
measurement types for further development (see Figure 10). The test metric and measurement model
is generated as an EMF Ecore model. A test metric model handler is available to create such models
in a comfortable way. Customized metric and measurement classes are using this handler and have a
small interface for specific calculations and for inquiry handling on the risk test model. These
customized classes can be used to develop new metric types. To add the new metrics to the
dashboard, the plug-in has to realize a TestMetricFactory class that provides all such new metrics, and
register this factory to the provided extension point. The testing dashboard will dynamically load all
such registered metric factories and provides the metrics for further handling of the metric generator
and the dashboard GUI. To show a metric in the chart diagram, a specific visualization has to be
specified, realized by a customized visualization class with different customization options like naming,
coloring and displaying input values. A metric can only be displayed in the chart diagram with an
according visualization.

RASEN - 316853 Page 30 / 32

Figure 10 – Overview of the test measurement and metric API

RASEN - 316853 Page 31 / 32

4 Summary

The overall objective of RASEN WP4 is to develop techniques to use risk assessment as guidance
and basis for security testing, and to develop an approach that supports a systematic aggregation of
security testing results by means of security testing metrics. The objective includes the development of
a tool-based integrated process for guiding security testing by means of reasonable risk coverage and
probability metrics. This deliverable is the last deliverable of a series of three deliverables that
describes the RASEN tools and techniques for risk-based security testing.

Deliverable D4.2.1 has introduced a technique for risk-based test identification and prioritization and
an approach for test identification and generation based on the notion of security test pattern and their
formal representation by means of a test purpose language.

Deliverable D4.2.2 has updated the technique for risk-based test identification and prioritization with
an approach for test identification, prioritization, selection and test case derivation based on CAPEC
attack patterns. The approach describes how a test procedure can be derived in three steps by (1)
generating generic risk models from CAPEC attack patterns, (2) adapting them to the target of the risk
assessment and (3) deriving from the target-specific risk model a test procedure consisting of select
and prioritized test scenarios. Based on these test scenarios, test patterns may be selected as starting
point for test case derivation. They provide refined techniques for test generation (stimulation
strategies) and test verdict arbitration (observation strategies). The actual test case generation starts
by instantiating a security test pattern, employing security test purposes for test sequence generation
and fuzzing techniques for actual security test case generation.

First, this deliverable has described the update developed to improve and extend the test purpose
language expressiveness. These updates enable providing vulnerability test purposes formalizing
complex and sophisticated attacks, and on the other hand to make them more efficient to detect
vulnerabilities. More precisely, we have detailed the test purposes of the four types of vulnerability that
have been targeted within the RASEN case studies: Cross-Site Scripting, SQL Injections (error-based,
time-based and Boolean-based), Cross-Site Request Forgeries and Privilege Escalation (page-based
and action-based).

Second, this deliverable has introduced the notion of test result aggregation and a testing dashboard
in order to provide an overview of test progress and results. The RASEN Testing Dashboard is the
implementation of a set of testing metrics that provide a problem specific view on the results of
security testing. The RASEN Testing Dashboard on one hand allows the visualization of test results
and their problem specific aggregation by testing metrics both in the context of testing as well as in the
context of the initial risk assessment. On the other hand the RASEN Testing Dashboard allows
exporting aggregated test results (i.e. test results and test metric results) for further processing by
other tools.

All of the above mentioned achievements provide a set of techniques that completely support the risk-
based security testing process, beginning with risk assessment, followed by test identification, test
prioritization, test selection, test generation, test execution and finally test result aggregation, test
reporting and visualization (see Figure 1on page 6).

RASEN - 316853 Page 32 / 32

References

[1] RASEN Deliverable D4.2.1, Techniques for Compositional Risk-Based Security Testing v.1,
2013

[2] RASEN Deliverable D4.2.2, Techniques for Compositional Risk-Based Security Testing v.2,
2014

[3] RASEN Deliverable D5.3.1, Methodologies for legal, compositional, and continuous risk
assessment and security testing v.1, 2013

[4] RASEN Deliverable D5.3.2,Methodologies for legal, compositional, and continuous risk
assessment and security testingv.2, 2014

[5] RASEN Deliverable D5.3.3,Methodologies for legal, compositional, and continuous risk
assessment and security testingv.3, 2015

[6] RASEN Deliverable D5.4.1, A toolbox for risk assessment and security testing v.1, 2013
[7] RASEN Deliverable D5.4.2, A toolbox for risk assessment and security testing v.2, 2014
[8] RASEN Deliverable D5.4.3, A toolbox for risk assessment and security testingv.3, 2015
[9] F. Seehusen: A Technique for Risk-Based Test Procedure Identification, Prioritization and

Selection. In Proc. of the 6th International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, to appear.

[10] W.e Jansen: Directions in Security Metrics Research, NISTIR 7564, Computer Security
Division, Information Technology Laboratory, National Institute of Standards and
Technology, Gaithersburg 2009

[11] M. W. Whalen, A. Rajan, M. P. E. Heimdahl, S. P. Miller: Coverage Metrics for
Requirements-based Testing. In Proc. of the 2006 International Symposium on Software
Testing and Analysis, pp. 25-36, ACM New York

[12] P. E. Ammann, P. E. Black: A Specification-Based Coverage Metric to Evaluate Test Sets.
International Journal of Reliability, Quality & Safety Engineering. Dec 2001, Vol. 8 Issue 4,
pp. 275-299, World Scientic Publishing 2001

[13] J. J. Chilenski, S. P. Miller: Applicability of modified condition/decision coverage to software
testing. Software Engineering Journal, Volume 9, Issue 5, September 1994, pp. 193 – 200,
Institution of Electrical Engineers 1994

[14] International Organization for Standardization/: ISO/IEC 29119-1 Systems and software
engineering—Software testing—Part 1: Concepts and definitions (2013)

[15] Open Web Application Security Project: Top 10 2013 (2013). [ONLINE] Available at:
https://www.owasp.org/index.php/Top_10_2013 [Accessed 8 September 2013]

[16] M. S. Lund, B. Solhaug, K. Stølen: Model-Driven Risk Analysis - The CORAS Approach,
Springer, 2011

https://www.owasp.org/index.php/Top_10_2013

