

RASEN - 316853

Deliverable D3.2.3

Techniques for Compositional Test-Based

Security Risk Assessment v.3

RASEN - 316853 Page 2 / 31

Project title: RASEN

Project number: 316853

Call identifier: FP7-ICT-2011-8

Objective: ICT-8-1.4 Trustworthy ICT

Funding scheme: STREP – Small or medium scale focused research project

Work package: WP3

Deliverable number: D3.2.3

Nature of deliverable: Report

Dissemination level: PU

Internal version number: 1.0

Contractual delivery date: 2015-09-30

Actual delivery date: 2015-09-30

Responsible partner: Software AG

RASEN - 316853 Page 3 / 31

Contributors

Editor(s) Bjørnar Solhaug (SINTEF)

Contributor(s) Fredrik Seehusen (SINTEF), Bjørnar Solhaug (SINTEF), Johannes Viehmann
(Fraunhofer), Frank Werner (Software AG)

Quality assuror(s) Samson Esayas (UiO), Erlend Eilertsen (Evry)

Version history

Version Date Description

0.1 15-02-13 Table of contents

0.2 15-09-04 Draft version

0.3 15-09-07 Revision of all sections

0.4 15-09-11 Finalized for internal review

0.6 15-09-22 Revision after internal review

1.0 15-09-30 Final revision and quality check preformed

Abstract
This deliverable reports on the main results of RASEN WP3 from the third and final year of the
project. The tasks that have been addressed are: (T3.1) the development of techniques for
compositional security risk assessment, (T3.2) the development of techniques for test-based security
risk assessment, and (T3.3) the development of techniques for continuous risk assessment by means
of test-based indicators.
The RASEN approach to component-based and test-based security risk assessment has been further
developed, including the tool-support. In particular, this deliverable documents the following WP3
contributions. Tool-supported techniques for component-based security risk assessment supported
by testing; security test result aggregation using test metrics and risk metrics; a tool supported
approach to component-based security risk assessment for composition of risk assessment results.

Keywords
Security, security risk assessment, component-based security risk assessment, test-based security
risk assessment, test result aggregation

RASEN - 316853 Page 4 / 31

Executive Summary
The overall objective of RASEN WP3 is to develop tools and techniques to facilitate compositional
security risk assessment and component-based security risk assessment supported by security
testing. This includes developing tools and techniques i) for compositional and for component-based
security risk assessment and security testing, ii) for identifying, estimating and verifying security risks
based on security test results, and iii) for reuse of risk assessment and security test results, as well as
dynamic updates of the security risk assessment based on test results and using metrics and risk
metrics.

This deliverable reports on the WP3 results after the third year of the project. The results cover all of
the WP3 research tasks, namely (T3.1) the development of techniques for compositional security risk
assessment, (T3.2) the development of techniques for test-based risk identification and estimation in
order to complement the risk picture based on test results, and (T3.3) the development of techniques
for continuous risk assessment of large scale systems by the use of test-based indicators. In
particular, the deliverable makes the following contributions.

• Tool-supported techniques for component-based security risk assessment supported by
testing. Two alternative approaches are offered, each of which makes use of the same
software product component model where components are decomposed into a hierarchy.

• Security test result aggregation using test metrics and risk metrics. A process and
documentation format is introduced for specifying metrics and aggregation functions, so as to
enable the aggregation of test results to risk information that can be fed to the security risk
model.

• Tool-supported approach to component-based security risk assessment. The overall security
risks for a software system are derived by aggregating the security risks for the individual
components that the system is composed of. The approach moreover allows the reuse of
component risk assessment results in the different contexts and systems where the
component in question may be used.

The WP3 results contribute to support and facilitate the overall RASEN methodology that is presented
in the context of WP5. The WP3 tools are moreover integrated into the RASEN tool-box and have
therefore the potential to be used in combination with other RASEN tools and techniques.

RASEN - 316853 Page 5 / 31

Table of contents
TABLE OF CONTENTS .. 5

1 INTRODUCTION ... 6
2 COMPONENT-BASED RISK ASSESSMENT COMBINED WITH TESTING 7

2.1 RISK AGGREGATION IN ARIS .. 8
2.2 RISK AGGREGATION VIA RACOMAT ... 10

3 TEST RESULT AGGREGATION USING TEST METRICS AND RISK METRICS 12
3.1 THE PROCESS FOR DEFINING MEASUREMENT AGGREGATION ... 12

3.1.1 Step I: Identify Source and Target Data Model Elements ... 12
3.1.2 Step II: Specify Metrics and Dependencies ... 12
3.1.3 Step III: Specify Aggregation Functions ... 13

3.2 A CATALOGUE OF COMMON MEASUREMENTS, DEPENDENCIES AND AGGREGATION FUNCTIONS 14
3.2.1 Common Source and Target Data Model Elements .. 14
3.2.2 Common scales and dependencies .. 14
3.2.3 Common Aggregation Functions .. 17

3.3 THE APPLICATION OF THE PROCESS TO AN EXAMPLE .. 18
3.3.1 Step I: Identify Source and Target Data Model Elements ... 18
3.3.2 Step II and Step III: Specify Metrics and Dependencies and Aggregation Functions 19
3.3.3 Aggregation of test results ... 21

4 REUSABLE RISK ASSESSMENT ARTIFACTS AND RISK AGGREGATION WITH THE HELP
OF TAGS AND SCOPES ... 23

4.1 TAGGING RISK ASSESSMENT ARTIFACTS .. 23
4.2 THE SCOPE OF FAULTS AND UNWANTED INCIDENTS ... 24
4.3 RISK AGGREGATION USING TAGS AND SCOPES ... 26

5 CONCLUSION .. 28

REFERENCES .. 29
APPENDIX A: IMPORT/EXPORT FORMAT FOR ARIS IN XSD ... 30

RASEN - 316853 Page 6 / 31

1 Introduction
A main objective of RASEN WP3 is to develop techniques and tools that facilitate security risk
assessment of large-scale and complex software systems. To fulfill this objective WP3 has conducted
R&D tasks in three directions. First, we have developed techniques and modeling support for
compositional security risk modeling and assessment, as well as component-based techniques. Such
techniques should allow large system to be decomposed into smaller sub-systems or components that
can be analyzed separately. For this we need methods for deriving the combined results of the
individual analyses. Second, we have developed techniques for test-based risk identification and
estimation, so as to complement the risk picture based on the test results. These techniques involve
the aggregation of test results by using test metrics and risk metrics. Third, we are investigating
techniques for continuous security risk assessment by leveraging the techniques for compositional
security risk assessment, and by means of test metrics.

The current WP3 status and the third and final year results of these R&D activities are presented in
this deliverable. The activities correspond to research tasks T3.1 (compositional security risk
assessment), T3.2 (test-based risk identification and estimation) and T3.3 (continuous risk
assessment) of RASEN WP3. More specifically, the technical contents of this deliverable are as
follows.

Section 2 presents techniques for tool-supported component-based security risk assessment
supported by testing. We describe two different approaches to this that complement each other. Each
of them makes use of the same software product model, where components are decomposed into
hierarchies. The first approach allows security risk aggregation in ARIS in which security risks are
estimated at four abstraction layers, namely application, system, network and enterprise. In the
second approach the software component risks are obtained by security testing using the RACOMAT
tool. The tool imports the software product component hierarchy from ARIS, and the security risks are
aggregated accordingly.

Section 3 presents the RASEN approach to security test result aggregation using test metrics and risk
metrics. We introduce a process for defining measurement aggregation using the RASEN data models
for security testing and security risk assessment. The relevant model elements, metrics and
aggregation functions are specified and documented using a well-defined table format. We introduce
and explain all these formats, before exemplifying their instantiation.

Section 4 presents the RACOMAT tool-supported approach to component-based security risk
assessment. The approach facilitates security risk assessment of large-scale systems by allowing the
decomposition of systems into smaller components of sizes that are manageable. The idea is further
that risk assessment results for individual components can be reused in different context and for
different software systems in which the component is used. The challenge that we address is how to
aggregate the individual results and derive the correct security risk picture for the combined system.

Finally we conclude in Section 5 before presenting the import/export format for ARIS in the appendix.

The presented methods and techniques support various parts of the overall RASEN methodology as
presented in the context of WP5. The WP3 tools are moreover integrated into the RASEN tool-box,
which means that they can be used in combination with other RASEN tools. The WP3 tool portfolio is
provided in prototype deliverable D3.3.3.

RASEN - 316853 Page 7 / 31

2 Component-Based Risk Assessment Combined With
Testing

Component-based risk assessment allows a software product to be assessed by addressing its
individual components separately. In this section we describe two different ways in which we can
conduct component-based security risk assessment in RASEN. The two alternatives eventually
provide a combination of risk aggregation along the product hierarchy, as well as security risk
estimation by evaluating the risk tree of the product. What the approaches have in common is that
they share the same ARIS model as input. This facilitates their use and increases the potential for
exploitation; apart from the RASEN methodology, no additional modelling conventions are required.

The interface between ARIS Business Architect from Software AG and the RACOMAT tool from
Fraunhofer FOKUS is realized using a standardized RASEN format which can be used in both
directions. The current version uses a format based on JSON1 (Java Script Object Notation) which is
considered to be an open standard format using human-readable text to transmit data objects
consisting of attribute-value pairs. The exchange format contains a product hierarchy in arbitrary
depth, it fully implements the vignette, it allows for components along with their common weakness
score (CWS), and it has capabilities of expressing risk ratings. An XSD variant is detailed in
Appendix A.

As the approach to the modeling of large-scale network systems is already described in detail in past
deliverables (D3.2.1 and D3.2.2) we will refrain from repeating ourselves, rather focusing on the new
aspects of the import of the Common Weakness Enumerations (CWEs) [4], as well as the computation
of risks using a) the risk graph from RACOMAT, and b) a set of aggregation functions.

Figure 1 gives an overview the two approaches along with the required steps.

Figure 1 – Comparing component-based risk aggregation from CWEs and RACOMAT

1 https://tools.ietf.org/html/rfc7159

https://tools.ietf.org/html/rfc7159

RASEN - 316853 Page 8 / 31

The essential elements of the two approaches are the CWEs. For each component, the weaknesses
(in terms of CWE-IDs) are assigned using one or more of the following methods following an
automated generation process:

1. Collecting all CWE-IDs of a CWE category: For the specified category, weaknesses are
collected recursively following the tree structure.

2. Searching for CWE-IDs using a search term: CWE weaknesses have a headline and a short
summary description. All CWE weaknesses that contain the search term are added to the
component type.

3. Collecting all CWE-IDs that share a specified value: for example operating system, framework,
programming language, etc.

4. Adding CWE-IDs manually: Some CWE-IDs are added manually to component types. This is
necessary because not all CWE-IDs can be assigned automatically using one of the methods
described above. The most important reasons for that is incomplete and/or inconsistent data
in the CWE database.

2.1 Risk Aggregation in ARIS
The main characteristic for doing the security risk aggregation in ARIS is the use of a Product
Vignette. During the process of a software product security risk assessment, risk model is assessed in
which the product hierarchy is represented, as well as a vignette being unique for that product. The
vignette describes the deployment scenario in terms of “Where can data be read on network level?”,
“How can unauthorized code be executed on Enterprise level?”, “How can privileges be gained on
application level?” etc.

The vignette is a placeholder which contains all kinds of possible deployment scenarios, following a
stringent capturing of exploitation scenarios of four distinct layers:

• Application layer: This is the lowest abstraction layer where exploitation scenarios are defined
based on a single application.

• System layer: This layer is defined just above the application layer, considering a software
system which potentially hosts many different applications, e.g., a server OS

• Network layer: This layer reflects exploitations on peer to peer basis e.g., through networks,
transmission protocols, etc.

• Enterprise layer: This is the highest level of abstraction where product security risks are
exposed to the whole company.

On each of these levels, the risk impact is quantified according to the following list. The estimates are
used to calculate the CWSS (Common Weakness Scoring System) [5]. The CWSS provides a
mechanism for scoring weaknesses in a consistent, flexible, open manner while accommodating
context for various business domains. As it is part of the CWE project, it can be interlinked with
information already available in the models to allow quantitative measures of available weaknesses
present within a software component.

The list of possible impacts contains the following eight elements:

• Modify data
• Read data
• DoS: unreliable execution
• DoS: resource consumption
• Execute unauthorized code or commands
• Gain privileges / assume identity
• Bypass protection mechanisms
• Hide activities

RASEN - 316853 Page 9 / 31

When assessing the component-based risks obtained from the security testing, the following four-step
process is conducted:

1. The model is imported from RACOMAT using the common exchange format. At this point the
ARIS model contains a list of all potential CWEs which, in the subsequent process, is replaced
by a list of actually present CWEs.

2. Using the technical impact from the previously imported CWEs, the impact is evaluated by
combining the CEWs impact and a product impact which is derived from the product wide
vignette. Note that the vignette represents/characterizes the deployment scenario of the
product and is static for computation over the whole product hierarchy.

3. The CWSS impact factor is calculated by using the maximum available sub-scores over all
child components and CWEs.

4. After the CWSS Risk Rating is available, the risk is further aggregated using aggregation
functions along the product hierarchy. A set of possible functions is depicted in Figure 2.

Following this process, the overall software product security risk is eventually obtained and displayed
at the product level.

Figure 2 – Examples of different risk aggregation models

As the above mentioned aggregation functions revealed its limits, the 2nd approach introduces the
component based risk assessment where risks are obtained directly from the security testing.

The approach of security testing in large software environments needs maximum degree of
automation, the processes of which should be designed to require only minimal user interaction. To
comply with this, the above depicted aggregation models can be automatically extracted from the risk
models in ARIS and used for security testing. This is in particular convenient as no further human

RASEN - 316853 Page 10 / 31

interference is involved. On the other hand, when considering the level of detail and the
meaningfulness of the obtained aggregated results, it becomes visible that results can only be treated
as an estimate of the software system security risks. Here the aggregation function for the minimal and
maximum risk (fagg(min) and fagg(max)) deliver upper and lower values, and the risk lies somewhere in
between. One major drawback of the above stated aggregation functions is that only risks along the
hierarchy are considered which for example completely neglects inter-dependencies of software
components residing in different branches.

To combat this downside, a more sophisticated approach is taken by considering the risk along the
hierarchy in a risk-based graph. As this solution delivers realistic results, it has been considered within
the evaluation phase and is detailed in the following and in Section 4.

2.2 Risk Aggregation via RACOMAT
For the approach to security risk aggregation using RACOMAT, the CWEs are imported as in the
alternative approach described above, but the risks are not aggregated using the same functions.
Instead RACOMAT computes the security risks based on the complete risk product graph obtained
during the automated testing phase. As risks are already precomputed, they can be immediately used
in the model [7].

This approach follows a two-step process:

1. The present CWEs are imported in analogy to the alternative approach as described in the
previous sub-section. In addition, the product risk graph is imported into the ARIS tool. The
risk graph contains pre-computed, aggregated risks for all components, and therefore also
eventually the also the risk rating for the top level product.

2. In accordance to the risk graph, the risks are propagated over the complete product hierarchy.
The graphical notation of the approach moreover reflects the actual risks at each of the
components.

An illustration of the transformation process on high level is shown in the following figure.

Figure 3 – Transformation of the Product tree into the Risk Graph using RACOMAT

RASEN - 316853 Page 11 / 31

As usability and applicability has been a major concern, the risk aggregation via RACOMAT seems to
be more sophisticated as its aggregation reflects applied security test pattern and security testing
metrics when computing risks on component level. The RACOMAT tool as well as its underlying way
of aggregating risk is described in more detail in Section 4.

RASEN - 316853 Page 12 / 31

3 Test Result Aggregation Using Test Metrics and Risk
Metrics

In order to understand what security test results mean in terms of impact on risks, we need techniques
for bridging the low-level technical details obtained through testing with the higher level information of
the risk assessment. For this purpose, RASEN develops metrics which are intended to support the
propagation/aggregation of the test results to the risk assessment level. In this section we first, in
Section 3.1, describe a process for defining measurement aggregation functions in general. Then, in
Section 3.2, we define a catalogue of common measurements, and finally in Section 3.3, we
demonstrate the process on a small example. Tool support related to the test result aggregation
techniques is documented in RASEN deliverable D3.3.3-D4.3.3.

3.1 The Process for Defining Measurement Aggregation
The process for defining measurement aggregations is conducted over three steps. The results of
each step are document in dedicated table templates as described in the following.

3.1.1 Step I: Identify Source and Target Data Model Elements
The process assumes that the source data (test result data which will be input to the transformation)
and the target data (risk assessment data which is the output of the transformation) are defined in a
data model. The first step of the process is then to identify the data model elements which will be the
source and target of the transformation, and to document this in the template of Table 1.

Table 1 – Template for defining model elements
Data model
element ID

Kind Description

Element identifier Type of model element.

There are three possible types: source, target,
and intermediate. Source type refers to elements
that are input to the aggregation, target type refers
to output elements, and intermediate type refers
to data elements that are used as intermediate
calculation steps by the aggregation.

Description of model
element

3.1.2 Step II: Specify Metrics and Dependencies
The second step of the method is to define metrics which will be used as intermediate calculation data
points for aggregating the source data to the target data. The first activity is to document this in a
dependency graph following these steps:

1. List all the target data elements at the top of the graph.

2. List all the source data elements at the bottom.

3. Connect the target data points to the source data points using metrics.

That the third step should be performed in a top-down fashion; we start with the target data elements
and break these down into metrics until metrics whose values can be calculated on the basis of the
source data elements are identified. We take note of metrics whose value cannot be calculated on the
basis of source data elements, but that nevertheless are needed in order to calculate the target data
elements. Such metrics will have to be manually estimated during measurement aggregation, or
defined as a source of uncertainty.

The resulting dependency graph should be document using the notation of Table 2.

RASEN - 316853 Page 13 / 31

Table 2 – Dependency graph notation
Graphical notation Description

<name>

Model element (typically corresponds to a class in a meta model)

<name>

Metric

<description>

Comment

 Association between model elements

Dependency arrow, used to denote that a model element or measurement
may depend on another model element or measurement

The metrics and their types should additionally be documented using the templates of Table 3(metric
type) and Table 4 (metric).

Table 3 – Template for defining types

Literal name Description Definition

Name of type literal Description of type literal Precise definition of literal

Table 4 – Template for defining metrics
Metric ID Metric name Description Scale/Type

Metric identifier Metric name Description of metric Type of measurement for metric

3.1.3 Step III: Specify Aggregation Functions
After having defined the dependency graph, the next step is to define aggregation functions that
describe how the target data elements can be calculated from the source data elements using metrics.
The functions should be documented using the template of Table 5.

Name of aggregation function

Source
measurements

Definition of measurements that are input of the aggregation function.

Target
measurements

Definition of the measurements that are the output of the function

Description Textual description of the function

Definition Precise definition of the function

Table 5 – Template for defining aggregation function

RASEN - 316853 Page 14 / 31

3.2 A Catalogue of Common Measurements, Dependencies and
Aggregation Functions

In this section we define source and target data model elements, measurements, measurement
dependencies, and aggregation functions which have been identified in the RASEN case studies.

3.2.1 Common Source and Target Data Model Elements
In the RASEN case studies, we were always interested in updating the conditional likelihood values of
the relations in the risk models. In the RASEN data model, this information is expressed by the
data::riskassessment::RiskRelation and the data::foundation::Parameter data elements. Furthermore,
the test report with associated test cases and test items were used to express the test results. The
relevant data elements of the RASEN data model are shown in Table 6.

Table 6 – Common data source and target data elements of the RASEN data model
Data model element ID Kind Description

data::riskassessment::RiskRelation Target The risk relation data element corresponds
to an arrow in a CORAS diagram. It
contains the source and target nodes of the
arrow, as well as arrow annotations, i.e.
likelihood and vulnerabilities. The data item
that we want to update is the likelihood on
the relation. In the data model, this
likelihood is represented by as a parameter
to the relation.

data::foundation::Parameter Target We are interested in parameters whose
name attribute is "Vulnerability", to
represent names of vulnerabilities, and
"Likelihood" to represent conditional
likelihoods of risk relations.

data::testing::TestReport Source Contains all relevant information about the
test results.

3.2.2 Common scales and dependencies
For those measurements which may be automatically calculated are usually defined as probability
intervals. For measurements which must be assessed by expert judgement, and in addition are not
suited in automated calculation, it may be useful to use a qualitative scale. Two common scales that
we have used often are described in Table 7.

Table 7 – Common scales
Literal name Description Definition

Probability interval A pair [p,q] of two probabilities p and q
such that p is less than or equal to q

{0,..,1}, {0,...,1}

Qualitative scale Ordinal scale of three values. {low, middle, high}

In Figure 4, we have illustrated a dependency graph showing the dependencies between common
metrics. The metrics are intended to be used as intermediate steps for updating the conditional
likelihood of a risk model (expressed by the Parameter class) based on the test results (contained in
the TestReport). The highest level metric is called "Attack success likelihood". This is intended to be a

RASEN - 316853 Page 15 / 31

probability estimate which directly corresponds to the likelihood of the risk model relation. The "Attack
success likelihood" is further decomposed/dependent on metrics related to the vulnerabilities that may
be exploited in an attack. Each vulnerability associated with an attack has a "Vulnerability severity"
metrics, estimating the likelihood that the vulnerability will be exploited in an attack if the attack is
initiated. This metric is further broken down into "Vulnerability existence likelihood", estimating the
likelihood that a vulnerability exists in the system under test, and "vulnerability exploitability",
estimating how easy it is to exploit the vulnerability if it exists. Security test results will most often
contain information about the presence/absence of vulnerabilities. Thus the "Vulnerability existence
likelihood" metric is further broken down into metrics that are related to the testing activity. The metrics
"#passed test cases" and "#failed test cases" can be derived from the TestReport containing the test
results, whereas the other metrics must typically be manually estimated.

RiskRelation

TestReport

Vulnerability
severity

Vulnerability
relationships

Vulnerability
existence likelihood

Vulnerability
exploitability

passed test
cases

failed test cases

Test vulnerability
discovery likelihood

ParameterParameter *

Parameter representing
likelihood, i.e. name-

attribute must be equal to
«Likelihood»

Parameter representing
vulnerability, i.e. name-

attribute must be equal to
«Vulnerability»

Attack success
likelihood

*

Likelihood of false
positive

Assumed vulnerability
existence likelihood

Test effectivity

Test coverage Test
correctness

Vulnerability
revealing capabilities

Test reliability

Test repetability Test matuerity

So
ur

ce
da

ta
M

ea
su

re
m

en
ts

Ta
rg

et
 d

at
a

Figure 4 – Dependency graph

In Table 8, we have defined the metrics of Figure 4 more precisely.

Table 8 – Common metrics
Metric ID Metric name Description Scale/Type

R1 Attack
success
likelihood

Specifies the likelihood that a security attack will
succeed in exploiting a set of vulnerabilities

Probability
interval

R2 Vulnerability
relationships

Specifies the dependencies of a set of
vulnerabilities e.g. whether it is sufficient to exploit
one of them to achieve a successful attack, or
whether a combination of them must be exploited.

Text

RASEN - 316853 Page 16 / 31

R3 Vulnerability
severity

Specifies the likelihood that a vulnerability exists
and is successfully exploited if this is attempted

Probability
interval

R4 Vulnerability
exploitability

Specifies the likelihood that that an attacker will be
able to exploit the vulnerability if this is attempted.

Probability
interval

R5 Vulnerability
existence
likelihood

Specifies the likelihood that a vulnerability exists in
the SUT

Probability
interval

RT1 Test
vulnerability
discovery
likelihood

Probability that a test fails if the SUT contains the
vulnerability which we are testing for

Probability
interval

RT2 Likelihood of
false positive

Probability that a test fails if the SUT does not
contain the vulnerability which we are testing for

Probability
interval

RT3 Assumed
vulnerability
existence
likelihood

Assumed probability that system has vulnerability
(before testing)

Probability
interval

T1 # passed test
cases

This indicates that no vulnerability has been found Integer

T2 # failed test
cases

This indicates that a vulnerability has been found Integer

T3 Test
Effectivity

The capability of the specified test procedure to
fulfill a given test purpose thus to reveal
vulnerabilities when they are exist.

Qualitative scale

T4 Test
Reliability

The capability of the specified test procedure to
maintain a specific performance under different
conditions.

Qualitative scale

T5 Existence of
failed test
cases

Specifies if a test run has failed test cases Boolean

T3.1 Test
Coverage

Coverage constitutes a measure for test
completeness and measures the degree to which
the test specification covers the pre-defined
coverage items (coverage items may be
requirements, system elements, attack vector
classifications, or test purpose descriptions)

Qualitative scale

(or percentage of
covered coverage
items or #test
cases per
coverage item)

T3.2 Test
Correctness

Test correctness denotes the correctness of the test
specification with respect to the system
specification or the test purposes and when it
always returns correct test verdicts.

Qualitative scale

T3.3 Vulnerability
Revealing
Capabilities

Capability of a test procedure to actually reveal
vulnerabilities

Qualitative scale

T4.1 Test
Repeatability

The capability of the specified test procedure to
yield the same results in different test runs.

Qualitative scale

RASEN - 316853 Page 17 / 31

T4.2 Test Maturity Frequency of failure of the of the test procedure. Qualitative scale

3.2.3 Common Aggregation Functions
In this section, we define three aggregation functions which may be calculated automatically. The first
shown in Table 9, propagates metrics associated with a set of vulnerabilities to a metric estimating the
likelihood of a successful attack. The second function, shown in Table 10, is used to calculate how the
likelihood of a vulnerability being exploited, given the likelihood that the vulnerability exists, and the
likelihood that it will be exploited if it exists. Finally, the third aggregation function, shown in Table 11,
can be used to calculate the likelihood that a vulnerability exists based on test results. This function
takes as input the number of passed and failed test cases (where failed indicates that a test has found
a vulnerability), the likelihood that the system under test has a vulnerability if the test fails, the
likelihood that the system does not have a vulnerability if the test fails, and assumed likelihood that the
system under test has a vulnerability. Number of passed and failed test cases can be derived from a
test report, whereas the other measurements may have to be estimated manually based on expert
judgement. Based on the given input, the aggregation function shown Table 11, will use Bayesian
inference to update the assumed likelihood of vulnerability existence based on the evidence provided,
i.e. number of passed and failed test cases.

Table 9 - Aggregation function AF1: Attack likelihood aggregation
Attack likelihood aggregation

Source
measurements

• vr: Vulnerability relationships (R2)

• {(v1,s1), ..., (vn, sn)} : (data::riskassessment::Parameter, Vulnerability
severity (R3))*

Target
measurements

• asl : Attack success likelihood (R1)

Description For simplicity, we assume that it is sufficient to exploit one vulnerability to
achieve a successful attack. We therefore let the attack success likelihood be
equal to the sum of the vulnerability severity values.

Definition • asl = s1 + ... + sn

Table 10 – Aggregation function AF2: Vulnerability severity aggregation
Vulnerability severity aggregation

Source
measurements

• (v,e): (data::riskassessment::Parameter, Vulnerability exploitability (R4))

• (v,l): (data::riskassessment::Parameter, Vulnerability existence likelihood
(R5))

Target
measurements

• (v, s): (data::riskassessment::Parameter, Vulnerability severity (R3))

Description The vulnerability severity is defined as the multiplication of the exploitability e
and the likelihood that the vulnerability exists l

Definition • s = l * e

RASEN - 316853 Page 18 / 31

Table 11 – Aggregation function AF3: Vulnerability existence aggregation
Vulnerability existence aggregation

Source
measurements

• V: data::riskassessment::Paramenter

• P: #passed test cases,

• F: #failed test cases,

• DL: Test vulnerability discovery likelihood

• FP: Likelihood of false positive

• AL: Assumed vulnerability existence likelihood

Target
measurements

• oV: data::riskassessment::Paramenter

• oVE: Vulnerability existence likelihood

Description This function will use Bayesian inference to update the initial assumed
estimate of the vulnerability existence (as specified by AL) by taking into
account the number of passed test cases (given by P) and failed test cases
given by (F). The aggregation function will be defined in terms of the
binominal function BINOMDIST.

Definition • oV = v (the name of the output vulnerability is equal to the name of the
input vulnerability)

• Pa = AL * BINOMDIST(F, P+F,DL) (Probability that a system has
vulnerabilities given sample)

• Pb = (1 – AL) * BINOMDIST(F, P+F, FP) Probability that a system has
no vulnerabilities given sample)

• oVE = Pa / (Pa + Pb) (Vulnerability existence likelihood, i.e. normalized
probability that a system has vulnerability given sample)

3.3 The Application of the Process to an Example
In this section we illustrate the process described in Sect. 3.1 with an example.

3.3.1 Step I: Identify Source and Target Data Model Elements
The first step of the process is to identify data elements that should be updated based on test results.
In this example, we assume that the risk model to be updated is the one shown in Figure 5, and that
we are furthermore only interested in updating the three conditional likelihoods on the edges
highlighted by the red ovals. In the RASEN risk model, this conditional likelihood is contained in the
element data::foundation::Parameter which is attached to the data::riskassessment::RiskRelation data
element corresponding to relations in the risk model.

Assume further that we have a test report which only contains information about how may tests have
passed and failed regarding tests related to existence of vulnerabilities w.r.t. the three relations
highlighted in Figure 5. In the RASEN data model, the test report is represented by the
data::testing::TestReport.

The source and data elements are summarize in Table 12.

RASEN - 316853 Page 19 / 31

Figure 5 – Risk model to be updated

Table 12 – Source and target data elements
Data model element ID Kind Description

data::riskassessment::RiskRelation Target The risk relation data element corresponds to
an arrow in a CORAS diagram. The data item
that we want to update is the likelihood on the
relation. In the data model, this likelihood is
represented by as a parameter to the relation.

data::foundation::Parameter Target We are interested in parameters whose name
attribute is "Likelihood" to represent conditional
likelihoods of risk relations.

data::testing::TestReport Source We are interested in the number of passes and
failed tests for each relation that is tested for
existence of vulnerabilities.

3.3.2 Step II and Step III: Specify Metrics and Dependencies and
Aggregation Functions

In step II, we specify measurements that are partially derived from the test results and which can be
used to update the conditional likelihoods on the three relations highlighted in the risk model of Figure
5.

In this example, we will assume that the conditional likelihood on the risk model relations we are
interested in is equal to the likelihood that there is a vulnerability which can be exploited in order for
the source of the relation to lead to/cause the target of the relation. This means, for instance, that the
likelihood [0.001, 0.04] on the relation going from the threat scenario I.CAPEC-62: Cross-site request
forgery to F.CAPEC-62: Cross-site request forgery successful in Figure 5, specifies the likelihood that
there is a vulnerability which will be exploited to cause a successful cross-site request forgery attack if
it is initiated.

In this example, we make use of the aggregation function Vulnerability Existence Aggregation
specified in Table 11. In addition to the number of passed on failed test executions, this function takes

RASEN - 316853 Page 20 / 31

the following measurements as input: test vulnerability discovery likelihood, likelihood of false
positives, and assumed vulnerability existence likelihood.

Table 13 – Metrics needed in the example
Metric ID Metric name Description Scale/Type

R5 Vulnerability
existence
likelihood

Specifies the likelihood that a vulnerability exists in
the SUT

Probability
interval

RT1 Test
vulnerability
discovery
likelihood

Probability that a test fails if the SUT contains the
vulnerability which we are testing for

Probability
interval

RT2 Likelihood of
false positive

Probability that a test fails if the SUT does not
contain the vulnerability which we are testing for

Probability
interval

RT3 Assumed
vulnerability
existence
likelihood

Assumed probability that system has vulnerability
(before testing)

Probability
interval

T1 # passed test
cases

This indicates that no vulnerability has been found Integer

T2 # failed test
cases

This indicates that a vulnerability has been found Integer

A summary of the metrics needed in the current example is given in Table 13. Furthermore, the
dependencies between the metrics are shown in Figure 6. Note here that the metric "Assumed
vulnerability existence likelihood" depends on the "Parameter" data element. The reason for this is that
we let the assumed likelihood metric represent the likelihood value of the risk model which we are
interested in updating based on the test results. Thus the "Assumed vulnerability existence likelihood"
will actually be equal to a likelihood value represented by a Parameter element in the data model.

Since the two metrics #passed test cases and # failed test cases can be derived automatically from
the test report, the only metrics which will have to be estimated manually be expert judgement are
"Test vulnerability discovery likelihood" and "Likelihood of false positive" which are highlighted in gray
color in Figure 6.

RASEN - 316853 Page 21 / 31

So
ur

ce
da

ta
M

ea
su

re
m

en
ts

Ta
rg

et
da

ta

TestReport

Vulnerability
existence likelihood

passed test
cases

failed test
cases

Test vulnerability
discovery likelihood

Likelihood of
false positive

Assumed
vulnerability

existence likelihood

Vulnerability
existence

aggregation
function

RiskRelationParameter

Parameter representing
likelihood, i.e. name-

attribute must be equal to
«Likelihood»

Figure 6 – Dependency graph of the example

3.3.3 Aggregation of test results
Having specified source and target data elements, measurements, and aggregation functions, we may
apply the aggregation functions to a given set of test results in order to analyze how this impacts the
risks of the risk model.

To illustrate this, assume that we have the test results of Table 14, where we for each relation we are
testing, have zero fail test executions, meaning that the tests have revealed no vulnerabilities. This is
often the case in practice. However, the fact that the tests did not reveal any vulnerabilities, does not
mean that the system under test has no vulnerabilities. However, the more we test without finding any
vulnerabilities, the more confident we can be that no vulnerabilities exist in the system.

Table 14 – Example of test results
Name Passes Fails

CAPEC 66: SQL injection 1000 0

CAPEC 62: Cross site request forgery 1500 0

CAPEC 63: Simple script injection 2000 0

In order to apply the aggregation function Vulnerability Existence Aggregation, we need, in addition to
the number of passed and failed test cases, the measurements shown in Table 15. Here the
"assumed vulnerability existence likelihood" measurement value is obtained from the risk model in
Figure 5. The two other measurements need to be estimated based on expert judgement since there
is no information about these in the test report assumed in the current example.

RASEN - 316853 Page 22 / 31

Table 15 – Example of measurement values
Name False positives

likelihood
Vulnerability test
discovery
likelihood

Assumed vulnerability
existence likelihood

CAPEC 66: SQL injection 0.000001 0.001 [0.001, 0.04]

CAPEC 62: Cross site
request forgery

0.000001 0.001 [0.0001, 0.01]

CAPEC 63: Simple script
injection

0.000001 0.001 [0.0001, 0.004]

Given the measurement values of Table 15 and Table 16, we can apply the aggregation function to
automatically calculate the "Vulnerability existence likelihood". The results of this is shown in Table 16.

Table 16 - Example of aggregated measurement values
Name Vulnerability existence likelihood

CAPEC 66: SQL injection [2.23314E-5, 0.00225]

CAPEC 62: Cross site request forgery [3.68296E-4, 0.015104]

CAPEC 63: Simple script injection [1.35482E-5, 5.43763E-4]

We may now update the conditional likelihoods of the three relations that are tested in the risk model,
and recalculate the likelihood values of the risk model. The result of this is shown in Figure 7. Note in
particular that likelihood values of the risk "UI-C2: Attacker gains privileges of users/roles and
accesses confidential user data" is now calculated to be [0.002247, 99.853963] whereas the value
was [0.0061,320] (as shown in Figure 7) prior to the update of the conditional likelihoods. Thus we see
precisely how the test results have impacted the likelihood value of the risk in the risk model.

Figure 7 – Updated risk model

RASEN - 316853 Page 23 / 31

4 Reusable Risk Assessment Artifacts and Risk
Aggregation with the Help of Tags and Scopes

Risk assessment of large scale ICT systems is a difficult task. One obvious approach to deal with its
complexity and to keep its costs at a reasonable level is to identify the manageable small sub-
components that the complex system consists of, and then analyze each of these sub-components
separately. The results for the individual sub-components can later potentially be used as an adequate
basis for a risk assessment of the entire system.

The idea is that even if the components are used to build different systems and if they are used in very
different contexts, the risk analysis artifacts created for the individual components should be reusable
for compositional risk assessment, i.e. for analyzing the overall risks without looking again into details
of any sub-component. Finally it should be possible to aggregate and to evaluate the risks for entire
products, configurations and usage scenarios at a very high level in order to support the management
in their decision making processes.

But how exactly can such a composition and aggregation be done? Certainly, the risks of entire
systems are not just the unions of the risks identified for their sub components. Depending on how the
components are used, certain risks might not be relevant in a particular configuration. One possible
reason might for example be that other components treat and mitigate the risk already. However in a
slightly different configuration, the risk of exactly the same component might be unacceptably high.

For the aggregation of individual risk values, for example overall product level risks, it is not a sound
idea to just sum up all the risk values for sub components and to calculate average high level risk
values. Some components are eventually more critical than other components. Even summing them
up in a weighted fashion according to the criticality of the components might be misleading. A security
breach like execution of unauthorized code, even though exploiting a weakness in the most
unimportant and least crucial component, could affect all other components that use the same logical
system or database server. Weighting risk values low just because the components for which they
were identified themselves seem to be uncritical would probably lead to completely wrong results.

Of course, it is possible to model the dependencies between the components in detail, as it is
described for example in [6]. However, doing so requires a substantial amount of manual work for
each and every system that is build out of the components. For large scale systems, graphical
modelling might become unintuitive and analysts will probably get lost simply because the models get
too complex.

Since one of the major requirements to the RASEN tooling, as specified by the case study provider
Software AG, is exactly to avoid such manual work as much as possible, modelling all dependencies
and relations in detail is not an option. The goal is rather to model very basic isolation levels and
spread scopes in a simple, but nevertheless flexible, way.

4.1 Tagging Risk Assessment Artifacts
The isolation is modeled with the help of tags, which contain information about the involved resources
like logical systems and databases. The tagging for risk assessment artifacts proposed here uses a
simple format consisting of a tag category and a tag value. A number of different categories that might
be useful in many scenarios have been identified so far:

• Component

• Product

• Configuration

• Physical system

• Logical system

• Process

• Network segment

RASEN - 316853 Page 24 / 31

• Database

• Database server

• Operating system

• Programming language

• Framework

• Third party API / library

• Task

• Building block

The RACOMAT tool supports these predefined categories, and other categories can also be specified
as needed. Tags of predefined categories, as well as tags of user defined categories, can for example
be used for grouping results in the dashboard view.

Besides the tag category, for each tag an arbitrary string identifier can be specified as a tag value. For
example, a tag for the category Database server could have a value PaymentTransactionServer.
However, the analyst must make sure that the same element is always identified with the same string
in order to enable correct calculations. The RACOMAT tool therefore automatically suggests
previously used values that users can apply with single mouse clicks.

Any node or relation in a risk graph can be tagged within the RACOMAT tool with multiple different
tags. Even tags themselves can have tags, which are especially intended to support the modelling of
different configurations. For each artifact, there may be multiple alternative tags having the same tag
category, only with different tag values. It is, for example, possible to specify several different logical
system tags for the same component. This might even make sense if the component will never run on
more than a single logical system: Tags on the alternative tags can be used to express which
alternative tag value should be used. Hence, with the help of configuration tags having different
values, it is possible to make sure that for each configuration value, only exactly one of the alternative
logical system tag values becomes applicable.

Most tags can typically be specified for entire components, which are represented by threat interfaces.
So the amount of manual work should be reasonably low. For the RASEN use case work, for example,
the RACOMAT tool imports information about systems, components and products from the ARIS tool,
and it generates appropriate tags automatically. So the effort for tagging in the Software AG’s case
study is actually zero for some tag categories.

Certain tag categories are probably invariant for some systems, i.e. no matter where the system will be
used and how it will be used, the tag values will always stay the same. Invariant categories typically
specify information about system internals, e.g. used APIs. When reusing the risk assessment artifacts
once created for some system, tags for the invariant categories do not have to be adopted even if the
configuration and the environment of that system are changed.

On the other hand, there are tag categories which should be used to describe exactly where and how
some system is used. Of course, these tag values that typically describe external aspects have to be
adapted if the system setup changes. For example, software components and products can typically
be installed on different logical and physical systems.

Tags can also be used to influence which elements should currently be shown. In that way, tags can
be used like layers in common graphic programs. This might be helpful if graphs get large and
complex. Also it is possible to let all set tag values for a certain category be displayed with different
colors in order to get a good overview.

4.2 The Scope of Faults and Unwanted Incidents
Just having information about the different categories of isolation for the risk assessment artifacts is
not enough to start any sound risk value aggregation. Incidents or faults might spread and affect other
components. Instead of modeling in detail what could eventually be affected, it is much simpler to
specify how far the consequences might reach.

RASEN - 316853 Page 25 / 31

The RACOMAT tool allows users to specify for any incident and for each tag if any other element
having the same tag category and the same tag value might also be affected whenever the incident
occurs.

For example, the entire logical system on which a certain component runs could be influenced by an
incident “Execute unauthorized code” occurring on that component. Then any other faults and
unwanted incidents of other components or programs running on the same logical system could also
be triggered by that incident.

If dependencies had to be modeled manually within the risk graph, then eventually lots of new
relations would have to be added. Figure 8 shows a risk graph with an explicitly modeled dependency
between two components. Note that modeling the dependencies requires a concept like gates known
from Fault Tree Analysis [3] to express how the triggering might work. In the example, the “or” gate
(“≥1”) expresses that one of the threat scenarios is enough to trigger the incident “Leaks data”.

Figure 8 – Explicitly modeled dependencies

However, if all components are tagged, there is no need to model the dependencies in detail. Instead,
as shown in the example, just the scope for the unwanted incident “Execute unauthorized code” can
be specified to affect the entire logical system. Then all other faults or incidents having the same tag
value “Main server” in the tag category “Logical system” will be treated as if a dependency was
explicitly modeled. Hence, the tagged risk graph shown in Figure 9 is equivalent to the risk graph
shown in Figure 8 and produces identical results in RACOMAT.

RASEN - 316853 Page 26 / 31

Figure 9 – Using tags and scopes to model dependencies

Ideally, there should be a library for the most common faults or unwanted incidents that specifies how
far they typically might spread and affect other components. Such information could be added to an
extended attack pattern library. Hence, it would become reusable and the amount of manual work
would be further reduced.

4.3 Risk Aggregation Using Tags and Scopes
When aggregating the risk analysis results, the RACOMAT tool executes Monte Carlo Simulations in
order to calculate likelihood values for dependent faults or unwanted incidents. This is a common
approach, as described for example in [1][2].

The RACOMAT tool uses any available information to calculate how far consequences of some
incident might spread and affect other incidents. Dependencies manually modeled with the help of
relations in the risk graph have the highest priority. For example, manual modeling is currently needed
to express redundant usage of components.

Wherever there are no dependencies explicitly modeled, before starting any simulations, the
RACOMAT tool internally creates relations which follow from the isolation tags and the influence scope
notations. Hence, the actual calculation of likelihood values is based on a fully modeled risk graph
even if some relations are auto generated from tag and scope data. Therefore, the Monte Carlo
Simulation always works as described in [8].

However, the complexity that might be introduced by automatically completing the model stays hidden.
Users do not have to bother with expanded complex risk graphs. Changing configurations is possible
at any point in time with limited amount of manual work required. Typically only some tags have to be
altered.

Calculating likelihood values for some configuration is only a first step in the risk aggregation process.
Typically, managers want high level results for example for entire products or even for complete
products families.

RASEN - 316853 Page 27 / 31

The RACOMAT tool allows to aggregate risk values for any tag category. In RACOMAT risk is
generally expressed always in the same unit – as the financial loss per time period. It is possible to
calculate expected loss values, but it is also possible to calculate realistic and worst case scenarios.
This can be very important since expected values will typically only occur in the average with large
numbers. If the risk assessment is done for a single system for a single period of time, then there will
be probably no loss at all – or a very high (eventually the maximal) possible loss if something goes
wrong. Whatever happens, the expected value will never be reached. Where there are catastrophic
high worst case losses, but low expected loss values, insurance might be a good idea to mitigate the
risk, though an insurance will be more expensive than the expected loss value, for sure.

No matter if expected loss values, realistic or worst case losses are calculated, all risks are actually
modeled as natural numbers having the same unit (i.e. currency per time span). Hence, it is possible
to simply sum up all the risks having the same tag.

High level risks are displayed in the internal dashboard view by the RACOMAT tool and they can be
exported so that they can be viewed in simple web browsers. Within the RACOMAT dashboard view, it
is possible to switch between different tag categories that should be evaluated.

RASEN - 316853 Page 28 / 31

5 Conclusion
In this deliverable we have reported on the main results of RASEN WP3 tasks from the third and final
year of the project. The results show our progress within all of the R&D tasks of WP3 of compositional
risk assessment techniques, techniques for test-based security risk assessment and techniques for
continuous security risk assessment. The presented techniques come with relevant modeling support,
and they are moreover supported by the prototype tools of deliverable D3.3.3 that are integrated into
the RASEN tool-box.

RASEN - 316853 Page 29 / 31

References
[1] W. Gleißner, T. Berger: Auf nach Monte Carlo: Simulationsverfahren zur Risiko-Aggregation.

RISKNEWS, Volume 1, Issue 1, pp. 30–37. Wiley (2004)
[2] S. Greenland: Sensitivity Analysis, Monte Carlo Risk Analysis, and Bayesian Uncertainty

Assessment. Risk Analysis 21(4), 579-584 (2001)
[3] International Electrotechnical Commission: IEC 61025 Fault Tree Analysis (FTA) (2006)
[4] MITRE: Common Weakness Enumeration (CWE) [ONLINE] Available at:

https://cwe.mitre.org/ [Accessed 22 September 2015]
[5] MITRE: Common Weakness Scoring System (CWSS) [Online] Available at:

http://cwe.mitre.org/cwss/ [Accessed 22 September 2015]
[6] J. Viehmann: Reusing risk Analysis results - An extension for the CORAS risk analysis

method. In Proc. 4th International Conference on Information Privacy, Security, Risk and
Trust (PASSAT'12), pp. 742-751. IEEE (2012)

[7] J. Viehmann, F. Werner: Risk assessment and security testing of large scale networked
systems with RACOMAT. In Proc. third International Workshop on Risk Assessment and
Risk-Driven Testing (RISK'15). To appear.

[8] J. Viehmann: Towards Integration of Compositional Risk Analysis Using Monte Carlo
Simulation and Security Testing. In Proc. first International Workshop on Risk Assessment
and Risk-Driven Testing (RISK'13). LNCS, vol. 8418, pp. 109-119. Springer (2014)

https://cwe.mitre.org/
http://cwe.mitre.org/cwss/

RASEN - 316853 Page 30 / 31

Appendix A: Import/Export Format for ARIS in XSD
The following XSD specifies the import/export Format in ARIS Business Architect to export the models
for automated testing, and to import the weaknesses back into the graphical model.

<?xml version="1.0" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="subComponentType">
 <xs:sequence maxOccurs="unbounded" minOccurs="0">
 <xs:element name="subComponentName" type="xs:string"/>
 <xs:element name="subComponent" type="subComponentType"/>
 <xs:element maxOccurs="unbound" minOccurs="0" name="cwe">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="1000"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="vignetteEntryType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="9"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="productName" type="xs:string"/>
 <xs:element name="vignette">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="HA" type="vignetteEntryType"/>
 <xs:element name="RC" type="vignetteEntryType"/>
 <xs:element name="MD" type="vignetteEntryType"/>
 <xs:element name="UE" type="vignetteEntryType"/>
 <xs:element name="GP" type="vignetteEntryType"/>
 <xs:element name="EA" type="vignetteEntryType"/>
 <xs:element name="BP" type="vignetteEntryType"/>
 <xs:element name="RD" type="vignetteEntryType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="component">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="componentName" type="xs:string"/>
 <xs:element name="subComponent" type="subComponentType"/>
 <xs:element maxOccurs="unbound" minOccurs="0" name="cwe">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="1000"/>
 </xs:restriction>
 </xs:simpleType>

 </xs:element>
 </xs:sequence>
 </xs:complexType>

RASEN - 316853 Page 31 / 31

 </xs:element>
</xs:schema>

	Table of contents
	1 Introduction
	2 Component-Based Risk Assessment Combined With Testing
	2.1 Risk Aggregation in ARIS
	2.2 Risk Aggregation via RACOMAT

	3 Test Result Aggregation Using Test Metrics and Risk Metrics
	3.1 The Process for Defining Measurement Aggregation
	3.1.1 Step I: Identify Source and Target Data Model Elements
	3.1.2 Step II: Specify Metrics and Dependencies
	3.1.3 Step III: Specify Aggregation Functions

	3.2 A Catalogue of Common Measurements, Dependencies and Aggregation Functions
	3.2.1 Common Source and Target Data Model Elements
	3.2.2 Common scales and dependencies
	3.2.3 Common Aggregation Functions

	3.3 The Application of the Process to an Example
	3.3.1 Step I: Identify Source and Target Data Model Elements
	3.3.2 Step II and Step III: Specify Metrics and Dependencies and Aggregation Functions
	3.3.3 Aggregation of test results

	4 Reusable Risk Assessment Artifacts and Risk Aggregation with the Help of Tags and Scopes
	4.1 Tagging Risk Assessment Artifacts
	4.2 The Scope of Faults and Unwanted Incidents
	4.3 Risk Aggregation Using Tags and Scopes

	5 Conclusion
	References
	Appendix A: Import/Export Format for ARIS in XSD

