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Abstract 
This deliverable reports on the main results of RASEN WP3 from the third and final year of the 
project. The tasks that have been addressed are: (T3.1) the development of techniques for 
compositional security risk assessment, (T3.2) the development of techniques for test-based security 
risk assessment, and (T3.3) the development of techniques for continuous risk assessment by means 
of test-based indicators. 
The RASEN approach to component-based and test-based security risk assessment has been further 
developed, including the tool-support. In particular, this deliverable documents the following WP3 
contributions. Tool-supported techniques for component-based security risk assessment supported 
by testing; security test result aggregation using test metrics and risk metrics; a tool supported 
approach to component-based security risk assessment for composition of risk assessment results. 
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Executive Summary 
The overall objective of RASEN WP3 is to develop tools and techniques to facilitate compositional 
security risk assessment and component-based security risk assessment supported by security 
testing. This includes developing tools and techniques i) for compositional and for component-based 
security risk assessment and security testing, ii) for identifying, estimating and verifying security risks 
based on security test results, and iii) for reuse of risk assessment and security test results, as well as 
dynamic updates of the security risk assessment based on test results and using metrics and risk 
metrics. 

This deliverable reports on the WP3 results after the third year of the project. The results cover all of 
the WP3 research tasks, namely (T3.1) the development of techniques for compositional security risk 
assessment, (T3.2) the development of techniques for test-based risk identification and estimation in 
order to complement the risk picture based on test results, and (T3.3) the development of techniques 
for continuous risk assessment of large scale systems by the use of test-based indicators. In 
particular, the deliverable makes the following contributions. 

• Tool-supported techniques for component-based security risk assessment supported by 
testing. Two alternative approaches are offered, each of which makes use of the same 
software product component model where components are decomposed into a hierarchy. 

• Security test result aggregation using test metrics and risk metrics. A process and 
documentation format is introduced for specifying metrics and aggregation functions, so as to 
enable the aggregation of test results to risk information that can be fed to the security risk 
model. 

• Tool-supported approach to component-based security risk assessment. The overall security 
risks for a software system are derived by aggregating the security risks for the individual 
components that the system is composed of. The approach moreover allows the reuse of 
component risk assessment results in the different contexts and systems where the 
component in question may be used. 

The WP3 results contribute to support and facilitate the overall RASEN methodology that is presented 
in the context of WP5. The WP3 tools are moreover integrated into the RASEN tool-box and have 
therefore the potential to be used in combination with other RASEN tools and techniques. 
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1 Introduction 
A main objective of RASEN WP3 is to develop techniques and tools that facilitate security risk 
assessment of large-scale and complex software systems. To fulfill this objective WP3 has conducted 
R&D tasks in three directions. First, we have developed techniques and modeling support for 
compositional security risk modeling and assessment, as well as component-based techniques. Such 
techniques should allow large system to be decomposed into smaller sub-systems or components that 
can be analyzed separately. For this we need methods for deriving the combined results of the 
individual analyses. Second, we have developed techniques for test-based risk identification and 
estimation, so as to complement the risk picture based on the test results. These techniques involve 
the aggregation of test results by using test metrics and risk metrics. Third, we are investigating 
techniques for continuous security risk assessment by leveraging the techniques for compositional 
security risk assessment, and by means of test metrics. 

The current WP3 status and the third and final year results of these R&D activities are presented in 
this deliverable. The activities correspond to research tasks T3.1 (compositional security risk 
assessment), T3.2 (test-based risk identification and estimation) and T3.3 (continuous risk 
assessment) of RASEN WP3. More specifically, the technical contents of this deliverable are as 
follows. 

Section 2 presents techniques for tool-supported component-based security risk assessment 
supported by testing. We describe two different approaches to this that complement each other. Each 
of them makes use of the same software product model, where components are decomposed into 
hierarchies. The first approach allows security risk aggregation in ARIS in which security risks are 
estimated at four abstraction layers, namely application, system, network and enterprise. In the 
second approach the software component risks are obtained by security testing using the RACOMAT 
tool. The tool imports the software product component hierarchy from ARIS, and the security risks are 
aggregated accordingly. 

Section 3 presents the RASEN approach to security test result aggregation using test metrics and risk 
metrics. We introduce a process for defining measurement aggregation using the RASEN data models 
for security testing and security risk assessment. The relevant model elements, metrics and 
aggregation functions are specified and documented using a well-defined table format. We introduce 
and explain all these formats, before exemplifying their instantiation. 

Section 4 presents the RACOMAT tool-supported approach to component-based security risk 
assessment. The approach facilitates security risk assessment of large-scale systems by allowing the 
decomposition of systems into smaller components of sizes that are manageable. The idea is further 
that risk assessment results for individual components can be reused in different context and for 
different software systems in which the component is used. The challenge that we address is how to 
aggregate the individual results and derive the correct security risk picture for the combined system. 

Finally we conclude in Section 5 before presenting the import/export format for ARIS in the appendix. 

The presented methods and techniques support various parts of the overall RASEN methodology as 
presented in the context of WP5. The WP3 tools are moreover integrated into the RASEN tool-box, 
which means that they can be used in combination with other RASEN tools. The WP3 tool portfolio is 
provided in prototype deliverable D3.3.3. 
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2 Component-Based Risk Assessment Combined With 
Testing 

Component-based risk assessment allows a software product to be assessed by addressing its 
individual components separately. In this section we describe two different ways in which we can 
conduct component-based security risk assessment in RASEN. The two alternatives eventually 
provide a combination of risk aggregation along the product hierarchy, as well as security risk 
estimation by evaluating the risk tree of the product. What the approaches have in common is that 
they share the same ARIS model as input. This facilitates their use and increases the potential for 
exploitation; apart from the RASEN methodology, no additional modelling conventions are required. 

The interface between ARIS Business Architect from Software AG and the RACOMAT tool from 
Fraunhofer FOKUS is realized using a standardized RASEN format which can be used in both 
directions. The current version uses a format based on JSON1 (Java Script Object Notation) which is 
considered to be an open standard format using human-readable text to transmit data objects 
consisting of attribute-value pairs. The exchange format contains a product hierarchy in arbitrary 
depth, it fully implements the vignette, it allows for components along with their common weakness 
score (CWS), and it has capabilities of expressing risk ratings. An XSD variant is detailed in 
Appendix A. 

As the approach to the modeling of large-scale network systems is already described in detail in past 
deliverables (D3.2.1 and D3.2.2) we will refrain from repeating ourselves, rather focusing on the new 
aspects of the import of the Common Weakness Enumerations (CWEs) [4], as well as the computation 
of risks using a) the risk graph from RACOMAT, and b) a set of aggregation functions. 

Figure 1 gives an overview the two approaches along with the required steps. 

 

 

Figure 1 – Comparing component-based risk aggregation from CWEs and RACOMAT 

                                            
1 https://tools.ietf.org/html/rfc7159 

https://tools.ietf.org/html/rfc7159
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The essential elements of the two approaches are the CWEs. For each component, the weaknesses 
(in terms of CWE-IDs) are assigned using one or more of the following methods following an 
automated generation process: 

1. Collecting all CWE-IDs of a CWE category: For the specified category, weaknesses are 
collected recursively following the tree structure. 

2. Searching for CWE-IDs using a search term: CWE weaknesses have a headline and a short 
summary description. All CWE weaknesses that contain the search term are added to the 
component type. 

3. Collecting all CWE-IDs that share a specified value: for example operating system, framework, 
programming language, etc. 

4. Adding CWE-IDs manually: Some CWE-IDs are added manually to component types. This is 
necessary because not all CWE-IDs can be assigned automatically using one of the methods 
described above. The most important reasons for that is incomplete and/or inconsistent data 
in the CWE database. 

 

2.1 Risk Aggregation in ARIS 
The main characteristic for doing the security risk aggregation in ARIS is the use of a Product 
Vignette. During the process of a software product security risk assessment, risk model is assessed in 
which the product hierarchy is represented, as well as a vignette being unique for that product. The 
vignette describes the deployment scenario in terms of “Where can data be read on network level?”, 
“How can unauthorized code be executed on Enterprise level?”, “How can privileges be gained on 
application level?” etc.  

The vignette is a placeholder which contains all kinds of possible deployment scenarios, following a 
stringent capturing of exploitation scenarios of four distinct layers: 

• Application layer: This is the lowest abstraction layer where exploitation scenarios are defined 
based on a single application. 

• System layer: This layer is defined just above the application layer, considering a software 
system which potentially hosts many different applications, e.g., a server OS 

• Network layer: This layer reflects exploitations on peer to peer basis e.g., through networks, 
transmission protocols, etc. 

• Enterprise layer: This is the highest level of abstraction where product security risks are 
exposed to the whole company. 

 

On each of these levels, the risk impact is quantified according to the following list. The estimates are 
used to calculate the CWSS (Common Weakness Scoring System) [5]. The CWSS provides a 
mechanism for scoring weaknesses in a consistent, flexible, open manner while accommodating 
context for various business domains. As it is part of the CWE project, it can be interlinked with 
information already available in the models to allow quantitative measures of available weaknesses 
present within a software component. 

The list of possible impacts contains the following eight elements: 

• Modify data 
• Read data 
• DoS: unreliable execution  
• DoS: resource consumption 
• Execute unauthorized code or commands 
• Gain privileges / assume identity  
• Bypass protection mechanisms 
• Hide activities 
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When assessing the component-based risks obtained from the security testing, the following four-step 
process is conducted: 

1. The model is imported from RACOMAT using the common exchange format. At this point the 
ARIS model contains a list of all potential CWEs which, in the subsequent process, is replaced 
by a list of actually present CWEs.  

2. Using the technical impact from the previously imported CWEs, the impact is evaluated by 
combining the CEWs impact and a product impact which is derived from the product wide 
vignette. Note that the vignette represents/characterizes the deployment scenario of the 
product and is static for computation over the whole product hierarchy. 

3. The CWSS impact factor is calculated by using the maximum available sub-scores over all 
child components and CWEs.  

4. After the CWSS Risk Rating is available, the risk is further aggregated using aggregation 
functions along the product hierarchy. A set of possible functions is depicted in Figure 2. 

Following this process, the overall software product security risk is eventually obtained and displayed 
at the product level. 

 

 

Figure 2 – Examples of different risk aggregation models 

 

As the above mentioned aggregation functions revealed its limits, the 2nd approach introduces the 
component based risk assessment where risks are obtained directly from the security testing. 

The approach of security testing in large software environments needs maximum degree of 
automation, the processes of which should be designed to require only minimal user interaction. To 
comply with this, the above depicted aggregation models can be automatically extracted from the risk 
models in ARIS and used for security testing. This is in particular convenient as no further human 



 
 

 
  

RASEN - 316853 Page 10 / 31 
 

interference is involved. On the other hand, when considering the level of detail and the 
meaningfulness of the obtained aggregated results, it becomes visible that results can only be treated 
as an estimate of the software system security risks. Here the aggregation function for the minimal and 
maximum risk (fagg(min) and fagg(max)) deliver upper and lower values, and the risk lies somewhere in 
between. One major drawback of the above stated aggregation functions is that only risks along the 
hierarchy are considered which for example completely neglects inter-dependencies of software 
components residing in different branches. 

To combat this downside, a more sophisticated approach is taken by considering the risk along the 
hierarchy in a risk-based graph. As this solution delivers realistic results, it has been considered within 
the evaluation phase and is detailed in the following and in Section 4. 

2.2 Risk Aggregation via RACOMAT 
For the approach to security risk aggregation using RACOMAT, the CWEs are imported as in the 
alternative approach described above, but the risks are not aggregated using the same functions. 
Instead RACOMAT computes the security risks based on the complete risk product graph obtained 
during the automated testing phase. As risks are already precomputed, they can be immediately used 
in the model [7]. 

This approach follows a two-step process: 

1. The present CWEs are imported in analogy to the alternative approach as described in the 
previous sub-section. In addition, the product risk graph is imported into the ARIS tool. The 
risk graph contains pre-computed, aggregated risks for all components, and therefore also 
eventually the also the risk rating for the top level product. 

2. In accordance to the risk graph, the risks are propagated over the complete product hierarchy. 
The graphical notation of the approach moreover reflects the actual risks at each of the 
components. 

An illustration of the transformation process on high level is shown in the following figure. 

 

Figure 3 – Transformation of the Product tree into the Risk Graph using RACOMAT 
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As usability and applicability has been a major concern, the risk aggregation via RACOMAT seems to 
be more sophisticated as its aggregation reflects applied security test pattern and security testing 
metrics when computing risks on component level. The RACOMAT tool as well as its underlying way 
of aggregating risk is described in more detail in Section 4. 
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3 Test Result Aggregation Using Test Metrics and Risk 
Metrics 

In order to understand what security test results mean in terms of impact on risks, we need techniques 
for bridging the low-level technical details obtained through testing with the higher level information of 
the risk assessment. For this purpose, RASEN develops metrics which are intended to support the 
propagation/aggregation of the test results to the risk assessment level. In this section we first, in 
Section 3.1, describe a process for defining measurement aggregation functions in general. Then, in 
Section 3.2, we define a catalogue of common measurements, and finally in Section 3.3, we 
demonstrate the process on a small example. Tool support related to the test result aggregation 
techniques is documented in RASEN deliverable D3.3.3-D4.3.3.  

3.1 The Process for Defining Measurement Aggregation 
The process for defining measurement aggregations is conducted over three steps. The results of 
each step are document in dedicated table templates as described in the following. 

3.1.1 Step I: Identify Source and Target Data Model Elements 
The process assumes that the source data (test result data which will be input to the transformation) 
and the target data (risk assessment data which is the output of the transformation) are defined in a 
data model. The first step of the process is then to identify the data model elements which will be the 
source and target of the transformation, and to document this in the template of Table 1. 

 

Table 1 – Template for defining model elements 
Data model 
element ID 

Kind Description 

Element identifier Type of model element. 

There are three possible types: source, target, 
and intermediate. Source type refers to elements 
that are input to the aggregation, target type refers 
to output elements, and intermediate type refers 
to data elements that are used as intermediate 
calculation steps by the aggregation. 

Description of model 
element 

3.1.2 Step II: Specify Metrics and Dependencies 
The second step of the method is to define metrics which will be used as intermediate calculation data 
points for aggregating the source data to the target data. The first activity is to document this in a 
dependency graph following these steps: 

1. List all the target data elements at the top of the graph. 

2. List all the source data elements at the bottom. 

3. Connect the target data points to the source data points using metrics.  

That the third step should be performed in a top-down fashion; we start with the target data elements 
and break these down into metrics until metrics whose values can be calculated on the basis of the 
source data elements are identified. We take note of metrics whose value cannot be calculated on the 
basis of source data elements, but that nevertheless are needed in order to calculate the target data 
elements. Such metrics will have to be manually estimated during measurement aggregation, or 
defined as a source of uncertainty. 

The resulting dependency graph should be document using the notation of Table 2. 
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Table 2 – Dependency graph notation 
Graphical notation Description 

<name>
 

Model element (typically corresponds to a class in a meta model) 

<name>
 

Metric 

<description>
 

Comment 

 Association between model elements 

 
Dependency arrow, used to denote that a model element or measurement 
may depend on another model element or measurement 

 

The metrics and their types should additionally be documented using the templates of Table 3(metric 
type) and Table 4 (metric). 

 
Table 3 – Template for defining types 

Literal name Description Definition 

Name of type literal Description of type literal Precise definition of literal 

 

Table 4 – Template for defining metrics 
Metric ID Metric name Description Scale/Type 

Metric identifier Metric name Description of metric Type of measurement for metric 

3.1.3 Step III: Specify Aggregation Functions 
After having defined the dependency graph, the next step is to define aggregation functions that 
describe how the target data elements can be calculated from the source data elements using metrics. 
The functions should be documented using the template of Table 5. 

 

Name of aggregation function 

Source 
measurements 

Definition of measurements that are input of the aggregation function. 

Target 
measurements 

Definition of the measurements that are the output of the function 

Description Textual description of the function 

Definition Precise definition of the function 

Table 5 – Template for defining aggregation function 
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3.2 A Catalogue of Common Measurements, Dependencies and 
Aggregation Functions 

In this section we define source and target data model elements, measurements, measurement 
dependencies, and aggregation functions which have been identified in the RASEN case studies.  

3.2.1 Common Source and Target Data Model Elements 
In the RASEN case studies, we were always interested in updating the conditional likelihood values of 
the relations in the risk models. In the RASEN data model, this information is expressed by the 
data::riskassessment::RiskRelation and the data::foundation::Parameter data elements. Furthermore, 
the test report with associated test cases and test items were used to express the test results. The 
relevant data elements of the RASEN data model are shown in Table 6. 

Table 6 – Common data source and target data elements of the RASEN data model 
Data model element ID Kind Description 

data::riskassessment::RiskRelation Target The risk relation data element corresponds 
to an arrow in a CORAS diagram. It 
contains the source and target nodes of the 
arrow, as well as arrow annotations, i.e. 
likelihood and vulnerabilities. The data item 
that we want to update is the likelihood on 
the relation. In the data model, this 
likelihood is represented by as a parameter 
to the relation. 

data::foundation::Parameter Target We are interested in parameters whose 
name attribute is "Vulnerability", to 
represent names of vulnerabilities, and 
"Likelihood" to represent conditional 
likelihoods of risk relations. 

data::testing::TestReport Source Contains all relevant information about the 
test results. 

 

3.2.2 Common scales and dependencies 
For those measurements which may be automatically calculated are usually defined as probability 
intervals. For measurements which must be assessed by expert judgement, and in addition are not 
suited in automated calculation, it may be useful to use a qualitative scale. Two common scales that 
we have used often are described in Table 7. 

 

Table 7 – Common scales 
Literal name Description Definition 

Probability interval A pair [p,q] of two probabilities p and q 
such that p is less than or equal to q 

{0,..,1}, {0,...,1} 

Qualitative scale Ordinal scale of three values. {low, middle, high} 

 

In Figure 4, we have illustrated a dependency graph showing the dependencies between common 
metrics. The metrics are intended to be used as intermediate steps for updating the conditional 
likelihood of a risk model (expressed by the Parameter class) based on the test results (contained in 
the TestReport). The highest level metric is called "Attack success likelihood". This is intended to be a 
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probability estimate which directly corresponds to the likelihood of the risk model relation. The "Attack 
success likelihood" is further decomposed/dependent on metrics related to the vulnerabilities that may 
be exploited in an attack. Each vulnerability associated with an attack has a "Vulnerability severity" 
metrics, estimating the likelihood that the vulnerability will be exploited in an attack if the attack is 
initiated. This metric is further broken down into "Vulnerability existence likelihood", estimating the 
likelihood that a vulnerability exists in the system under test, and "vulnerability exploitability", 
estimating how easy it is to exploit the vulnerability if it exists. Security test results will most often 
contain information about the presence/absence of vulnerabilities. Thus the "Vulnerability existence 
likelihood" metric is further broken down into metrics that are related to the testing activity. The metrics 
"#passed test cases" and "#failed test cases" can be derived from the TestReport containing the test 
results, whereas the other metrics must typically be manually estimated. 
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Figure 4 – Dependency graph 

In Table 8, we have defined the metrics of Figure 4 more precisely. 

Table 8 – Common metrics 
Metric ID Metric name Description Scale/Type 

R1 Attack 
success 
likelihood 

Specifies the likelihood that a security attack will 
succeed in exploiting a set of vulnerabilities 

Probability 
interval 

R2 Vulnerability 
relationships 

Specifies the dependencies of a set of 
vulnerabilities e.g. whether it is sufficient to exploit 
one of them to achieve a successful attack, or 
whether a combination of them must be exploited.  

Text 
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R3 Vulnerability 
severity 

Specifies the likelihood that a vulnerability exists 
and is successfully exploited if this is attempted 

Probability 
interval 

R4 Vulnerability 
exploitability 

Specifies the likelihood that that an attacker will be 
able to exploit the vulnerability if this is attempted. 

Probability 
interval 

R5 Vulnerability 
existence 
likelihood 

Specifies the likelihood that a vulnerability exists in 
the SUT 

Probability 
interval 

RT1 Test 
vulnerability 
discovery 
likelihood 

Probability that a test fails if the SUT contains the 
vulnerability which we are testing for 

Probability 
interval 

RT2 Likelihood of 
false positive 

Probability that a test fails if the SUT does not 
contain the  vulnerability which we are testing for 

Probability 
interval 

RT3 Assumed 
vulnerability 
existence 
likelihood 

Assumed probability that system has vulnerability 
(before testing) 

Probability 
interval 

T1 # passed test 
cases 

This indicates that no vulnerability has been found Integer 

T2 # failed test 
cases 

This indicates that a vulnerability has been found Integer 

T3 Test 
Effectivity 

The capability of the specified test procedure to 
fulfill a given test purpose thus to reveal 
vulnerabilities when they are exist. 

Qualitative scale 

T4 Test 
Reliability 

The capability of the specified test procedure to 
maintain a specific performance under different 
conditions. 

Qualitative scale 

T5 Existence of 
failed test 
cases 

Specifies if a test run has failed test cases Boolean 

T3.1 Test 
Coverage 

Coverage constitutes a measure for test 
completeness and measures the degree to which 
the test specification covers the pre-defined 
coverage items (coverage items may be 
requirements, system elements, attack vector 
classifications, or test purpose descriptions) 

Qualitative scale  

(or percentage of 
covered coverage 
items or #test 
cases per 
coverage item) 

T3.2 Test 
Correctness 

Test correctness denotes the correctness of the test 
specification with respect to the system 
specification or the test purposes and when it 
always returns correct test verdicts. 

Qualitative scale 

T3.3 Vulnerability 
Revealing 
Capabilities 

Capability of a test procedure to actually reveal 
vulnerabilities 

Qualitative scale 

T4.1 Test 
Repeatability 

The capability of the specified test procedure to 
yield the same results in different test runs. 

Qualitative scale 



 
 

 
  

RASEN - 316853 Page 17 / 31 
 

T4.2 Test Maturity Frequency of failure of the of the test procedure. Qualitative scale 

 

3.2.3 Common Aggregation Functions 
In this section, we define three aggregation functions which may be calculated automatically. The first 
shown in Table 9, propagates metrics associated with a set of vulnerabilities to a metric estimating the 
likelihood of a successful attack. The second function, shown in Table 10, is used to calculate how the 
likelihood of a vulnerability being exploited, given the likelihood that the vulnerability exists, and the 
likelihood that it will be exploited if it exists. Finally, the third aggregation function, shown in Table 11, 
can be used to calculate the likelihood that a vulnerability exists based on test results. This function 
takes as input the number of passed and failed test cases (where failed indicates that a test has found 
a vulnerability), the likelihood that the system under test has a vulnerability if the test fails, the 
likelihood that the system does not have a vulnerability if the test fails, and assumed likelihood that the 
system under test has a vulnerability. Number of passed and failed test cases can be derived from a 
test report, whereas the other measurements may have to be estimated manually based on expert 
judgement. Based on the given input, the aggregation function shown Table 11, will use Bayesian 
inference to update the assumed likelihood of vulnerability existence based on the evidence provided, 
i.e. number of passed and failed test cases. 

 

Table 9 - Aggregation function AF1: Attack likelihood aggregation 
Attack likelihood aggregation 

Source 
measurements 

• vr: Vulnerability relationships (R2) 

• {(v1,s1), ..., (vn, sn)} : (data::riskassessment::Parameter, Vulnerability 
severity (R3))* 

Target 
measurements 

• asl : Attack success likelihood (R1) 

Description For simplicity, we assume that it is sufficient to exploit one vulnerability to 
achieve a successful attack. We therefore let the attack success likelihood be 
equal to the sum of the vulnerability severity values. 

Definition • asl = s1 + ... + sn 

 

 

Table 10 – Aggregation function AF2: Vulnerability severity aggregation 
Vulnerability severity aggregation 

Source 
measurements 

• (v,e): (data::riskassessment::Parameter, Vulnerability exploitability (R4)) 

• (v,l): (data::riskassessment::Parameter, Vulnerability existence likelihood 
(R5)) 

Target 
measurements 

• (v, s): (data::riskassessment::Parameter, Vulnerability severity (R3)) 

Description The vulnerability severity is defined as the multiplication of the exploitability e 
and the likelihood that the vulnerability exists l 

Definition • s = l * e 
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Table 11 – Aggregation function AF3: Vulnerability existence aggregation 
Vulnerability existence aggregation 

Source 
measurements 

• V: data::riskassessment::Paramenter 

• P: #passed test cases, 

• F: #failed test cases, 

• DL: Test vulnerability discovery likelihood 

• FP: Likelihood of false positive 

• AL: Assumed vulnerability existence likelihood 

Target 
measurements 

• oV: data::riskassessment::Paramenter 

• oVE: Vulnerability existence likelihood 

Description This function will use Bayesian inference to update the initial assumed 
estimate of the vulnerability existence (as specified by AL) by taking into 
account the number of passed test cases (given by P) and failed test cases 
given by (F). The aggregation function will be defined in terms of the 
binominal function BINOMDIST.  

Definition • oV = v (the name of the output vulnerability is equal to the name of the 
input vulnerability) 

• Pa = AL * BINOMDIST(F, P+F,DL) (Probability that a system has 
vulnerabilities given sample) 

• Pb = (1 – AL) * BINOMDIST(F, P+F, FP) Probability that a system has 
no vulnerabilities given sample) 

• oVE = Pa / (Pa + Pb) (Vulnerability existence likelihood, i.e. normalized 
probability that a system has vulnerability given sample)  

 

3.3 The Application of the Process to an Example 
In this section we illustrate the process described in Sect. 3.1 with an example. 

3.3.1 Step I: Identify Source and Target Data Model Elements 
The first step of the process is to identify data elements that should be updated based on test results. 
In this example, we assume that the risk model to be updated is the one shown in Figure 5, and that 
we are furthermore only interested in updating the three conditional likelihoods on the edges 
highlighted by the red ovals. In the RASEN risk model, this conditional likelihood is contained in the 
element data::foundation::Parameter which is attached to the data::riskassessment::RiskRelation data 
element corresponding to relations in the risk model. 

Assume further that we have a test report which only contains information about how may tests have 
passed and failed regarding tests related to existence of vulnerabilities w.r.t. the three relations 
highlighted in Figure 5. In the RASEN data model, the test report is represented by the 
data::testing::TestReport. 

The source and data elements are summarize in Table 12. 
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Figure 5 – Risk model to be updated 
 

 

Table 12 – Source and target data elements 
Data model element ID Kind Description 

data::riskassessment::RiskRelation Target The risk relation data element corresponds to 
an arrow in a CORAS diagram. The data item 
that we want to update is the likelihood on the 
relation. In the data model, this likelihood is 
represented by as a parameter to the relation. 

data::foundation::Parameter Target We are interested in parameters whose name 
attribute is "Likelihood" to represent conditional 
likelihoods of risk relations. 

data::testing::TestReport Source We are interested in the number of passes and 
failed tests for each relation that is tested for 
existence of vulnerabilities. 

 

3.3.2 Step II and Step III: Specify Metrics and Dependencies and 
Aggregation Functions 

In step II, we specify measurements that are partially derived from the test results and which can be 
used to update the conditional likelihoods on the three relations highlighted in the risk model of Figure 
5.  

In this example, we will assume that the conditional likelihood on the risk model relations we are 
interested in is equal to the likelihood that there is a vulnerability which can be exploited in order for 
the source of the relation to lead to/cause the target of the relation. This means, for instance, that the 
likelihood [0.001, 0.04] on the relation going from the threat scenario I.CAPEC-62: Cross-site request 
forgery to F.CAPEC-62: Cross-site request forgery successful in Figure 5, specifies the likelihood that 
there is a vulnerability which will be exploited to cause a successful cross-site request forgery attack if 
it is initiated.  

In this example, we make use of the aggregation function Vulnerability Existence Aggregation 
specified in Table 11. In addition to the number of passed on failed test executions, this function takes 
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the following measurements as input: test vulnerability discovery likelihood, likelihood of false 
positives, and assumed vulnerability existence likelihood.  

 

Table 13 – Metrics needed in the example 
Metric ID Metric name Description Scale/Type 

R5 Vulnerability 
existence 
likelihood 

Specifies the likelihood that a vulnerability exists in 
the SUT 

Probability 
interval 

RT1 Test 
vulnerability 
discovery 
likelihood 

Probability that a test fails if the SUT contains the 
vulnerability which we are testing for 

Probability 
interval 

RT2 Likelihood of 
false positive 

Probability that a test fails if the SUT does not 
contain the  vulnerability which we are testing for 

Probability 
interval 

RT3 Assumed 
vulnerability 
existence 
likelihood 

Assumed probability that system has vulnerability 
(before testing) 

Probability 
interval 

T1 # passed test 
cases 

This indicates that no vulnerability has been found Integer 

T2 # failed test 
cases 

This indicates that a vulnerability has been found Integer 

 

A summary of the metrics needed in the current example is given in Table 13. Furthermore, the 
dependencies between the metrics are shown in Figure 6. Note here that the metric "Assumed 
vulnerability existence likelihood" depends on the "Parameter" data element. The reason for this is that 
we let the assumed likelihood metric represent the likelihood value of the risk model which we are 
interested in updating based on the test results. Thus the "Assumed vulnerability existence likelihood" 
will actually be equal to a likelihood value represented by a Parameter element in the data model. 

Since the two metrics #passed test cases and # failed test cases can be derived automatically from 
the test report, the only metrics which will have to be estimated manually be expert judgement are 
"Test vulnerability discovery likelihood" and "Likelihood of false positive" which are highlighted in gray 
color in Figure 6. 
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Figure 6 – Dependency graph of the example 
 

3.3.3 Aggregation of test results 
Having specified source and target data elements, measurements, and aggregation functions, we may 
apply the aggregation functions to a given set of test results in order to analyze how this impacts the 
risks of the risk model.  

To illustrate this, assume that we have the test results of Table 14, where we for each relation we are 
testing, have zero fail test executions, meaning that the tests have revealed no vulnerabilities. This is 
often the case in practice. However, the fact that the tests did not reveal any vulnerabilities, does not 
mean that the system under test has no vulnerabilities. However, the more we test without finding any 
vulnerabilities, the more confident we can be that no vulnerabilities exist in the system.   

 

Table 14 – Example of test results 
Name Passes Fails 

CAPEC 66: SQL injection 1000 0 

CAPEC 62: Cross site request forgery 1500 0 

CAPEC 63: Simple script injection 2000 0 

 

 

In order to apply the aggregation function Vulnerability Existence Aggregation, we need, in addition to 
the number of passed and failed test cases, the measurements shown in Table 15. Here the 
"assumed vulnerability existence likelihood" measurement value is obtained from the risk model in 
Figure 5. The two other measurements need to be estimated based on expert judgement since there 
is no information about these in the test report assumed in the current example. 
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Table 15 – Example of measurement values 
Name False positives 

likelihood 
Vulnerability test 
discovery 
likelihood 

Assumed vulnerability 
existence likelihood 

CAPEC 66: SQL injection 0.000001 0.001 [0.001, 0.04] 

CAPEC 62: Cross site 
request forgery 

0.000001 0.001 [0.0001, 0.01] 

CAPEC 63: Simple script 
injection 

0.000001 0.001 [0.0001, 0.004] 

 

Given the measurement values of Table 15 and Table 16, we can apply the aggregation function to 
automatically calculate the "Vulnerability existence likelihood". The results of this is shown in Table 16. 

 

Table 16 - Example of aggregated measurement values 
Name Vulnerability existence likelihood 

CAPEC 66: SQL injection [2.23314E-5, 0.00225] 

CAPEC 62: Cross site request forgery [3.68296E-4, 0.015104] 

CAPEC 63: Simple script injection [1.35482E-5, 5.43763E-4] 

 

We may now update the conditional likelihoods of the three relations that are tested in the risk model, 
and recalculate the likelihood values of the risk model. The result of this is shown in Figure 7. Note in 
particular that likelihood values of the risk "UI-C2: Attacker gains privileges of users/roles and 
accesses confidential user data" is now calculated to be [0.002247, 99.853963] whereas the value 
was [0.0061,320] (as shown in Figure 7) prior to the update of the conditional likelihoods. Thus we see 
precisely how the test results have impacted the likelihood value of the risk in the risk model. 

 

 

Figure 7 – Updated risk model 
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4 Reusable Risk Assessment Artifacts and Risk 
Aggregation with the Help of Tags and Scopes 

Risk assessment of large scale ICT systems is a difficult task. One obvious approach to deal with its 
complexity and to keep its costs at a reasonable level is to identify the manageable small sub-
components that the complex system consists of, and then analyze each of these sub-components 
separately. The results for the individual sub-components can later potentially be used as an adequate 
basis for a risk assessment of the entire system. 

The idea is that even if the components are used to build different systems and if they are used in very 
different contexts, the risk analysis artifacts created for the individual components should be reusable 
for compositional risk assessment, i.e. for analyzing the overall risks without looking again into details 
of any sub-component. Finally it should be possible to aggregate and to evaluate the risks for entire 
products, configurations and usage scenarios at a very high level in order to support the management 
in their decision making processes. 

But how exactly can such a composition and aggregation be done? Certainly, the risks of entire 
systems are not just the unions of the risks identified for their sub components. Depending on how the 
components are used, certain risks might not be relevant in a particular configuration. One possible 
reason might for example be that other components treat and mitigate the risk already. However in a 
slightly different configuration, the risk of exactly the same component might be unacceptably high. 

For the aggregation of individual risk values, for example overall product level risks, it is not a sound 
idea to just sum up all the risk values for sub components and to calculate average high level risk 
values. Some components are eventually more critical than other components. Even summing them 
up in a weighted fashion according to the criticality of the components might be misleading. A security 
breach like execution of unauthorized code, even though exploiting a weakness in the most 
unimportant and least crucial component, could affect all other components that use the same logical 
system or database server. Weighting risk values low just because the components for which they 
were identified themselves seem to be uncritical would probably lead to completely wrong results. 

Of course, it is possible to model the dependencies between the components in detail, as it is 
described for example in [6]. However, doing so requires a substantial amount of manual work for 
each and every system that is build out of the components. For large scale systems, graphical 
modelling might become unintuitive and analysts will probably get lost simply because the models get 
too complex. 

Since one of the major requirements to the RASEN tooling, as specified by the case study provider 
Software AG, is exactly to avoid such manual work as much as possible, modelling all dependencies 
and relations in detail is not an option. The goal is rather to model very basic isolation levels and 
spread scopes in a simple, but nevertheless flexible, way. 

4.1 Tagging Risk Assessment Artifacts 
The isolation is modeled with the help of tags, which contain information about the involved resources 
like logical systems and databases. The tagging for risk assessment artifacts proposed here uses a 
simple format consisting of a tag category and a tag value. A number of different categories that might 
be useful in many scenarios have been identified so far:  

• Component 

• Product 

• Configuration 

• Physical system 

• Logical system 

• Process 

• Network segment 
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• Database 

• Database server 

• Operating system 

• Programming language 

• Framework 

• Third party API / library 

• Task 

• Building block 

The RACOMAT tool supports these predefined categories, and other categories can also be specified 
as needed. Tags of predefined categories, as well as tags of user defined categories, can for example 
be used for grouping results in the dashboard view. 

Besides the tag category, for each tag an arbitrary string identifier can be specified as a tag value. For 
example, a tag for the category Database server could have a value PaymentTransactionServer. 
However, the analyst must make sure that the same element is always identified with the same string 
in order to enable correct calculations. The RACOMAT tool therefore automatically suggests 
previously used values that users can apply with single mouse clicks. 

Any node or relation in a risk graph can be tagged within the RACOMAT tool with multiple different 
tags. Even tags themselves can have tags, which are especially intended to support the modelling of 
different configurations. For each artifact, there may be multiple alternative tags having the same tag 
category, only with different tag values. It is, for example, possible to specify several different logical 
system tags for the same component. This might even make sense if the component will never run on 
more than a single logical system: Tags on the alternative tags can be used to express which 
alternative tag value should be used. Hence, with the help of configuration tags having different 
values, it is possible to make sure that for each configuration value, only exactly one of the alternative 
logical system tag values becomes applicable.  

Most tags can typically be specified for entire components, which are represented by threat interfaces. 
So the amount of manual work should be reasonably low. For the RASEN use case work, for example, 
the RACOMAT tool imports information about systems, components and products from the ARIS tool, 
and it generates appropriate tags automatically. So the effort for tagging in the Software AG’s case 
study is actually zero for some tag categories. 

Certain tag categories are probably invariant for some systems, i.e. no matter where the system will be 
used and how it will be used, the tag values will always stay the same. Invariant categories typically 
specify information about system internals, e.g. used APIs. When reusing the risk assessment artifacts 
once created for some system, tags for the invariant categories do not have to be adopted even if the 
configuration and the environment of that system are changed. 

On the other hand, there are tag categories which should be used to describe exactly where and how 
some system is used. Of course, these tag values that typically describe external aspects have to be 
adapted if the system setup changes. For example, software components and products can typically 
be installed on different logical and physical systems.  

Tags can also be used to influence which elements should currently be shown. In that way, tags can 
be used like layers in common graphic programs. This might be helpful if graphs get large and 
complex. Also it is possible to let all set tag values for a certain category be displayed with different 
colors in order to get a good overview. 

4.2 The Scope of Faults and Unwanted Incidents 
Just having information about the different categories of isolation for the risk assessment artifacts is 
not enough to start any sound risk value aggregation. Incidents or faults might spread and affect other 
components. Instead of modeling in detail what could eventually be affected, it is much simpler to 
specify how far the consequences might reach. 
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The RACOMAT tool allows users to specify for any incident and for each tag if any other element 
having the same tag category and the same tag value might also be affected whenever the incident 
occurs. 

For example, the entire logical system on which a certain component runs could be influenced by an 
incident “Execute unauthorized code” occurring on that component. Then any other faults and 
unwanted incidents of other components or programs running on the same logical system could also 
be triggered by that incident. 

If dependencies had to be modeled manually within the risk graph, then eventually lots of new 
relations would have to be added. Figure 8 shows a risk graph with an explicitly modeled dependency 
between two components. Note that modeling the dependencies requires a concept like gates known 
from Fault Tree Analysis [3] to express how the triggering might work. In the example, the “or” gate 
(“≥1”) expresses that one of the threat scenarios is enough to trigger the incident “Leaks data”. 

 

Figure 8 – Explicitly modeled dependencies 

However, if all components are tagged, there is no need to model the dependencies in detail. Instead, 
as shown in the example, just the scope for the unwanted incident “Execute unauthorized code” can 
be specified to affect the entire logical system. Then all other faults or incidents having the same tag 
value “Main server” in the tag category “Logical system” will be treated as if a dependency was 
explicitly modeled. Hence, the tagged risk graph shown in Figure 9 is equivalent to the risk graph 
shown in Figure 8 and produces identical results in RACOMAT. 
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Figure 9 – Using tags and scopes to model dependencies 

Ideally, there should be a library for the most common faults or unwanted incidents that specifies how 
far they typically might spread and affect other components. Such information could be added to an 
extended attack pattern library. Hence, it would become reusable and the amount of manual work 
would be further reduced. 

4.3 Risk Aggregation Using Tags and Scopes 
When aggregating the risk analysis results, the RACOMAT tool executes Monte Carlo Simulations in 
order to calculate likelihood values for dependent faults or unwanted incidents. This is a common 
approach, as described for example in [1][2]. 

The RACOMAT tool uses any available information to calculate how far consequences of some 
incident might spread and affect other incidents. Dependencies manually modeled with the help of 
relations in the risk graph have the highest priority. For example, manual modeling is currently needed 
to express redundant usage of components. 

Wherever there are no dependencies explicitly modeled, before starting any simulations, the 
RACOMAT tool internally creates relations which follow from the isolation tags and the influence scope 
notations. Hence, the actual calculation of likelihood values is based on a fully modeled risk graph 
even if some relations are auto generated from tag and scope data. Therefore, the Monte Carlo 
Simulation always works as described in [8]. 

However, the complexity that might be introduced by automatically completing the model stays hidden. 
Users do not have to bother with expanded complex risk graphs. Changing configurations is possible 
at any point in time with limited amount of manual work required. Typically only some tags have to be 
altered. 

Calculating likelihood values for some configuration is only a first step in the risk aggregation process. 
Typically, managers want high level results for example for entire products or even for complete 
products families. 
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The RACOMAT tool allows to aggregate risk values for any tag category. In RACOMAT risk is 
generally expressed always in the same unit – as the financial loss per time period. It is possible to 
calculate expected loss values, but it is also possible to calculate realistic and worst case scenarios. 
This can be very important since expected values will typically only occur in the average with large 
numbers. If the risk assessment is done for a single system for a single period of time, then there will 
be probably no loss at all – or a very high (eventually the maximal) possible loss if something goes 
wrong. Whatever happens, the expected value will never be reached. Where there are catastrophic 
high worst case losses, but low expected loss values, insurance might be a good idea to mitigate the 
risk, though an insurance will be more expensive than the expected loss value, for sure. 

No matter if expected loss values, realistic or worst case losses are calculated, all risks are actually 
modeled as natural numbers having the same unit (i.e. currency per time span). Hence, it is possible 
to simply sum up all the risks having the same tag. 

High level risks are displayed in the internal dashboard view by the RACOMAT tool and they can be 
exported so that they can be viewed in simple web browsers. Within the RACOMAT dashboard view, it 
is possible to switch between different tag categories that should be evaluated. 
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5 Conclusion 
In this deliverable we have reported on the main results of RASEN WP3 tasks from the third and final 
year of the project. The results show our progress within all of the R&D tasks of WP3 of compositional 
risk assessment techniques, techniques for test-based security risk assessment and techniques for 
continuous security risk assessment. The presented techniques come with relevant modeling support, 
and they are moreover supported by the prototype tools of deliverable D3.3.3 that are integrated into 
the RASEN tool-box. 
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Appendix A: Import/Export Format for ARIS in XSD 
The following XSD specifies the import/export Format in ARIS Business Architect to export the models 
for automated testing, and to import the weaknesses back into the graphical model. 

<?xml version="1.0" ?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
  <xs:complexType name="subComponentType"> 
    <xs:sequence maxOccurs="unbounded" minOccurs="0"> 
      <xs:element name="subComponentName" type="xs:string"/> 
      <xs:element name="subComponent" type="subComponentType"/> 
      <xs:element maxOccurs="unbound" minOccurs="0" name="cwe"> 
        <xs:simpleType> 
          <xs:restriction base="xs:integer"> 
            <xs:minInclusive value="0"/> 
            <xs:maxInclusive value="1000"/> 
          </xs:restriction> 
        </xs:simpleType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
  <xs:simpleType name="vignetteEntryType"> 
    <xs:restriction base="xs:integer"> 
      <xs:minInclusive value="0"/> 
      <xs:maxInclusive value="9"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:element name="productName" type="xs:string"/> 
  <xs:element name="vignette"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element name="HA" type="vignetteEntryType"/> 
        <xs:element name="RC" type="vignetteEntryType"/> 
        <xs:element name="MD" type="vignetteEntryType"/> 
        <xs:element name="UE" type="vignetteEntryType"/> 
        <xs:element name="GP" type="vignetteEntryType"/> 
        <xs:element name="EA" type="vignetteEntryType"/> 
        <xs:element name="BP" type="vignetteEntryType"/> 
        <xs:element name="RD" type="vignetteEntryType"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element maxOccurs="unbounded" minOccurs="0" name="component"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element name="componentName" type="xs:string"/> 
        <xs:element name="subComponent" type="subComponentType"/> 
        <xs:element maxOccurs="unbound" minOccurs="0" name="cwe"> 
          <xs:simpleType> 
            <xs:restriction base="xs:integer"> 
              <xs:minInclusive value="0"/> 
              <xs:maxInclusive value="1000"/> 
            </xs:restriction> 
          </xs:simpleType> 

        </xs:element> 
      </xs:sequence> 
    </xs:complexType> 
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  </xs:element> 
</xs:schema> 
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