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Abstract. We present a method for risk-based security testing that
takes a set of CAPEC attack patterns as input and produces a risk
model which can be used for security test identification and prioritiza-
tion. Since parts of the method can be automated, we believe that the
method will speed up the process of constructing a risk model signif-
icantly. We also argue that the constructed risk model is suitable for
security test identification and prioritization.
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1 Introduction

Risk assessment and testing are two areas that are traditionally addressed in iso-
lation and that are supported by dedicated tools and processes, e.g. ISO31000
[1] for risk assessment and ISO/IEEE 29119 [2] for testing. However, the combi-
nation of these two areas can be mutually benefiting. On the one hand, the risk
assessment can be used to guide the testing. On the other hand, the testing can
be used to validate the risk model estimates.

A risk-based testing process is a process obtained by adding a structured risk
assessment activity to a traditional testing process. In order for this enhanced
process to be an improvement over the traditional testing process, the time
spent on the added risk activity must make up for the loss of time spent on the
traditional testing activities. It is therefore desirable that the risk assessment
should not be too time consuming and it should result in a risk picture which is
useful for the testing.

In this paper, we present a method and a technique which addresses both of
these issues. Firstly, the method automates much of the process of constructing a
risk model, and also the process of test-identification and prioritization based on
risk models. Secondly, the method produces risk models that describe CAPEC
attack patterns including known vulnerabilities which provide a relevant starting
point for security test identification.

The expected end user of our method is a security tester and/or a risk analyst.
From the user perspective, the method has three steps. In Step I, the user selects
a set of attack patterns from the CAPEC dictionary of attack patterns [9] and
generates a risk model automatically using our CAPEC to risk model technique.
In step II of the method, the user manually refines the risk model in order to
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make it system/domain specific. In Step III, the user automatically generates a
prioritized list of test procedures from the risk model using our technique test
procedure prioritization. The resulting test procedures are intended to be used
as starting point for test design, implementation, and execution.

The main contribution of this paper is the description of the method and the
technique for automated risk model generation based on CAPEC attack pat-
terns. The technique for test procedure derivation and prioritization is described
in a separate paper [14]. There are many approaches to risk-based testing, but
we are not aware of any approaches that automates the construction of a risk
model which is used for test identification and prioritization.

The paper is structured as follows: In Sect.2 we provide an overview of our
method and describe the criteria it is intended to fulfill. In Sect.3, Sect.4, and
Sect.5 we respectively describe step I, step II, and step III of our method in more
detail. In Sect.6 we discuss related work and in Sect.7 we provide conclusions.

2 Overview of method and success criteria

In this section, we give and overview our method for using CAPEC attack pat-
terns in a risk-based testing process and describe criteria it is intended to fulfill.
In general, it is not given that any combination of risk assessment and testing is
useful. There are many risk assessment methods. These differ w.r.t. to the way
in which the risk assessment is documented, the degree of structure, and the
intended target time. For instance, some check list based approaches may only
take a few hours while other more rigorous approaches may take thousands of
hours. In any case, in a risk-based testing process, the time spent on the risk
assessment should make up for the time lost in the testing activity. Therefore it
is important the risk assessment is not too time consuming.

In addition to this, the outcome of the risk assessment, which we will refer
to as a risk model, should provide useful input to the testing activity in the
sense that it will reduce time and/or increase quality of the test results. There
are many different kinds of risk model documentation languages, and not all
of them may be suitable. Furthermore, the risk model has to be on the right
level of abstraction and have the right focus. For instance, if it is too vague or
documents risks and circumstances that cannot be investigated through testing,
then the risk model might not be suitable.

In summary, we believe that the fulfillment of the following criteria will in-
crease the likelihood of a risk-based testing process being an improvement over
a traditional testing process:

C1 The risk assessment should not be too time consuming.
C2 The risk assessment should help reduce the time spent on test identifica-

tion/design.
C3 The risk assessment should help increase the quality of the testing activity.

The method presented in this paper is supported by two techniques/transformations
(both of which have been implemented in proof-of-concept tools) which help au-
tomate parts of the process:
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T1 A transformation from CAPEC attack a patterns into CORAS risk models.
T2 A transformation from CORAS risk models into a prioritized list of test

procedures.

Step I: CAPEC 
to risk model

Step II: Risk 
model 

refinement

Step III: Test 
procedure 

identification

Fig. 1. Method overview

As illustrated in Fig.1, the method has three steps. In step I, the users selects a
set of attack pattern from the CAPEC dictionary, and then uses T1 to automat-
ically generate a CORAS risk model. In step II, the user refines the resulting
risk model to make it specific to the target of analysis. This step has to be
performed manually. In Sect. 4, we will discuss different ways in which the risk
model can be refined. In step III, the users annotates the risk model with test
specific annotations, and uses T2 to automatically generate a prioritized list of
test procedures which can be used as starting point for test design.

The two techniques and the three steps of the method are meant to be used
a part of a more comprehensive process for risk assessment and security testing.
To illustrate this, we have in Fig.2 mapped the three steps of the method (as
shown by the labeled circles) onto typical activities of a risk assessment and
a testing process, in this case, corresponding to ISO31000 [1], and ISO/IEEE
29119 [2], respectively.
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3 Step I: From CAPEC to Generic CORAS Risk Models

In step I of our method, the user selects a set of attack patterns from the CAPEC
dictionary and uses T1 to automatically generate a CORAS risk model.

As shown in Fig. 2, we assume that an Establishing the Context activity is
performed before entering into step I. We will not describe this activity in detail
since it is not specific to the method we present. However, typical artefacts that
may have been described before entering into step I are: the target of evaluation;
likelihood and consequence scale definitions; asset definitions; risk evaluation
criteria.

For selecting the relevant CAPEC attack patterns, the user should formulate
clear attack pattern selection criteria, and then walk through the list of all attack
patterns and discard those patterns which do not fulfill the critera. Examples of
possible critera are:

– The attack pattern must be within the scope of the system under evalua-
tion. For instance, if the attack pattern describes how to exploit a particular
functionality such as login, and the target system does not have that func-
tionality, the attack pattern would not satisfy the criterion.

– The attack pattern must exploit a weakness which is on the CWE (Common
Weakness Enumeration) [10] list of top 25 most severe weaknesses.

The selection of the CAPEC attack patterns should be supported by a tool
which allows the user to browse the attack patterns, and mark those which will
be used as a basis for risk model generation. We have a developed a proof-of-
concept tool for doing this. The tool allows the user to import the CAPEC
dictionary (represented as an XML file), and display its contents in a tree view
showing only information which is relevant for the translation into CORAS risk
models. The tree view allows the user to delete and edit attack patterns, as well
as to supply addition parameters to the transformation. After this editing is
done, the user may use the tool to automatically export the attack patterns into
a CORAS risk model.

In the following, we make precise what we mean by a CORAS risk model
(Sect. 3.1) and a CAPEC attack pattern (Sect. 3.2), then we describe the tech-
nique T1 for translating CAPEC attack patterns to CORAS risk models (Sect. 3.3).

3.1 CORAS risk models

There are many different kinds of languages for describing risk models. Our tech-
nique uses the CORAS language for model-based risk assessment [8]. CORAS
risk models are used for documenting risks as well as events and circumstances
that can cause risks. As illustrated by the example in Fig. 3, a CORAS risk
model is a directed acyclic graph where every node is of one of the following
kinds:

Threat A potential cause of an unwanted incident or threat scenario.
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Fig. 3. Example of a CORAS risk model

Threat scenario A chain or series of events that is initiated by a threat and
that may lead to an unwanted incident.

Unwanted incident An event that harms or reduces the value of an asset.
Asset Something to which a party assigns value and hence for which the party

requires protection.

Note that risks can also be represented in a CORAS risk model. These correspond
to pairs of unwanted incidents and assets. If an unwanted incident harms exactly
one asset, as is the case in Fig. 3, then this unwanted incident will represent a
single risk.

Relations and nodes may have the following assignments:

Likelihood values may be assigned to a threat scenario and unwanted incident
A, estimating the likelihood of A occurring.

Conditional likelihood values may be assigned to relations going from A to
B, estimating the conditional likelihood that B occurs given that A has
occurred.

Consequence values may be assigned to relations going from A to B, esti-
mating the consequence the occurrence of A has on B.

Vulnerabilities may be assigned to relations going from A to B, describing a
weakness, flaw or deficiency that opens for A leading to B.

3.2 Common Attack Pattern Enumeration and Classification
(CAPEC)

CAPEC is a comprehensive dictionary and classification taxonomy of known
security attacks [9]. It contains more than 400 attack patterns, all of which are
described in terms of a set of attributes such as attack name, method of attack,
related weaknesses, typical severity etc. In order to define a transformation from
a CAPEC attack pattern to a CORAS risk model, we must ask

– What attributes of an attack can be expressed in a CORAS risk model?
– Which of these attributes are described by the CAPEC attack pattern?
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In answer to the first question, we believe that the following information about
a security attack can be represented and would be of value in a CORAS risk
model:

A The name of the attack.
B An estimate of how likely it is that the attack is initiated.
C An estimate of how likely it is that the attack will succeed given that it is

initiated.
D A list of consequences/unwanted incidents which a successful attack can

cause/lead to.
E An estimate of how likely it is that a successful attack will lead to the un-

wanted incidents.
F A list of assets that can be affected by the unwanted incidents of successful

attacks.
G A description of which assets that can be harmed by an unwanted incident.
H An estimate of the consequence that an unwanted incident has on each of its

assets.
I A list of vulnerabilities that can be exploited by the attack.

The attributes which can be derived from a CAPEC attack pattern are A, C, D,
F, G, H, and I. Information about the attributes which are not described by a
CAPEC attack pattern (B and E) can be supplied as input to the transformation
to the risk model or/and as part of step II of our method.

Table 1 shows the format of the CAPEC attributes which can be expressed
in a CORAS risk model. Henceforth, whenever we write CAPEC attack pattern,
or attack pattern, we will mean an instance of the Table 1. Note that a CAPEC
attack pattern may include many more attributes than those shown in Table 1.
However, these attributes are difficult to expressed in a CORAS risk model, and
are therefore ignored by our translation.

In Table 2 and Table 5, we have given examples of CAPEC attack pattern
34 and 64, respectively.

3.3 From CAPEC Instances to Generic CORAS Risk Models

Having made precise what is meant by a CORAS risk model and a CAPEC
attack pattern we now describe the translation from a set of attack patterns to
a CORAS risk model.

The information which cannot be derived from a CAPEC pattern can be sup-
plied to the transformation in addition to the CAPEC instances. In particular,
this information is:

– a mapping lm from CAPEC likelihoods to CORAS likelihoods;
– a default initiation likelihood dil, specifying the likelihood that an attack

will be initiated;
– a default technical impact likelihood dtil specifying the conditional likelihood

of a successful attack leading to a technical impact.
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Name A pair (ID,N) where ID denotes the identifier of the attack
pattern and N denotes the name of the pattern.

Typical likelihood
of exploit

A likelihood LE denoting the likelihood that the attack will
succeed

Attack
motivation-
consequences

A list (TI1, S1), (TI2, S2), . . . (TIn, Sn) of n pairs of the form
(TI, S), where TI denotes the name of a technical impact and S
denotes the scope of TI given as a subset of the set { Availability,
Confidentiality, Integrity }

CIA impact A triple (ciac, ciai, ciaa) denoting the impact/consequence the
attack has on confidentiality, integrity, and availability, respec-
tively.

CWE ID (Related
weaknesses)

A list v1, v2, . . . , vn of n elements denoting CWE vulnerabilities
that can be exploited by the attack.

Table 1. Format of a CAPEC attack pattern

Name (CAPEC-34, HTTP Response Splitting)

Typical likelihood
of exploit

Medium

Attack
motivation-
consequences

(Execute unauthorized code or commands, Confidentiality, In-
tegrity, Availability), (Gain privileges / assume identify, Confi-
dentiality)

CIA impact (High, High, Low)

CWE ID (Related
weaknesses)

CWE-113 Improper Neutralization of CRLF Sequences in
HTTP Headers (’HTTP Response Splitting’), CWE-697 Insuffi-
cient Comparison, CWE-707 Improper Enforcement of Message
or Data Structure, CWE-713 OWASP Top Ten 2007 Category
A2 - Injection Flaws

Table 2. Example of CAPEC attack pattern 34

Given this information, the outcome of a transformation from a CAPEC instance
on the form shown in Table 1 will in the general case be a CORAS risk model on
the form shown in Fig 4. To distinguish between variables and strings/constants,
we have in Fig. 4 denoted all non-variables inside quotation marks. For instance,
we have written ”Attacker”, meaning that Attacker is not a variable, but should
appear as a constant string which is not dependent on the CAPEC instance
being translated. The variables in the diagram such as ID, N , v1, LE, etc. are
all taken from the CAPEC instance which is assumed to be the input to the
translation (see Table 1).

As illustrated in Fig. 4, each CAPEC instance is translated into two threat
scenarios: one threat scenario corresponding to the initiation of the attack, and
one threat scenario corresponding to a successful attack. The threat scenario
describing attack initiation is given likelihood dil. The condition likelihood that
the attack will be successful given that it is initiated is given by lm(LE), i.e. the
exploit likelihood of the CAPEC instance LE translated to the CORAS model
likelihood by function lm.
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Name (CAPEC-62,Cross Site Request Forgery (aka Session Riding))

Typical likelihood
of exploit

High

Attack
motivation-
consequences

(Read application data, Confidentiality), (Modify application
data, Integrity), (Gain privileges / assume identity, Confiden-
tiality)

CIA impact (High, High, Low)

CWE ID (Related
weaknesses)

CWE-352 Cross-Site Request Forgery (CSRF), CWE-664 Im-
proper Control of a Resource Through its Lifetime, CWE-732
Incorrect Permission Assignment for Critical Resource, CWE-
716 OWASP Top Ten 2007 Category A5 - Cross Site Request
Forgery (CSRF)

Table 3. Example of CAPEC attack pattern 62

Fig. 4. CORAS risk model showing outcome of translation function

Given that the attack described by the CAPEC instance is successful, it
can lead to one or more technical impacts with conditional likelihood dtil. Each
technical impact of the CAPEC instance is translated to an unwanted incident in
the CORAS model. These unwanted incidents may in turn be connected to one of
the three assets Availability, Confidentiality, or Integrity, and the consequences
of the unwanted incidents towards these is given by the CIA values of the CAPEC
instance.

The assets that a technical impact is connected to are decided by the scope of
the technical impact. For instance, if the scope of the technical impact includes
all three assets, then the technical impact will be connected to all the three
assets. If the scope only includes e.g. Confidentiality, then the technical impact
will only be connected to the Confidentiality asset.

Each weakness of the CAPEC attack pattern is translated to a vulnerability
in the CORAS risk model (shown as a red lock) and attached to the relation
going from the threat scenario describing attack initiation to the threat scenario
describing attack success.

As an example, assume that we supply the following input to the transla-
tion: the CAPEC instances 34 and 62 shown in Table 2 and Table 3, respec-
tively; a mapping lm defined by {Low 7→ eLow,Medium 7→ eMedium,High 7→
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eHigh}; a default initiation likelihood iHigh; a default technical impact like-
lihood tMedium. Then the output of the translation will be the CORAS risk
model shown in Fig. 5. Note that the likelihood values of the threat scenarios
describing successful attacks and unwanted incidents describing attack conse-
quences are undefined. However, these likelihood values can be calculated auto-
matically from the other likelihood values in the risk model as described in e.g.
[8] or [14].

Fig. 5. Risk model obtained by translation of CAPEC-34 and CAPEC-62

4 Step II: From Generic CORAS Risk Models to Target
Specific Risk Models

The translation of CAPEC instances results in a CORAS risk model which is
not specific to a particular system under test or target of evaluation. For this
reason, we suggest that CORAS risk model be manually refined to make it more
relevant for a particular target of evaluation. There are several different ways
that the CORAS risk model can be refined for this purpose. In this section, we
cover the most important ones.

4.1 Refinement of Likelihood and Consequence Values

All likelihood and consequences of the CORAS risk model obtained from a set
of CAPEC instances are not specific to the target of evaluation. One way of
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refining the risk model is therefore to examine each likelihood and consequence
estimate of the risk model, and adjust them as necessary. For instance, both
threat scenarios describing attack initiation are in Fig. 5 given the likelihood
iHigh. As previously described, this a default likelihood value which is supplied
as an additional parameter to the transformation since the likelihood cannot be
derived from the CAPEC patterns. The user of our approach should examine
these likelihood values in particular, and adjust them if necessary.

4.2 Refinement by Element Splitting

In some cases, it may be the case that some of the attacks or technical impacts
derived from the CAPEC instances are described in a too generic way. In these
cases, the user should consider refining the risk model by splitting threat sce-
narios or unwanted incidents. For instance, if it necessary to distinguish between
different features of the target of evaluation that are subject to the attack, then
this can expressed in the risk model by splitting threat scenarios. For instance, we
could split the threat scenario I.CAPEC-34: HTTP response splitting in Fig. 5
into the two threat scenarios I.CAPEC-34A: HTTP response splitting targeting
feature A and I.CAPEC-34B: HTTP response splitting targeting feature B. This
will allow us express the fact that the CAPEC-34 attack may be initiated with
different likelihoods against feature A or feature B.

4.3 Refinement by Element Merging

The opposite of refinement of splitting is refinement by merging. If threat sce-
narios or unwanted incidents in the risk model describe similar phenomena, then
we should consider merging them. For the risk model which is generated from
the CAPEC instances, it may be particularly relevant to merge the unwanted
incidents describing consequences of CAPEC attacks, since many attacks have
the same kinds of consequences. For instance, in Fig. 5, there are two unwanted
incidents called Gain privileges/assume identify due to CAPEC-34 attack and
Gain privileges/assume identify due to CAPEC-62 attack. These unwanted inci-
dents represent the same kind of consequence and they differ only in the manner
of initiation, and we may therefore consider merging these into one unwanted
incident.

4.4 Refinement by Element Addition

The final kind of refinement that we will consider is refinement by element addi-
tion. This kind of refinement may be particularly relevant for defining new risks
that are specific to the target of evaluation. All unwanted incidents in a risk
model derived from CAPEC instances correspond to technical impacts which
are described in a quite general manner. Defining new unwanted incidents which
are more specific to the target of evaluation and that can be caused by the tech-
nical impacts may therefore be relevant. In addition to this, if many CAPEC
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instances are transformed into a risk model, then we can potentially end up with
a great number of possible risks (recall that a risk corresponds to an unwanted
incident that harms an asset). Therefore focusing the risk assessment on a few
risks which are specific to the target of evaluation is a good way of making the
risk model more manageable.

An example of this is given in Fig. 6 where the risk model of Fig. 5 has been
refined by adding three new unwanted incidents to the risk model (as shown on
the far right of the diagram), and connecting these to the old unwanted incidents
and the assets.

Fig. 6. Example of refinement by element addition

5 Step III: From Specific Risk Models To Test Procedures

The purpose of this step is to identify and prioritize test procedures that can be
used as starting point for a security test design activity. This step has two tasks

– Determine whether testing is necessary
– If testing is necessary, use technique T2 to generate and prioritize test pro-

cedures based on the risk models.

The technique T2 is defined elsewhere [14], however we will discuss its use here
for purpose of self-containment and for arguing that the risk model obtained from
CAPEC translation is a suitable starting point for test procedure identification.

To determine whether testing is necessary, it is useful to represent the risks
of a CORAS risk model in a risk matrix. Such a risk matrix can be automatically
generated from the risk model given that we have defined all likelihood values
precisely and that we have a risk model that is complete in the sense that
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all initial threat scenarios and all edges/transitions have been given likelihood
values. An example of a risk matrix with the three risks R1 - R3 (shown on the
right side of Fig. 6) is given in Fig. 7.

Here the vertical axis shows the consequence scale and the horizontal axis
shows the likelihood scale. The likelihoods of the risks are given as intervals,
i.e. the left hand side of the boxes indicates the minimum likelihood of the
intervals, and the right hand side indicates the maximum likelihoods. This should
be understood as an expression of the belief that the actual likelihood of the risks
lies somewhere within these intervals without knowing precisely where. In the
risk matrix of Fig. 7, the diagonal line separates the area into two risk values:
Acceptable and Unacceptable. We see that risk R1 is Unacceptable, risk R3 is
Acceptable, and R2 can be either Acceptable or Unacceptable depending on what
its actual likelihood is.
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Fig. 7. Risk matrix

How can we use the risk matrix to determine whether testing is necessary?
In our view, in the context of risk-based testing, testing can be used a means
of gaining knowledge which allows us to estimate the likelihoods of risks and
their causes more accurately. In our view, testing is most useful/beneficial if the
knowledge acquired through testing could lead to a change in decision making
based on risks.

In the current example, the knowledge obtained from testing may be ex-
pressed as a narrowing of the likelihood intervals of the risks. If we assume that
the decision on how to treat the identified risks is entirely based on their risk
value, then testing is necessary it could help us determine a risks risk value more
accurately. This means that the decision of whether to test or not is based on the
uncertainty of the estimates of the risk model as opposed to the severity of risks.
For instance, even though risk R1 is considered Unacceptable there is no need
to obtain new information through testing to reduce the size of the likelihood
interval because this will not change the risk value of the risk. However, risk R2
is a different matter, it spans both the acceptable and the unacceptable area,
thus the problem is not necessarily that the risk is unacceptable, but that we do
not know whether it is acceptable or not. For risk R2, it makes sense to perform
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testing to gain new knowledge that allows us to determine whether R2 should
be treated or not.

If we decide that testing is necessary, the next task is to use technique T2 for
test prioritization and selection to generate a prioritized set of test procedures
from the risk model. A risk model can be seen as a set of statements about
the world. Testing a risk model corresponds to checking the degree to which
these statements are correct. Given a risk model, the first question we must
ask is which of its kinds of statements are the most natural starting point for
test identification? As discussed further in [15], we believe that the statements
derived from edges of a risk model are the most natural starting point. An edges
going from a node A to a node B with conditional likelihood l means that ”A
leads to B with conditional likelihood l”, thus a test procedure corresponding to
this edge is a statement of the form ”Check that A leads to B with conditional
likelihood l”.

Potentially, every edge of risk model gives rise to a test procedure. However,
in practice we do not have time to test every one of these test procedures.
Thus we have to prioritize and then select the test procedures that are most
important. To achieve this, we must for each edge of a risk model ask whether
its corresponding test procedure is within the scope of the risk assessment, and
if yes, estimate the resources/effort it would require to implement and execute
the test procedure. Subsequently, given an estimate of maximum total effort
available for testing, we can use the technique described in [15] to obtain a
prioritized list of test procedures that should be implemented and tested. In the
following, we illustrate this in an example.

Assume we want to identify test procedures on the basis of the risk model
shown in Fig. 6. Our first task is to check whether the test procedure correspond-
ing to each edge of the risk model is within the scope of the assessment, and if
yes, estimate the time it will take to test it. Assuming that we are only inter-
ested in performing software security testing, then the two edges going from the
threat scenarios describing attack initiation to successful attacks are the most
natural starting point for testing. Assume that we estimate the time it takes to
implement and execute these tests procedures to 1 day each, and that we only
have 1 day in total available for doing the testing. We are thus forced to choose
which one of the test procedures to test. In order to decide this, we use our
technique for test procedure prioritization described in [15], and automatically
obtain the test procedures and their priority values as shown in Table 4. Since
the first test procedure has a higher priority than the second, we choose the first
as the test procedure to test. We believe that the test procedures of Table 4 are
a suitable starting point for security test design. In general, we believe that the
risk models generated from CAPEC instances (other than the ones shown in the
example) are on a suitable level of abstraction for test procedure identification.
This is particularly the case for the test procedures derived from edges describ-
ing the likelihood of successful CAPEC attacks and the vulnerabilities that may
be exploited for this purpose.
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Priority Test procedure Severity

1 Check that Cross Site Request Forgery (aka Session Riding)
leads to Cross Site Request Forgery (aka Session Riding) success-
ful with conditional likelihood [0.001, 0.1], due to vulnerabilities
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery
(CSRF), Incorrect Permission Assignment for Critical Resource,
Cross-Site Request Forgery (CSRF) and Improper Control of a
Resource Through its Lifetime.

2.138E-4

2 Check that HTTP Response Splitting leads to HTTP Response
Splitting successful with conditional likelihood [1.0E− 4, 0.001],
due to vulnerabilities Insufficient Comparison, Improper Neu-
tralization of CRLF Sequences in HTTP Headers (’HTTP Re-
sponse Splitting’), Improper Enforcement of Message or Data
Structure and OWASP Top Ten 2007 Category A2 - Injection
Flaws.

3.152E-8

Table 4. Prioritized list of test procedures

6 Related work

The Common Weakness Risk Analysis Framework (CWRAF) [11] is similar to
our work. CWRAF builds on the Common Weakness Scoring System (CWSS)
and provide a way of customizing the CWSS scores to specific business domains,
technologies or environments. This framework is similar to ours in that it is
related to CAPEC (both CAPEC and CWRAF reference the same weaknesses)
and that it can be used for the purpose of prioritization. However, the main
difference between our approach and CWRAF is that we take likelihood values
into account, whereas CWRAF on addresses consequences/impacts only. Thus
CWRAF can be considered a more lightweight approach than ours. Another
difference is that CWRAF is used to prioritize weaknesses and not attack patterns
as we do.

There are approaches that are similar to ours in that they address the auto-
matic generation of risk models. However, none of the approaches we are aware
of take CAPEC as input. For instance, Sheyner et. al. [16] proposes an approach
for automated generation and analysis of attack graphs. However, the approach
assumes a formally defined safety property as input which in our opinion may
limit the applicability of the approach. Similarly, Phillips and Swiler [13] also
propose an approach for automatically generating attack graphs. The approach
assumes as input a network configuration file describing a network topology, a
set of attacker profiles, and a set of attack templates. Based on these inputs,
an attack graph can be generated. The approach differs from ours in that is
addresses network attacks, and that it is based on a description of a network
topology.

There are many approaches that combine risk assessment and testing. See
[3] and [5] for a survey of the literature in the area. Almost all the approaches
to risk-based testing use risk assessment in one of two ways. Either (I) the risk



Using CAPEC for Risk-Based Security Testing 15

assessment is used to prioritize those parts/features of the system under test
that are most risky, or (II) risk assessment is used to identify tests (often as part
of a failure/threat identification process). Our approach fits best into category
(II). Other approaches that fall into this category are Murthy et. al. [12], Zech
et al. [18, 17], Casado et al. [4], Kumar et al. [7], and Gleirscher [6]. However,
none of these approaches use the risk assessment results for test prioritization
and none of them consider the automated generation of risk models based on
CAPEC.

7 Conclusion and Future Work

We have presented a method for risk-based testing that takes a set of CAPEC
attack patterns as input and produces a risk model and a prioritized list of
test procedures that can be used as a starting point for security testing. We
have describe a technique for automating the construction of the risk model and
shown how or method can be used in combination with a technique for test
identification and prioritization.

We believe our method supports criteria C1 - C3 as described in Sect.2.
In particular, criterion C1 is supported by our technique T1 for risk model
generation which reduces the time of constructing the risk model compared to a
traditional manual process. Criterion C2 is supported since the generated risk
model is suitable for test procedure identification as argued in Sect. 5. Criteria
C3 is supported since our method provides a sound basis for test-procedure
prioritization based on risk model information. This enables the testing to be
focused on the attacks and/or vulnerabilities that are most relevant for obtaining
an accurate and correct risk model.

As part of future work, we plan to further develop our proof-of-concept tools
supporting our techniques, and unify these into a single tool which will support
both risk model analysis (such as consistency checking, likelihood calculation,
and risk visualization), risk model generation from CAPEC, and test identifica-
tion and prioritization.
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