

SINTEF ICT

Networked Systems and Services
2014‐10‐27

 SINTEF A26407 ‐ Unrestricted

Report

Schematic Generation of English‐prose
Semantics for a Risk Analysis Language
Based on UML Interactions

Author(s)
Gencer Erdogan, Atle Refsdal, and Ketil Stølen

CONTENTS

I Introduction 4

II Success Criteria 4

III Approach 4
III-A Abstract syntax of CORAL . 5
III-B English-prose semantics of CORAL . 5

IV Discussion 6
IV-A The English-prose semantics of CORAL diagrams must be comprehensible to software testers when

conducting risk analysis . 6
IV-B The CORAL semantics of the constructs inherited from UML interactions must be consistent with

their semantics in the UML standard . 8
IV-C The complexity of the resulting English prose must scale linearly with the complexity of CORAL

diagrams in terms of size . 10

V Related Work 10

VI Conclusion 10

References 11

Appendix A: Abstract Syntax of CORAL 12
A-A Messages . 12
A-B Lifelines . 12
A-C Risk-measure annotations . 13
A-D Interaction operators . 13

Appendix B: English-prose Semantics of CORAL 14
B-A Messages . 14
B-B Lifelines . 14
B-C Risk-measure annotations . 15
B-D Interaction operators . 15

Appendix C: Overview of the Graphical Notation of CORAL 15

I. INTRODUCTION

Risk-driven testing is an approach that uses risk analysis
to focus the testing process with respect to certain risks
posed on the system under test. When conducting risk-driven
testing, testers need to clearly and consistently document,
communicate and analyze risks, in order to correctly focus
the testing with respect to the most severe risks.

In earlier work, we presented a systematic method for
designing test cases by making use of risk analysis [1], [2].
As part of the method, we also introduced a risk analysis
language based on UML interactions which we refer to as
CORAL. CORAL extends UML interactions with constructs
for representing risk-related information in sequence dia-
grams, and it is specifically developed to support software
testers in a risk-driven testing process.

As we explain in [1], [2], testers may use CORAL in
three consecutive steps to identify, estimate, and evaluate
risks. The graphical icons representing risk-related infor-
mation in CORAL are based on corresponding graphical
icons in CORAS, which is a model-driven approach to risk
analysis [3]. This is a deliberate design decision because
the graphical icons in CORAS are empirically shown to be
cognitively effective [4]. Appendix C gives an overview of
the graphical notation of CORAL.

However, situations may arise where the information con-
veyed by CORAL diagrams, i.e., interactions represented by
CORAL constructs, are interpreted differently by different
testers. Thus, in order to help software testers to clearly and
consistently document, communicate and analyze risks, we
present a structured approach to generate the semantics of
CORAL diagrams in terms of English prose. We evaluate
the approach based on some examples.

The CORAL language is also accompanied by a formal
semantics, but as indicated above, this report presents only
the natural-language semantics of CORAL. We present the
natural-language semantics and the formal semantics of
CORAL in different reports, because their purposes and
target audiences are different. The main target audience of
the natural-language semantics is software testers, while the
main target audiences of the formal semantics are method
developers or tool developers.

The remainder of this report is organized as follows.
Section II lists the success criteria our approach aims
to fulfill. Section III gives a stepwise explanation of the
approach, and presents the examples on which we base
our evaluation. Section IV elaborates on the fulfillment
of the success criteria. Section V provides an overview
of related work, while Section VI gives some concluding
remarks. Appendix A and Appendix B provide the complete
abstract syntax and the complete English-prose semantics
of the CORAL language, respectively. Finally, Appendix C
gives an overview of the graphical notation of the CORAL
language.

II. SUCCESS CRITERIA

There are three key design decisions that shape our
success criteria.

First, the main target audience of the natural-language
semantics of CORAL is software testers. CORAL is sup-
posed to be used by testers to document, communicate and
analyze risks in a risk-driven testing process. Thus, our first
success criterion is: The English-prose semantics of CORAL
diagrams must be comprehensible to software testers when
conducting risk analysis.

Second, CORAL is based on UML interactions and only
extends UML interactions with constructs representing risk-
related information. Thus, our second success criterion is:
The CORAL semantics of the constructs inherited from
UML interactions must be consistent with their semantics
in the UML standard.

Third, the approach must ensure scalability. Thus, our
third success criterion is: The complexity of the resulting
English prose must scale linearly with the complexity of
CORAL diagrams in terms of size.

III. APPROACH

Inspired by CORAS [3], we generate the English-prose
semantics in three consecutive steps, as shown in Figure 1. In
Step 1, we translate a CORAL diagram into a corresponding
textual representation. This step takes a CORAL diagram as
input. First, for each construct in the CORAL diagram, we
identify its corresponding syntactical element in the abstract
syntax of CORAL. Second, we replace the variables in the
syntactical element with content, i.e., user-defined text, from
the construct in the diagram. The output of this step is a
textual representation of the CORAL diagram given as input
to the step. The abstract syntax of CORAL is defined in
Section III-A.

In Step 2, we translate the textual representation of
a CORAL diagram into English prose, by making use
of the translation algorithm defined in Section III-B. The
translation algorithm is defined in terms of a function that
takes syntactical elements as input and provides their English
prose translation.

Before presenting the translation function, we need to
explain weak sequencing, which is a key construct in UML
interactions. Weak sequencing is the implicit composition
mechanism combining the constructs of an interaction, and
is defined as follows [5]:

1) The transmission of a message must occur before its
reception.

2) Events on the same lifeline are ordered in time, where
time proceeds from the top of the lifeline towards the
bottom of the lifeline, and where an event is either
the transmission of a message or the reception of a
message.

In the translation function, we use the term ‘weakly se-
quenced by’ to denote weak sequencing as defined above.

4

Step 2: Translate

textual

representation

into English prose

Step 3: Structure

English prose by

making use of a

pretty-printer

Pretty-printed

English prose of

CORAL diagram

CORAL diagram

Textual

representation of

CORAL diagram

English prose of

CORAL diagram

Step 1: Translate

CORAL diagram

into textual

representation

Figure 1. Generating English-prose semantics of CORAL diagrams.

In Step 3, we make use of a pretty-printer to format the
English prose in a structured manner. The technical details
of such a pretty-printer are outside the scope of this report,
and are therefore not discussed here.

A. Abstract syntax of CORAL

In this section, we define the abstract syntax of CORAL
expressed in the Extended Backus-Naur Form [6]. The
syntax defined in this section is an excerpt of the complete
syntax, but it is sufficient for walking through the examples
in the report. The complete syntax is defined in Appendix A.

We use the following undefined terms in the gram-
mar: identifier, asset lifeline, exact, interval, and
time unit. The term identifier is assumed to represent any
alphanumeric string. The term asset lifeline is assumed to
represent an alphanumeric string describing the name of an
asset lifeline. The term exact is assumed to represent a non-
negative real number, including 0. That is, exact ∈ R≥0.
The term interval is assumed to represent an interval of
non-negative real numbers, including 0. The intervals are
represented in standard mathematical notation. That is, one
of the following:

• [a, b]
• [a, b⟩
• ⟨a, b]
• ⟨a, b⟩

where a, b ∈ R≥0, and a ≤ b. The term time unit
is assumed to represent an alphanumeric string describing
a unit of time, e.g., second(s), minute(s), hour(s), day(s),
year(s), etc.

In the abstract syntax, we use different fonts to distinguish
between the non-terminals and the terminals. Non-terminals
are written in font math mode, while terminals are written
in font Sans Serif. The terminals written in font Bold
Sans Serif represent the type of a syntactical element.
For each terminal representing the type of a syntactical
element, there is an associated English-prose semantics
defined in Section III-B.

risk interaction = message | weak sequencing
| potential alternatives
| referred interaction
| parallel execution;

message = risky message
| unwanted incident message;

risky message = rm(identifier,
transmitter lifeline,
receiver lifeline,
risky message category,
transmission frequency,
conditional ratio,
reception frequency);

unwanted incident message = uim(identifier,
transmitter lifeline,
asset lifeline,
transmission frequency,
consequence);

transmitter lifeline = general lifeline
| deliberate threat lifeline;

receiver lifeline = general lifeline
| deliberate threat lifeline;

general lifeline = gl(identifier);

deliberate threat lifeline = dtl(identifier);

risky message category = general | new | alter;

transmission frequency = frequency;

reception frequency = frequency;

frequency = f(interval, time unit);

conditional ratio = cr(exact);

consequence = c(identifier);

weak sequencing = seq({risk interaction}−);

potential alternatives = alt({risk interaction}−);

referred interaction = ref(identifier);

parallel execution = par({risk interaction}−);

B. English-prose semantics of CORAL

The English-prose semantics of a syntactical element is
given by the function J K, which is defined below for the
excerpt of the abstract syntax presented in Section III-A.
Let the syntactical variables

• d range over risk interaction
• id range over identifier
• t range over transmitter lifeline
• r range over receiver lifeline

5

• al range over asset lifeline
• f range over frequency
• cr range over conditional ratio
• c range over consequence
• e range over exact
• i range over interval
• tu range over time unit

Undefined values are represented by ⊥. The pair of square
brackets, ‘[’ and ‘]’, is a part of the semantics that is used
to enclose an operand.

Jseq(d1, d2, .., dm)K = [Jd1K] weakly sequenced by
[Jd2K] weakly sequenced by ...
weakly sequenced by [JdmK]Jalt(d1, d2, .., dm)K = either [Jd1K] or [Jd2K] or ...

or [JdmK]

Jref(id)K = Refer to interaction: id.Jpar(d1, d2, .., dm)K = [Jd1K] parallelly merged with
[Jd2K] parallelly merged with ...
parallelly merged with [JdmK]Jrm(id, t, r,general, f1, cr, f2)K =

The message id is transmitted from JtK toJrK Jf1K, the transmission leads to its receptionJcrK, and the reception occurs Jf2K.Jrm(id, t, r,new, f1, cr, f2)K =
The new message id is transmitted from JtK toJrK Jf1K, the transmission leads to its receptionJcrK, and the reception occurs Jf2K.Jrm(id, t, r,alter, f1, cr, f2)K =
The altered message id is transmitted from JtK toJrK Jf1K, the transmission leads to its receptionJcrK, and the reception occurs Jf2K.Juim(id, t, al, f, c)K =
The unwanted incident id occurs on JtK JfK,
and impacts asset al JcK.

Jgl(id)K = id

Jdtl(id)K = the deliberate threat id

Jf(i, tu)K = with frequency interval i per tu

Jf(⊥, ⊥)K = with undefined frequency

Jcr(e)K = with conditional ratio e

Jcr(⊥)K = with undefined conditional ratio

Jc(id)K = with consequence id

Jc(⊥)K = with undefined consequence

Figure 2 illustrates some examples of CORAL diagrams
which we obtained by applying our method [1], [2] on a
guest book that is available in the Damn Vulnerable Web

Application [7]. We demonstrate the schematic translation
of CORAL diagrams into English prose by, first, translating
the diagrams in Figure 2 into their corresponding textual
representation. The resulting textual representation is shown
in Figure 3. Then, we translate the textual representation
of the diagrams into its corresponding English prose, by
using the translation function presented in this section. The
resulting (pretty-printed) English prose of the diagrams in
Figure 2 is shown in Figure 4.

IV. DISCUSSION

In this section, we discuss the fulfillment of the three
success criteria given in Section II.

A. The English-prose semantics of CORAL diagrams must
be comprehensible to software testers when conducting risk
analysis

The comprehensibility of the resulting English prose is
supported both from a general viewpoint and from a software
testing viewpoint.

From a general viewpoint, we observe the following two
points. First, the structure of the translations in Figure 4 is
similar to the structure of their corresponding CORAL dia-
grams in Figure 2. In particular, the ordering of the translated
CORAL constructs is maintained. For example, let us con-
sider the translation in Figure 4a. The first sentence states:
“The new message forgedURLReplacingMsgWithXSSscript
is transmitted from the deliberate threat Hacker to C with
undefined frequency, the transmission leads to its reception
with undefined conditional ratio, and the reception occurs
with undefined frequency”. By comparing the translation in
Figure 4a to its corresponding diagram in Figure 2a, we see
that the first sentence corresponds to the first message in
the diagram. Similarly, we see that the second sentence in
Figure 4a corresponds to the second message in Figure 2a,
and so on. Second, the user-defined text is unchanged in the
translations. By user-defined text, we mean the text typed in
CORAL diagrams, such as the text on messages, lifelines,
frequency assignments, consequence assignments, and so on.

From a software testing viewpoint, we observe that risk-
related concepts from CORAL are integrated with concepts
from UML interactions in the resulting English prose. UML
interactions are among the top three modeling languages
within the testing community, and often used for testing
purposes [8]. It is therefore reasonable to assume that testers
understand the concepts from UML interactions. Moreover,
we find it reasonable to assume that testers also comprehend
the risk-related concepts we introduce in CORAL, such
as altered messages and messages representing unwanted
incidents, because these are concepts that are also known
within the testing community. For example, in fuzz testing,
the expected behavior of a system is altered by providing
invalid, unexpected, or random data, which may lead to

6

sd Cross-site request forgery attack on guest book

Integrity of GB

Source Code

GBDatabase:

MySQLHacker

executeForgedURL

GBForm :

PHPForm
C : Client

forgedURLReplacingMsgWithXSSscript

signGB(name,XSSscript)

ref Validate msg parameter then submit entry

sd Validate msg parameter then submit entry

Integrity of GB

Source Code

GBDatabase:

MySQL

true

submit(name,SanitizedXSSscript)

GBForm :

PHPForm

validateMsgParamter

sd Do not validate msg parameter then submit entry

Integrity of GB

Source Code

GBDatabase:

MySQL

true

(UI1) XSS script

injected in database

submit(name,XSSscript)

GBForm :

PHPForm

deleteAllGBEntries

sd Man-in-the-middle attack on guest book

interceptGBFormHTTPResponse

Availability of

GB Entries

GBDatabase:

MySQL

(UI2) GB entries deleted by intercepting HTTP response

Hacker

interceptHTTPResponse

GBForm :

PHPForm
C : Client

PT :

ProxyTool

configureAutoDelete

GBEntriesInHTTPResponse

display(allGBEntries)

PTdisplay(noGBEntries)

0.2

Moderate

sd Sign guest book

GBDatabase:

MySQL

signGB(name,msg)

GBForm :

PHPForm
C : Client

submit(name,msg)

true

selectAllGBEntries()

allGBEntries

ref Sign guest book

[50, 150>:1y

[10, 30>:1y

(a)

(b)

(c)

(d)

(e)

Major

[150,

300>:1y

0.6 [90,

180>:1y

[90,

180>:1y

ref Do not validate msg parameter then submit entry

alt

Figure 2. Examples of CORAL diagrams.

unwanted incidents [9]. Table I lists the UML interaction
concepts and the risk-related concepts used in CORAL.

To illustrate how UML interaction concepts and risk
related concepts in CORAL are integrated, let us consider
the first message in Figure 2d. This message represents
an altered message. In CORAL, an altered message is a
message in the system model which has been altered due
to unexpected system behavior or unexpected input data.
Figure 4d shows the corresponding translation as: “The
altered message submit(name,XSSscript) is transmitted from
GBForm to GBDatabase with frequency interval [150, 300>
per 1y, the transmission leads to its reception with condi-
tional ratio 0.6, and the reception occurs with frequency
interval [90, 180> per 1y”. The translation shows that we
have a message that is transmitted between two lifelines
(UML interaction concepts). Furthermore, the translation
also shows that the message is altered, transmitted and
received with a given frequency, and that the transmission of
the message leads to its reception with a given conditional

Table I
UML INTERACTION CONCEPTS AND RISK-RELATED CONCEPTS USED IN

CORAL

UML interaction concepts Risk-related concepts

Message New message
Altered message
Deleted message

Unwanted incident message

Lifeline Deliberate threat lifeline
Accidental threat lifeline
Non-human threat lifeline

Asset lifeline

Interaction operators: Risk-measure annotations
Weak sequencing assigned on messages:

Potential alternatives Frequency
Referred interaction Conditional ratio

Parallel Consequence
Loop

7

(a)

(b)

(c)

Textual representation of CORAL diagram: Sign guest book.

 seq ({

rm(signGB(name,msg), gl(C), gl(GBForm), general, f(,), cr(), f(,)) ,

rm(submit(name,msg), gl(GBForm), gl(GBDatabase), general, f(,),

cr(), f(,)) ,

rm(true, gl(GBDatabase), gl(GBForm), general, f(,), cr(), f(,)) ,

rm(selectAllGBEntries(), gl(GBForm), gl(GBDatabase), general, f(,),

cr(), f(,)) ,

rm(allGBEntries, gl(GBDatabase), gl(GBForm), general, f(,), cr(), f(,))
 })

Textual representation of CORAL diagram:
Cross-site request forgery attack on guest book.

 seq ({

rm(forgedURLReplacingMsgWithXSSscript, dtl(Hacker), gl(C), new, f(,),

cr(), f(,)) ,

rm(executeForgedURL, gl(C), gl(C), new, f(,), cr(), f(,)) ,

rm(signGB(name,XSSscript), gl(C), gl(GBForm), alter, f(,), cr(), f(,)) ,

 alt({

 ref(Validate msg parameter then submit entry) ,

ref(Do not validate msg parameter then submit entry)
 })
 })

Textual representation of CORAL diagram:
Do not validate msg parameter then submit entry.

 seq ({

rm(submit(name,XSSscript), gl(GBForm), gl(GBDatabase), alter,
f([150, 300>, 1y), cr(0.6), f([90, 180>, 1y)) ,

rm(true, gl(GBDatabase), gl(GBForm), general, f(,), cr(), f(,)) ,

uim((UI1) XSS script injected in database, gl(GBDatabase), Integrity of GB Source

Code, f([90, 180>, 1y), c(Major))
 })

Textual representation of CORAL diagram:
Validate msg parameter then submit entry.

 seq ({

rm(validateMsgParameter, gl(GBForm), gl(GBForm), general, f(,),

cr(), f(,)) ,

rm(submit(name,SanitizedXSSscript), gl(GBForm), gl(GBDatabase), general,
f(,), cr(), f(,)) ,

rm(true, gl(GBDatabase), gl(GBForm), general, f(,), cr(), f(,))
 })

(d)

(e)

Textual representation of CORAL diagram:
Man-in-the-middle attack on guest book.

 seq ({

ref(Sign guest book) ,

rm(configureAutoDeleteGBEntriesInHTTPResponse, dtl(Hacker), gl(PT), new,

f(,), cr(), f(,)) ,

rm(interceptGBFormHTTPResponse, dtl(Hacker), gl(PT), new, f(,),

cr(), f(,)) ,

rm(interceptHTTPResponse, gl(PT), gl(GBForm), new, f(,), cr(),

f([50,150>, 1y)) ,

rm(display(allGBEntries), gl(GBForm), gl(PT), alter, f(,), cr(0.2), f(,)) ,

rm(deleteAllGBEntries, gl(PT), gl(PT), new, f(,), cr(), f(,)) ,

uim((UI2) GB entries deleted by intercepting HTTP response, gl(PT), Availability of

GB Entries, f([10, 30>, 1y), c(Moderate)) ,

rm(PTdisplay(noGBEntries), gl(PT), gl(C), new, f(,), cr(), f(,))
 })

Figure 3. Textual representation of the corresponding CORAL diagrams in Figure 2.

ratio (risk-related concepts).

B. The CORAL semantics of the constructs inherited from
UML interactions must be consistent with their semantics in
the UML standard

The CORAL constructs inherited from UML interactions
are messages, lifelines and the interaction operators: seq, ref,
alt, par and loop. The interaction operator weak sequencing
(seq) is defined and related to CORAL in Section III.

According to the UML standard, a “message defines a
particular communication between lifelines of an interac-
tion,” and “the signature of a message is the specification
of its content” [5] (pp. 505–506). A message also defines
its transmission event (which occurs on the transmitter
lifeline) and its reception event (which occurs on the receiver
lifeline) [5] (p. 506). Thus, a message may be defined as
the triple (id, t, r), where id represents the signature, t rep-
resents the transmitter lifeline, and r represents the receiver
lifeline. We define a message in a similar manner. However,
as explained in Section III, we also distinguish between
the category of a message, i.e., whether it is a general,
new, altered, deleted or an unwanted incident message. In

addition, we allow the assignment of a frequency value
on the transmission/reception of general, new and altered
messages, as well as the transmission of unwanted incident
messages. Conditional ratios are assigned on general, new
and altered messages, while consequences are assigned only
on unwanted incident messages. Deleted messages have no
risk-measure annotations. The syntax and semantics of a
deleted message is given in Appendices A and B, respec-
tively. As we can see from the translations in Figure 4,
the English prose of messages are generated according to
their category, and contain information about the message
signature, the lifeline transmitting the message, the lifeline
receiving the message, and the risk-measure annotations
assigned on the message if they are defined.

According to the UML standard, an “interaction use (ref)
refers to an interaction. The interaction use is shorthand for
copying the contents of the referred interaction where the
interaction use is. To be accurate the copying must take into
account substituting parameters with arguments and connect
the formal gates with the actual ones.” [5] (p. 501). Figure 2b
shows an example of an interaction use named Sign guest

8

(a)

(b) (e)

(c)

(d)

English prose of CORAL diagram: Validate msg parameter then submit entry.

 [

The message validateMsgParameter is transmitted from GBForm to GBForm with
undefined frequency, the transmission leads to its reception with undefined
conditional ratio, and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The message submit(name,SanitizedXSSscript) is transmitted from GBForm to

GBDatabase with undefined frequency, the transmission leads to its reception with
undefined conditional ratio, and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The message true is transmitted from GBDatabase to GBForm with undefined
frequency, the transmission leads to its reception with undefined conditional ratio,
and the reception occurs with undefined frequency.

]

English prose of CORAL diagram: Man-in-the-middle attack on guest book.

 [

 Refer to interaction: Sign guest book.
]

 Weakly sequenced by [

The new message configureAutoDeleteGBEntriesInHTTPResponse is transmitted from the
deliberate threat Hacker to PT with undefined frequency, the transmission leads to its
reception with undefined conditional ratio, and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The new message interceptGBFormHTTPResponse is transmitted from the deliberate threat
Hacker to PT with undefined frequency, the transmission leads to its reception with
undefined conditional ratio, and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The new message interceptHTTPResponse is transmitted from PT to GBForm with
undefined frequency, the transmission leads to its reception with undefined conditional
ratio, and the reception occurs with frequency interval [50, 150> per 1y.

]

 Weakly sequenced by [

The altered message display(allGBEntries) is transmitted from GBform to PT with undefined
frequency, the transmission leads to its reception with conditional ratio 0.2, and the
reception occurs with undefined frequency.

]

 Weakly sequenced by [

The new message deleteAllGBEntries is transmitted from PT to PT with undefined
frequency, the transmission leads to its reception with undefined conditional ratio, and the
reception occurs with undefined frequency.

]

 Weakly sequenced by [

The unwanted inciden (UI2) GB entries deleted by intercepting http response occurs on PT

with frequency interval [10, 30> per 1y, and impacts asset Availability of GB Entries with
consequence Moderate.

]

 Weakly sequenced by [

The new message PTdisplay(noGBEntries) is transmitted from PT to C with undefined
frequency, the transmission leads to its reception with undefined conditional ratio, and the
reception occurs with undefined frequency.

]

English prose of CORAL diagram: Cross-site request forgery attack on guest book.

 [

The new message forgedURLReplacingMsgWithXSSscript is transmitted from the deliberate
threat Hacker to C with undefined frequency, the transmission leads to its reception with
undefined conditional ratio, and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The new message executeForgedURL is transmitted from C to C with undefined frequency,
the transmission leads to its reception with undefined conditional ratio, and the reception
occurs with undefined frequency.

]

 Weakly sequenced by [

The altered message signGB(name,XSSscript) is transmitted from C to GBForm with
undefined frequency, the transmission leads to its reception with undefined conditional
ratio, and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

Either [
Refer to interaction: Validate msg parameter then submit entry.

]

or [
Refer to interaction: Do not validate msg parameter then submit entry.

]
]

English prose of CORAL diagram:

Do not validate msg parameter then submit entry.

 [

The altered message submit(name,XSSscript) is transmitted from GBForm to

GBDatabase with frequency interval [150, 300> per 1y, the transmission leads
to its reception with conditional ratio 0.6, and the reception occurs with
frequency interval [90, 180> per 1y.

]

 Weakly sequenced by [

The message true is transmitted from GBDatabase to GBForm with undefined
frequency, the transmission leads to its reception with undefined conditional ratio,
and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The unwanted incident (UI1) XSS script injected in database occurs on GBDatabase

with frequency interval [90, 180> per 1y, and impacts asset Integrity of GB

Source Code with consequence Major.

]

English prose of CORAL diagram: Sign guest book.

 [

The message signGB(name,msg) is transmitted from C to GBForm with undefined
frequency, the transmission leads to its reception with undefined conditional ratio,
and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The message submit(name,msg) is transmitted from GBForm to GBDatabase with
undefined frequency, the transmission leads to its reception with undefined
conditional ratio, and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The message true is transmitted from GBDatabase to GBForm with undefined
frequency, the transmission leads to its reception with undefined conditional ratio,
and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The message selectAllGBEntries() is transmitted from GBForm to GBDatabase with
undefined frequency, the transmission leads to its reception with undefined
conditional ratio, and the reception occurs with undefined frequency.

]

 Weakly sequenced by [

The message allGBEntries is transmitted from GBDatabase to GBForm with
undefined frequency, the transmission leads to its reception with undefined
conditional ratio, and the reception occurs with undefined frequency.

]

Figure 4. English prose of the corresponding CORAL diagrams in Figure 2.

9

book. The interaction referred to by this interaction use is
shown in Figure 2e. We use the term ‘refer to interaction’
to denote an interaction use, as shown in the translations in
Figures 4a and 4b.

According to the UML standard, the “interaction operator
potential alternatives (alt) designates that the operands
represent a choice of behavior” [5] (p. 482). The UML
standard requires that the chosen operand must have an
explicit or implicit guard expression that evaluates to true.
An implicit true guard is implied if the operand has no
explicit guard. In CORAL, we currently allow only the usage
of implicit true guards. However, the syntax and semantics
of CORAL is easily extendable to support explicit guards
as well. As shown in Figure 4a, we use the term ‘either’
in front of the first operand of an alt operator, and then the
term ‘or’ between each subsequent operand to reflect the
disjunctive behavior of the alt operator.

According to the UML standard, the “interaction oper-
ator parallel execution (par) designates a parallel merge
between the behaviors of the operands. A parallel merge
defines a set of traces that describes all the ways that events
of the operands may be interleaved without obstructing the
order of the events within the operands” [5] (p. 483). We
use the term ‘parallelly merged with’ between each operand
to denote a parallel merge between the behaviors of the
operands.

The above paragraphs show that the CORAL semantics
of the constructs inherited from UML interactions are con-
sistent with their semantics in the UML standard.

C. The complexity of the resulting English prose must scale
linearly with the complexity of CORAL diagrams in terms
of size

As illustrated by Figure 2 and Figure 4, the definition
of the translation function in Section III-B ensures that
the structure of its output mirrors the input diagram, and
that there is a linear relationship between the size of input
and output. A formal argument that this would hold for
any diagram d could be given based on induction over the
syntactical structure of d.

V. RELATED WORK

To the best of our knowledge, no risk-driven testing
approach provides a similar schematic generation of natural
language semantics as presented in this report. Most ap-
proaches use risk tables/matrices or risk annotated models
as a means for documenting, communicating and analyz-
ing risks posed on the system under test. However, some
approaches provide guidelines for documenting risk-related
information in natural-language semantics.

Redmill [10] provides a set of guide words with associated
definitions, which may be used as a basis for documenting
risk-related information. The set of guide words are used to
describe different ways in which system services may fail,

and they are designed to focus the testing on the various
types of failures that may occur. What Redmill [10] refers
to as failure is similar to what we refer to as unwanted
incident in CORAL. However, the resulting description of a
failure, which is obtained by making use of the guide words,
does neither describe the likelihood nor the consequence of
the failure.

Gleirscher [11] makes use of a safety analysis pattern
for describing informal test cases. An informal test case is
described in terms of a chain of events that may lead to a
hazard (or hazardous state). What Gleirscher [11] refers to
as hazard is similar to what we refer to as unwanted incident
in CORAL. However, the informal test cases do neither
describe the likelihood nor the consequence of hazards.
Furthermore, the events that lead up to a hazard are similar
to what we refer to as the transmission/reception of messages
in CORAL. As shown in previous sections, we describe
the likelihood of the transmission/reception of messages
(in terms of frequencies), as well as the likelihood and
consequence of unwanted incidents.

Nazier and Bauer [12] provide a template for documenting
safety risk information, while Kumar et al. [13] provide a
template for documenting risk-related information within the
domain of aspect oriented programming. Both approaches
extract risk-related information provided by fault trees. The
risk-related information consists of the expected causes of
failures and the combination of these causes which may
lead to the root node (the fault) of the fault tree. A fault is
similar to what we refer to as unwanted incident in CORAL.
None of these approaches consider the likelihood or the
consequence of the faults when documenting the risk-related
information using their templates.

Souza et al. [14] use a taxonomy-based questionnaire for
documenting risk-related information. The taxonomy-based
questionnaire is answered by those involved in the risk-based
testing approach suggested by the authors, and the objective
is to “identify only technical risks that are commonly
related to software functionalities or requirements” [14]. The
approach makes sure to gather and document the likelihood
of risks (in terms of risk exposure values), but it does not
consider the consequence of risks.

VI. CONCLUSION

CORAL is a risk analysis language based on UML
interactions, and it is specifically developed to support
software testers in a risk-driven testing process. CORAL
extends UML interactions with constructs for representing
risk-related information in sequence diagrams.

In this report, we presented a structured approach to
generate the semantics of CORAL diagrams in terms of
English prose. The CORAL semantics is developed to help
testers to clearly and consistently document, communicate
and analyze risks in a risk-driven testing process. In partic-
ular, it helps testers to: (1) obtain a correct understanding

10

of CORAL diagrams, (2) analyze risks posed on the system
under test in a clear and consistent manner, and (3) clearly
communicate risks posed on the system under test.

We argue that the resulting English prose is compre-
hensible by testers because: (1) it preserves the structure
of CORAL diagrams, (2) it keeps the user-defined text in
CORAL diagrams unchanged, and (3) it uses concepts that
are known to software testers. In addition, the resulting
English prose of the constructs inherited from UML in-
teractions is consistent with their semantics in the UML
standard. Moreover, the complexity of the resulting English
prose scales linearly with the complexity of the CORAL
diagrams in terms of size.

ACKNOWLEDGMENT

This work has been conducted as a part of the
DIAMONDS project (201579/S10) funded by the Research
Council of Norway, the NESSoS network of excellence
(256980) and the RASEN project (316853) funded by
the European Commission within the 7th Framework Pro-
gramme, as well as the CONCERTO project funded by the
ARTEMIS Joint Undertaking (333053) and the Research
Council of Norway (232059).

REFERENCES

[1] G. Erdogan, A. Refsdal, and K. Stølen, “A Systematic Method
for Risk-Driven Test Case Design Using Annotated Sequence
Diagrams,” in Proc. 1st International Workshop on Risk
Assessment and Risk-driven Testing (RISK’13). Springer,
2014, pp. 93–108.

[2] ——, “A Systematic Method for Risk-Driven Test Case
Design Using Annotated Sequence Diagrams,” SINTEF In-
formation and Communication Technology, Technical Report
A26036, 2014.

[3] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk
Analysis: The CORAS Approach. Springer, 2011.

[4] B. Solhaug and K. Stølen, “The CORAS Language - Why it
is designed the way it is,” in Proc. 11th International Con-
ference on Structural Safety and Reliability (ICOSSAR’13).
CRC Press, 2013, pp. 3155–3162.

[5] Unified Modeling Language (UML), superstructure, version
2.4.1, Object Management Group, 2011, OMG Document
Number: formal/2011-08-06.

[6] ISO/IEC 14977:1996(E), Information technology – Syntactic
metalanguage – Extended BNF, first edition, International
Organization for Standardization, 1996.

[7] “Damn Vulnerable Web Application,” accessed September
16, 2014. [Online]. Available: http://www.dvwa.co.uk/

[8] A. D. Neto, R. Subramanyan, M. Vieira, and G. Travassos, “A
Survey on Model-based Testing Approaches: A Systematic
Review,” in Proc. 1st ACM International Workshop on Em-
pirical Assessment of Software Engineering Languages and
Technologies (WEASELTech’07). ACM, 2007, pp. 31–36.

[9] P. Oehlert, “Violating assumptions with fuzzing,” Security
Privacy, IEEE, vol. 3, no. 2, pp. 58–62, 2005.

[10] F. Redmill, “Theory and practice of risk-based testing,” Soft-
ware Testing, Verification and Reliability, vol. 15, no. 1, pp.
3–20, 2005.

[11] M. Gleirscher, “Hazard-based selection of test cases,” in Proc.
6th International Workshop on Automation of Software Test
(AST’11). ACM, 2011, pp. 64–70.

[12] R. Nazier and T. Bauer, “Automated risk-based testing by
integrating safety analysis information into system behavior
models,” in Proc. 23rd International Symposium on Software
Reliability Engineering Workshops (ISSREW’12). IEEE,
2012, pp. 213–218.

[13] N. Kumar, D. Sosale, S. N. Konuganti, and A. Rathi,
“Enabling the adoption of aspects-testing aspects: A risk
model, fault model and patterns,” in Proc. 8th ACM Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD’09). ACM, 2009, pp. 197–206.

[14] E. Souza, C. Gusmão, and J. Venâncio, “Risk-based testing:
A case study,” in Proc. 7th International Conference on
Information Technology: New Generations (ITNG’10). IEEE,
2010, pp. 1032–1037.

11

APPENDIX A.
ABSTRACT SYNTAX OF CORAL

In this appendix, we define the abstract syntax for the CORAL language using the Extended Backus-Naur Form (EBNF) [6].
The abstract syntax is presented by grouping the syntactical elements that are closely related.

We use the following undefined terms in the grammar: identifier, asset lifeline, int, minint, maxint, exact,
interval, and time unit.

• The term identifier is assumed to represent any alphanumeric string.
• The term asset lifeline is assumed to represent an alphanumeric string describing the name of an asset lifeline.
• The terms int, minint and maxint are assumed to represent non-negative natural numbers, including 0, where minint

is less than, or equal to, maxint. That is, int, minint, maxint ∈ N0, minint ≤ maxint.
• The term exact is assumed to represent a non-negative real number, including 0. That is, exact ∈ R≥0.
• The term interval is assumed to represent an interval of non-negative real numbers, including 0. The intervals are

represented in standard mathematical notation. That is, one of the following:
– [a, b]
– [a, b⟩
– ⟨a, b]
– ⟨a, b⟩

where a, b ∈ R≥0, and a ≤ b.
• The term time unit is assumed to represent an alphanumeric string describing a unit of time, e.g., second(s), minute(s),

hour(s), day(s), year(s), etc.

Throughout the definition of the abstract syntax, we use different fonts to distinguish between the non-terminals and the
terminals. Non-terminals are written in font math mode, while terminals are written in font Sans Serif. The terminals
written in font Bold Sans Serif represent the type of a syntactical element. For each terminal representing the type of a
syntactical element, there is an associated English-prose semantics defined in Appendix B. We start by defining the term
risk interaction, which is a collective term for the various constructs of CORAL.

risk interaction = message | weak sequencing | potential alternatives
| referred interaction | parallel execution | loop;

A. Messages

In the following, we define the syntax of the five different messages in CORAL: general, new, alter, delete,
and unwanted incident messages. The collective term for general, new and alter messages is risky message, the term
for a deleted message is deleted message, and the term for an unwanted incident message is unwanted incident message.

message = risky message | unwanted incident message | deleted message;

risky message = rm(identifier, transmitter lifeline, receiver lifeline,
risky message category, transmission frequency,
conditional ratio, reception frequency);

unwanted incident message = uim(identifier, transmitter lifeline, asset lifeline,
transmission frequency, consequence);

deleted message = dm(identifier, transmitter lifeline, receiver lifeline);

risky message category = general | new | alter;

B. Lifelines

In the following, we define the syntax of the lifelines in CORAL. The term transmitter lifeline represents the
transmitter lifeline for all message categories defined in Appendix A-A, while receiver lifeline represents the receiver
lifeline for the risky message and the deleted message categories. The receiver lifeline of an unwanted incident message
is asset lifeline, because the purpose of an unwanted incident message is to denote that an unwanted incident has an

12

impact on an asset.

transmitter lifeline = general lifeline | deliberate threat lifeline
| accidental threat lifeline | non-human threat lifeline;

receiver lifeline = general lifeline | deliberate threat lifeline
| accidental threat lifeline | non-human threat lifeline;

general lifeline = gl(identifier);
deliberate threat lifeline = dtl(identifier);
accidental threat lifeline = atl(identifier);

non-human threat lifeline = ntl(identifier);

C. Risk-measure annotations

In the following, we define the syntax of the risk-measure annotations in CORAL. Frequencies may be assigned on
the transmission and the reception of risky messages, as well as on the transmission of unwanted incident messages.
Conditional ratios are assigned only on risky messages, and consequences are assigned only on unwanted incident messages.
Deleted messages have no risk-measure annotations. CORAL allows the assignment of exact frequencies, as well as
frequency intervals. An exact frequency may for example be expressed as “10:1y” meaning “10 occurrences per year”,
while a frequency interval may be expressed as “[10,50]:1y” meaning “from and including 10 up to and including 50
occurrences per year”. CORAL also allows the assignment of exact conditional ratios and conditional ratio intervals. An
exact conditional ratio is simply a non-negative real number (including zero), while a conditional ratio interval is an interval
of non-negative real numbers (including zero).

transmission frequency = frequency;

reception frequency = frequency;

frequency = f(exact, time unit) | f(interval, time unit);

conditional ratio = cr(exact) | cr(interval);
consequence = c(identifier);

D. Interaction operators

In the following, we define the syntax of the interaction operators in CORAL. The interaction operators seq, alt, ref and
par are discussed in Section IV. According to UML, there are three syntactical definitions of the interaction operator loop
depending on whether there are no integers, one integer, or a pair of a maximum and a minimum integer given together with
the operator [5] (pp. 485–486). If only loop is given, the operand represents a loop with zero as lower bound and infinity as
upper bound. If loop is accompanied by an integer int, the operand represents a loop that loops exactly int times. Finally,
if loop is accompanied by two integers, minint and maxint, the operand represents a loop that loops minimum minint
times and maximum maxint times.

In EBNF, “{ }−” means an ordered sequence of one or more repetitions of the enclosed element [6]. This means that
the interaction operators seq, alt and par may consist of an ordered sequence of one or more risk interactions. The term
risk interaction is defined initially in this appendix.

weak sequencing = seq({risk interaction}−);
potential alternatives = alt({risk interaction}−);
referred interaction = ref(identifier);

parallel execution = par({risk interaction}−);
loop = loop(risk interaction) | loop(int, risk interaction)

| loop((minint, maxint), risk interaction);

13

APPENDIX B.
ENGLISH-PROSE SEMANTICS OF CORAL

In this appendix, we define the English-prose semantics for the CORAL language. The English-prose semantics is defined
by a function J K that takes a syntactical element as input, expressed in the textual syntax defined with EBNF in Appendix A,
and provides English prose of the syntactical element.

This appendix is structured similar to Appendix A; we define the English-prose semantics for messages, lifelines, risk-
measure annotations and interaction operators in the same order.

A. Messages

In the following, we define the English-prose semantics for the five different messages in CORAL. The syntax of
messages is defined in Appendix A-A. Let the syntactical variables

• id range over identifier
• t range over transmitter lifeline
• r range over receiver lifeline
• al range over asset lifeline
• f range over frequency
• cr range over conditional ratio
• c range over consequence

Jrm(id, t, r,general, f1, cr, f2)K = The message id is transmitted from JtK to JrK Jf1K,
the transmission leads to its reception JcrK,
and the reception occurs Jf2K.

Jrm(id, t, r,new, f1, cr, f2)K = The new message id is transmitted from JtK to JrK Jf1K,
the transmission leads to its reception JcrK,
and the reception occurs Jf2K.

Jrm(id, t, r,alter, f1, cr, f2)K = The altered message id is transmitted from JtK to JrK Jf1K,
the transmission leads to its reception JcrK,
and the reception occurs Jf2K.

Juim(id, t, al, f, c)K = The unwanted incident id occurs on JtK JfK,
and impacts asset al JcK.

Jdm(id, t, r)K = The message id transmitted from JtK to JrK is deleted.

B. Lifelines

In the following, we define the English-prose semantics for the lifelines in CORAL. The syntax of lifelines is defined in
Appendix A-B. Let the syntactical variable

• id range over identifier

Jgl(id)K = id

Jdtl(id)K = the deliberate threat id

Jatl(id)K = the accidental threat id

Jntl(id)K = the non-human threat id

14

C. Risk-measure annotations

In the following, we define the English-prose semantics for the risk-measure annotations in CORAL. The syntax of
risk-measure annotations is defined in Appendix A-C. Let the syntactical variables

• id range over identifier
• e range over exact
• i range over interval
• tu range over time unit

Undefined values are represented by ⊥.

Jf(e, tu)K = with frequency e per tuJf(i, tu)K = with frequency interval i per tuJf(⊥, ⊥)K = with undefined frequency

Jcr(e)K = with conditional ratio eJcr(i)K = with conditional ratio interval iJcr(⊥)K = with undefined conditional ratio

Jc(id)K = with consequence idJc(⊥)K = with undefined consequence

D. Interaction operators

In the following, we define the English-prose semantics for the interaction operators in CORAL. The syntax of interaction
operators is defined in Appendix A-D. Let the syntactical variables

• d range over risk interaction
• id range over identifier
• x range over int
• a range over minint
• b range over maxint

The pair of square brackets, ‘[’ and ‘]’, is a part of the resulting English-prose semantics and it is used to enclose an operand.

Jseq(d1, d2, .., dm)K = [Jd1K] weakly sequenced by [Jd2K] weakly sequenced by ...
weakly sequenced by [JdmK]

Jalt(d1, d2, .., dm)K = either [Jd1K] or [Jd2K] or ... or [JdmK]

Jref(id)K = Refer to interaction: id.

Jpar(d1, d2, .., dm)K = [Jd1K] parallelly merged with [Jd2K] parallelly merged with ...
parallelly merged with [JdmK]

Jloop(d)K = loop minimum zero times and maximum infinitely [JdK]

Jloop(x, d)K = loop exactly x times [JdK]

Jloop((a, b), d)K = loop minimum a times and maximum b times [JdK]

APPENDIX C.
OVERVIEW OF THE GRAPHICAL NOTATION OF CORAL

Figure 5 shows an overview of the graphical notation of the CORAL language.

15

signature

Messages

Name
General message

Node type Notation

signature

signature

signature

signature

New message

Altered message

Deleted message

Unwanted incident

message

Lifelines

General lifeline

Node type Notation

Deliberate threat

lifeline

Name

Name

Name
Accidental threat

lifeline

Non-human threat

lifeline Name

Asset lifeline

Risk-measure annotations

Frequency

Node type Notation

Conditional ratio

Consequence

frequency :

time unit

conditional ratio

consequence

CORAL diagram frame

Frame

Node type Notation

Interaction operators

Potential alternatives

Node type Notation

Referred interaction

Parallel execution

Loop

ref name of

referring interaction

alt sd Name

par

loop

Figure 5. Graphical Notation of CORAL.

16

Technology for a better society
www.sintef.no

	01
	02
	03
	04
	05

