

SINTEF ICT

Networked Systems and Services
2014‐03‐24

 SINTEF A26036 ‐ Unrestricted

Report

A Systematic Method for Risk‐driven
Test Case Design Using Annotated
Sequence Diagrams

Author(s)
Gencer Erdogan, Atle Refsdal, and Ketil Stølen

Table of Contents

1 Introduction . 4
2 Overview of Method . 5
3 Example: Guest Book Application . 8
4 Step 1: Threat Scenario Identification . 9

4.1 Identifying Threat Scenarios with Respect to the Integrity of
the Guest-Book’s Source Code . 9

4.2 Identifying Threat Scenarios with Respect to the Availability
of the Guest Book Entries . 14

5 Step 2: Threat Scenario Risk Estimation . 18
5.1 Estimating Risks Posed on the Integrity of the Guest-book’s

Source Code . 19
5.2 Estimating Risks Posed on the Availability of the Guest Book

Entries . 23
6 Step 3: Threat Scenario Prioritization . 26
7 Step 4: Threat Scenario Test Case Design . 28
8 Related Work . 32
9 Conclusion . 33

Acknowledgments. 33

1 Introduction

Risk-driven testing (or risk-based testing) is a testing approach that use risk
analysis within the testing process [5]. The aim in risk-driven testing is to focus
the testing process with respect to certain risks of the system under test (SUT).

However, current risk-driven testing approaches leave a gap between risks,
which are often described and understood at a high level of abstraction, and
test cases, which are often defined at a low level of abstraction. The gap exists
because risk analysis, within risk-driven testing approaches, is traditionally used
as a basis for planning the test process rather than designing the test cases.
Making use of risk analysis when planning the test process helps the tester to
focus on the systems, aspects, features, use-cases, etc. that are most exposed to
risk, but it does not support test case design. In order to bridge the gap between
risks and test cases, risk-driven testing approaches should not merely make use
of the risk analysis when planning the test process, but also when designing test
cases. Specifically, risk-driven testing approaches must provide testers with steps
needed to design test cases by making use of the risk analysis.

In this report, we present a systematic and general method, intended to
assist testers, for designing test cases by making use of risk analysis. A test
case is a behavioral feature or behavior specifying tests [16]. We employ UML
sequence diagrams [15] as the modeling language, conservatively extended with
our own notation for representing risk information. In addition, we make use of
the UML Testing Profile [16] to specify test cases in sequence diagrams. The
reason for choosing sequence diagrams is that they are widely recognized and
used within the testing community. In fact, it is among the top three modeling
languages applied within the model-based testing community [14]. By annotating
sequence diagrams with risk information, we bring risk analysis to the work
bench of testers without the burden of a separate risk analysis language, thus
reducing the effort needed to adopt the approach. Recent surveys on trends
within software testing show that the lack of time and high costs are still the
dominating barriers to a successful adoption of testing methods and testing tools
within IT organizations [6].

Our method consists of four steps. In Step 1, we analyze the SUT and identify
threat scenarios and unwanted incidents with respect to relevant assets. In Step
2, we estimate the likelihood of threat scenarios and unwanted incidents, as well
as the consequence of unwanted incidents. In Step 3, we prioritize and select
paths which consist of sequences of threat scenarios leading up to and including
a risk. In Step 4, we design test cases with respect to the paths selected for
testing.

Section 2 gives an overview of our method. Section 3 introduces the web
application on which we apply our method to demonstrate its applicability. Sec-
tions 4, 5, 6 and 7 employ the four steps on the web application, respectively.
Section 8 relates our method to current risk-driven testing approaches that also
address test case design. Finally, we provide concluding remarks in Sect. 9.

4

2 Overview of Method

Before going into the details of our method, we explain the assumed context in
which it is to be applied. A testing process starts with test planning, followed
by test design and implementation, test environment set-up and maintenance,
test execution, and finally test incident reporting [10]. Our method starts after
test planning, but before test design and implementation. Furthermore, the first
and the fourth step in our method expect as input a description of the SUT
in terms of sequence diagrams and suspension criteria, respectively. Suspension
criteria are used to stop all or a portion of the testing activities [9]. This is also
known as test stopping criteria or exit criteria. Suspension criteria are used in
our method to reflect the investable testing effort. We assume that these inputs
are obtained during test planning. Next, we assume that the preparations for
carrying out risk analysis have been completed, i.e., that assets have been iden-
tified, likelihood and consequence scales have been defined, and a risk evaluation
matrix has been prepared with respect to the likelihood and consequence scales.
Our method consists of four main steps as illustrated in Fig. 1; dashed docu-
ment icons represent input prepared during test planning, solid document icons
represent output from one step and acts as input to the following step.

SUT

Specification as

sequence

diagrams.

Assets.

Sequence

diagrams

representing

manipulated

behavior.

Likelihood scale

and consequence

scale.

Risk evaluation

matrix.

Selected paths.

Suspension

criteria.

Sequence

diagrams

annotated with

likelihood and

consequence

values.

Test cases.

4.1: Define test objectives for

each selected path

4.2: Specify test cases w.r.t.

the test objectives

Step 4: Threat Scenario Test Case Design

3.1: Prioritize and select paths

3.2: Aggregate and select

additional paths

Step 3: Threat Scenario Prioritization

2.1: Estimate likelihood

2.2: Estimate consequence

Step 2: Threat Scenario Risk Estimation

1.1: Identify aspects of the

SUT to analyze

1.2: Prepare a sequence

diagram for each aspect

1.3: Identify unwanted

incidents and threat scenarios

Step 1: Threat Scenario Identification

Fig. 1. Overview of the steps in the method.

5

In Step 1, we analyze the SUT to identify unwanted incidents with respect
to a certain asset to be protected, as well as threat scenarios resulting from
manipulations initiated by the threat. This step expects as input a sequence
diagram specification of the SUT and the asset that is to be considered. First,
we identify the aspects of the SUT we are interested in analyzing. We then
annotate each aspect with a label, containing a unique identifier. Second, we
prepare a corresponding sequence diagram to capture risk information for each
aspect label. Each sequence diagram inherits the SUT specification encapsulated
by the underlying aspect label. Additionally, it represents the asset as a lifeline.
The threats that may initiate threat scenarios are also represented as lifelines.
Third, we identify unwanted incidents that have an impact on the asset, and
threat scenarios that may lead to the unwanted incidents. The output of this step
is a set of annotated sequence diagrams that represent manipulated behavior of
the SUT and its context, in terms of threat scenarios and unwanted incidents.

In Step 2, we estimate the likelihood for the occurrence of the threat scenar-
ios and the unwanted incidents in terms of frequencies, the conditional probabil-
ity for threat scenarios leading to other threat scenarios or to unwanted incidents,
as well as the impact of unwanted incidents on the asset. The input for this step
is the output of Step 1. Additionally, this step expects a predefined likelihood
scale in terms of frequencies, and a predefined consequence scale in terms of
impact on the asset. First, we estimate the likelihood for the occurrence of the
threat scenarios and the unwanted incidents using the likelihood scale, as well as
the conditional probability for threat scenarios leading to other threat scenarios
or to unwanted incidents. Second, we estimate the consequence of unwanted
incidents using the consequence scale. The output of this step is the same set
of sequence diagrams given as the input for the step, annotated with likelihood
estimates and consequence estimates as described above. A risk in our method
is represented by an unwanted incident (i.e., a message to the asset lifeline) to-
gether with its likelihood value and its consequence value. A sequence of threat
scenarios may lead up to one or more risks. Additionally, different sequences of
threat scenarios may lead up to the same risk. We refer to a sequence of threat
scenarios leading up to and including a risk as a path.

In Step 3, we prioritize and select paths for testing. The input for this
step is the output of Step 2. Additionally, this step employs the predefined risk
evaluation matrix. First, we prioritize the paths by mapping them to the risk
evaluation matrix based on the likelihood (frequency) value and the consequence
(impact) value of the risk included in the paths. We then select the paths based
on their risk level, i.e., their position in the risk evaluation matrix. Second, we
aggregate similar risks in different paths in order to evaluate whether to select
additional paths for testing. The output of this step is a set of paths selected for
testing.

In Step 4, we define test objectives for each path selected for testing, and
then we specify test cases with respect to the test objectives. A test objective
is a textual specification of a well-defined target of testing, focusing on a single
requirement or a set of related requirements as specified in the specification of

6

the system under test [16]. A test objective merely describes what (logic) needs
to be tested or how the system under test is expected to react to particular
stimuli [16]. The input for this step is the output of Step 1 and the output of
Step 3. Additionally, this step expects predefined suspension criteria. First, we
define one or more test objectives for each path selected for testing. A path may
have one or more test objectives, but one test objective is defined only for one
path. We use one test objective as a basis for specifying one test case. Second,
we specify a test case by first identifying the necessary interaction in the relevant
path. By necessary interaction, we mean the interaction that is necessary in order
to fulfill the test objective. Then, we copy the necessary interaction into a new
sequence diagram. Finally, we annotate the new sequence diagram, with respect
to the test objective, using the UML Testing Profile [16]. We continue designing
test cases in this manner with respect to the predefined suspension criteria. The
output of this step is a set of sequence diagrams representing test cases.

Table 1 shows the notation for annotating sequence diagrams with risk in-
formation. We have mapped some risk information to corresponding UML con-
structs for sequence diagrams. Assets and threats are represented as lifelines.
Inspired by CORAS [12], we distinguish between three types of threats; deliber-
ate threats (the leftmost lifeline in the Notation column), accidental threats (the
center lifeline in the Notation column) and non-human threats (the rightmost
lifeline in the Notation column). Manipulations and unwanted incidents are rep-
resented as messages. We distinguish between three types of manipulations; new
messages in the sequence diagram (a message annotated with a filled triangle),
alteration of existing messages in the sequence diagram (a message annotated
with an unfilled triangle), and deletion of existing messages in the sequence di-
agram (a message annotated with a cross inside a triangle). Aspect labels, like-
lihoods, conditional probabilities and consequences do not have corresponding
UML constructs for sequence diagrams. However, the following constraints ap-
ply: A likelihood can only be attached horizontally across lifelines. A likelihood
assignment represents the likelihood, in terms of frequency, of the interaction
preceding the likelihood assignment. The purpose of messages representing un-
wanted incidents is to denote that an unwanted incident has an impact on an
asset. A consequence can therefore only be attached on messages representing
unwanted incidents. A conditional probability may be attached on any kind of
message except messages representing unwanted incidents. A conditional prob-
ability assignment represents the probability of the occurrence of the message
on which it is assigned, given that the interaction preceding the message has
occurred.

7

Table 1. Notation for annotating sequence diagrams with risk information.

Risk information UML construct Notation

Aspect label N/A ID

Asset Lifeline

Threat Lifeline

Manipulation Message

Unwanted incident Message

Likelihood N/A l

Conditional probability N/A
p

Consequence N/A c

3 Example: Guest Book Application

As mentioned in Sect. 1, our method is a general method for designing test cases
by making use of risk analysis. In this demonstration, we focus on security, and
apply the steps presented in Sect. 2 on a guest book that is available in the
Damn Vulnerable Web Application (DVWA) [4]. One of DVWA’s main goals is
to be an aid for security professionals to test their skills and tools in a legal envi-
ronment [4]. DVWA is programmed in the scripting language PHP and requires
a dedicated MySQL server to function correctly. We are running DVWA version
1.8 on the HTTP server XAMPP version 1.8.2 [26], which provides the required
execution environment.

The SUT in this demonstration is a guest book in DVWA. Figure 2a shows a
screenshot of the guest book user interface before a guest book entry is submit-
ted, while Fig. 2b shows a screenshot of the user interface after the guest book
entry is successfully submitted. Figure 2c represents its behavioral specification
expressed as a sequence diagram. A guest book user may use a web browser in a
client to sign the guest book by typing a name and a message, and then submit
the guest book entry by clicking the “Sign Guestbook” button. If the name input
field is empty, the guest book form replies with a warning message. If the name
input field is not empty, but the message input field is empty, the guest book
form also replies with a warning message. If neither of the input fields are empty,
the guest book form submits the entry to the guest book database. The guest
book database stores the entry and replies with the message true indicating that
the transaction was successful. Having received the message true, the guest book

8

form retrieves all of the guest book entries from the database, including the one
just submitted, and displays them to the client.

C : Client

sd GuestBookInDVWA

signGB(name,msg)

GBForm :

PHPForm

GBDatabase:

MySQL

submit(name,msg)

[msg==””]

[else]

alt

[name==””]

alert(nameEmpty)

alert(messageEmpty)

true

selectAllGBEntries()

allGBEntries

display(allGBEntries)

(c)(b)

(a)

Fig. 2. (a) Screenshot of the guest book before submitting a new entry. (b) Screen-
shot of the guest book after submitting the entry. (c) Specification of the guest book
expressed as a sequence diagram.

4 Step 1: Threat Scenario Identification

The SUT in this demonstration is the guest book explained in Sect. 3. Let us
assume that we are interested in analyzing the guest book with respect to the
following two security assets:

– Integrity of the guest-book’s source code.
– Availability of the guest book entries.

In Sect. 4.1, we identify threat scenarios with respect to the integrity of the
guest-book’s source code, while in Sect. 4.2, we identify threat scenarios with
respect to the availability of the guest book entries.

4.1 Identifying Threat Scenarios with Respect to the Integrity of
the Guest-Book’s Source Code

As shown in Fig. 3a, we have identified three aspects labeled with aspect labels
A1, A2 and A3. For the aspect represented by aspect label A1, we are interested

9

in analyzing the interaction composed of the messages signGB(name,msg) and
alert(nameEmpty), with respect to the integrity of the guest-book’s source code.
The same reasoning applies for A2 and A3. The aspects identified in this example
are small. In practice it may well be that one is interested in analyzing bigger
and more complex aspects. The granularity level of an aspect is determined by
the tester.

C : Client

sd GuestBookInDVWA

signGB(name,msg)

GBForm :

PHPForm

GBDatabase:

MySQL

submit(name,msg)

[msg==””]

[else]

alt

[name==””]

alert(nameEmpty)

alert(messageEmpty)

true

selectAllGBEntries()

allGBEntries

display(allGBEntries)

A1 A2 A3

C:

Client

sd A3

signGB(name,msg)

GBForm:

PHPForm

GBData

base :

MySQL

submit(name,msg)

true

Integrity of GB

Source Code

(a) (b)

Fig. 3. (a) Specification of the guest book annotated with aspect labels. (b) Corre-
sponding sequence diagram of the aspect encapsulated by aspect label A3, which also
shows the security asset integrity of the guest-book’s source code as a lifeline.

Suppose we are only interested in analyzing the aspect encapsulated by aspect
label A3. Figure 3b shows a sequence diagram corresponding to the interaction
encapsulated by aspect label A3. Additionally, it represents the abovementioned
security asset as a lifeline. We now have a sequence diagram we can use as a
starting point to analyze the SUT aspect encapsulated by aspect label A3, with
respect to integrity of the guest-book’s source code. We represent the risk related
information in bold and italic font, in the sequence diagrams, to distinguish
between the specification and the risk related information.

We proceed the analysis by identifying unwanted incidents that may have an
impact on the security asset, and threat scenarios that may lead to the unwanted
incidents. The integrity of the guest-book’s source code may be compromised if,
for example, a malicious script is successfully stored (i.e., injected) in the guest
book database. A malicious script that is injected in the guest book database is

10

executed by the web browser of the guest book user when accessed. This modifies
the content of the HTML page on the user’s web browser, thus compromising
the integrity of the guest-book’s source code. These kinds of script injections
are also known as stored cross-site scripting (stored XSS) [18]. We identify the
occurrence of an XSS script injection on the guest book database as an unwanted
incident (UI1), as represented by the last message in Fig. 4. An XSS script is
successfully injected in the guest book database only if the database successfully
carries out the transaction containing the XSS script. This is why UI1 occurs
after the occurrence of message true on lifeline GBDatabase.

C : Client

sd A3-Path1_UI1

LocalCopyGBForm :

PHPForm

<<create>>

referFormActionToOriginalGBForm

removeOnSubmitRestriction

removeOnClickRestriction

GBForm :

PHPForm

openLocalCopyGB

loadLocalCopyGB

LocalCopyGB

HsignGB(name,XSSscript)

signGB(name,XSSscript)

Integrity of GB

Source Code

GBDatabase:

MySQL

downloadGBFormHtmlFiles

GBFormHtmlFiles

true

(UI1) XSS script

injected in database

Hacker

submit(name,XSSscript)

Fig. 4. Identifying a first path in which unwanted incident UI1 may occur.

UI1 may be caused by different sequences of threat scenarios that manipu-
lates the expected behavior of the guest book. Recall that we refer to a sequence
of threat scenarios leading up to and including a risk as a path. In each of the
sequence diagrams in Figs. 4, 5, and 6, we identify a different path in which UI1
may occur.

11

The first path in which UI1 may occur, i.e., the sequence diagram in Fig. 4,
shows that UI1 may occur if the msg parameter in messages signGB(name,
msg) and submit(name,msg) is replaced with XSSscript, representing an XSS
script. This is an alteration of the guest-book’s expected behavior. We therefore
replace the messages signGB(name,msg) and submit(name,msg) with messages
representing alterations.

These alterations may be initiated by different threats. Let us say we are in-
terested in analyzing this further from a hacker perspective, which is categorized
as a deliberate threat. A hacker may successfully carry out an XSS script injec-
tion by, for example, first downloading the HTML files of the guest book using
the web browser, in order to create a local copy of the guest-book’s user inter-
face (downloadGBFormHtmlFiles, GBFormHtmlFiles and <<create>>). Having
successfully saved a local copy of the guest-book’s HTML files, the hacker re-
moves all restrictions, such as the maximum number of characters allowed in the
name and message input fields when submitting a guest book entry (removeOn-
SubmitRestriction and removeOnClickRestriction). Then, the hacker refers all
actions to the original guest book by making use of its web address (referFor-
mActionToOriginalGBForm). Finally, the hacker loads the local copy of the
guest book in the web browser, writes an XSS script in the message field, and
submits the guest book entry containing the XSS script (openLocalCopyGB,
loadLocalCopyGB, LocalCopyGB and HsignGB(name,XSSscript)). Note that all
of the messages described in this paragraph are annotated as new messages in
the sequence diagram (message with a filled triangle).

The second path in which UI1 may occur, i.e., the sequence diagram in
Fig. 5, also shows that UI1 may be caused by replacing the msg parameter in
messages signGB(name,msg) and submit(name,msg) with XSSscript. However,
we also see that the second path has some threat scenarios different from the
first path, thus representing a different path in which UI1 may occur.

In the second path, we first assume that the hacker gathers information about
the setup of the URLs that are sent from a client to the guest book form. The
hacker exploits this information to prepare a valid URL that contains an XSS
script and that targets the guest book form. The process of preparing URLs in
this way is also known as URL forging. This is commonly carried out by hackers,
or other malicious users, with the objective to force legitimate users of a web
application to execute actions on their behalf. These kinds of attacks are known
as cross-site request forgery attacks [19]. Having successfully forged the URL
containing the XSS script, the hacker sends it to a legitimate user of the guest
book (forgedURLReplacingMsgWithXSSscript). We choose not to model how the
hacker forges the URL and by what means the hacker sends the forged URL.
The assumption is that a hacker successfully forges a URL capable of injecting
an XSS script into the guest book database, and that the URL is successfully
sent to a legitimate user of the guest book.

Having received the URL, the legitimate user executes it via the web browser
of the client (executeForgedURL). Consequently, this results in the execution

12

sd A3-Path2_UI1

Integrity of GB

Source Code

GBDatabase:

MySQL

true

(UI1) XSS script

injected in database

Hacker

submit(name,XSSscript)

executeForgedURL

GBForm :

PHPForm
C : Client

forgedURLReplacing

MsgWithXSSscript

signGB(name,XSSscript)

Fig. 5. Identifying a second path in which UI1 may occur.

of the messages signGB(name,XSSscript), submit(name,XSSscript) and true,
which finally leads to the occurrence of UI1.

In the case of the third path, i.e., the sequence diagram in Fig. 6, we as-
sume that the hacker is able to intercept the HTTPS connection between the
client and the guest book form using a proxy tool by, for example, following
the guidelines explained in [1]. The hacker first configures the tool to auto-
matically inject an XSS script in a certain part of the HTTPS request sent to
the guest book form (<<create>> and configureAutoInjectXSSscriptInMsgIn-
HTTPSRequest). Then, the hacker starts the interception feature of the tool
for intercepting the HTTPS request between the client and the guest book
form (interceptClientHTTPSRequest and interceptHTTPSRequest). The conse-
quence of intercepting the HTTPS requests sent from the client is the redirection
of message signGB(name,msg) to the proxy tool. The redirection of message
signGB(name,msg) is an alteration of the expected behavior of the guest book.
Thus, we replace message signGB(name,msg) with a message representing an
alteration.

Having successfully intercepted the HTTPS request sent from the client, the
proxy tool automatically injects the XSS script into the HTTPS request (injec-
tXSSscriptInMsg). Then, the proxy tool sends the HTTPS request containing
the XSS script to the guest book form (PTsignGB(name,XSSscript)). Conse-
quently, this results in the execution of the messages submit(name,XSSscript)
and true as in the first and the second path, which finally leads to the occurrence
of UI1.

13

injectXSS

scriptInMsg

sd A3-Path3_UI1

<<create>>

interceptClientHTTPSRequest

Integrity of GB

Source Code

GBDatabase:

MySQL

true

(UI1) XSS script

injected in database

Hacker

submit(name,XSSscript)

interceptHTTPSRequest

signGB(name,msg)

GBForm :

PHPForm
C : Client

PT :

ProxyTool

configureAutoInjectXSSscript

InMsgInHTTPSRequest

PTsignGB(name,XSSscript)

Fig. 6. Identifying a third path in which UI1 may occur.

4.2 Identifying Threat Scenarios with Respect to the Availability of
the Guest Book Entries

The identification of threat scenarios, with respect to the availability of the
guest book entries, is carried out in a similar manner as explained in Sect. 4.1.
As shown in Fig. 7a, we have identified one aspect labeled with aspect la-
bel B1. In this case, we are interested in analyzing the interaction composed
of messages signGB(name,msg), submit(name,msg), true, selectAllGBEntries(),
allGBEntries and display(allGBEntries), with respect to the availability of the
guest book entries. Figure 7b shows the sequence diagram corresponding to the
interaction encapsulated by aspect label B1. We use the sequence diagram in
Fig. 7b as a starting point for analyzing the SUT aspect encapsulated by aspect
label B1, with respect to the availability of the guest book entries.

The availability of the guest book entries is compromised if, for example, the
guest book entries in the guest book database are somehow deleted. The guest
book entries may be deleted by executing an SQL query, on the guest book

14

C : Client

sd GuestBookInDVWA

signGB(name,msg)

GBForm :

PHPForm

GBDatabase:

MySQL

submit(name,msg)

[msg==””]

[else]

alt

[name==””]

alert(nameEmpty)

alert(messageEmpty)

true

selectAllGBEntries()

allGBEntries

display(allGBEntries)

B1

C:

Client

sd B1

signGB(name,msg)

GBForm:

PHPForm

GBData

base :

MySQL

submit(name,msg)

true

Availability of

GB Entries

selectAllGBEntries()

allGBEntries

display(allGBEntries)

(a) (b)

Fig. 7. (a) Specification of the guest book annotated with an aspect label. (b) Corre-
sponding sequence diagram of the aspect encapsulated by aspect label B1, which also
shows the security asset availability of the guest book entries as a lifeline.

database, which is constructed for deleting the guest book entries. Such SQL
queries may be executed, for example, by submitting the queries to the database
via the guest book form. This way of executing SQL queries is known as SQL
injections. We identify this as unwanted incident UI2, as shown by message (UI2)
GB entries deleted due to SQL injection in Fig. 8.

An SQL injection may be caused, from a hacker perspective, based on a
similar path as the one presented in Fig. 4. The difference between the path
in Fig. 4 and the path in Fig. 8 is that the hacker initiates an SQL injec-
tion (HSignGB(name,SQLinjection)), and that the msg parameter in messages
signGB(name, msg) and submit(name,msg) in Fig. 8 is replaced with SQLin-
jection, representing an SQL query constructed for deleting guest book entries.
Additionally, we see from Fig. 8 that the occurrence of unwanted incident UI2
leads to some additional manipulations of the expected behavior of the guest
book.

Given that unwanted incident UI2 occurs, the guest book database no longer
contains any guest book entries. However, having requested all guest book en-
tries from the database (selectAllGBEntries()), the guest book form expects
guest book entries. Naturally, the database does not return any guest book en-
tries because there are none (noGBEntries), which in turn leads the guest book
form not to display any guest book entries (display(noGBEntries)). These are al-

15

C : Client

sd B1-Path1_UI2

LocalCopyGBForm :

PHPForm

<<create>>

referFormActionToOriginalGBForm

removeOnSubmitRestriction

removeOnClickRestriction

GBForm :

PHPForm

openLocalCopyGB

loadLocalCopyGB

LocalCopyGB

HsignGB(name,SQLinjection)

signGB(name,SQLinjection)

Availability of

GB Entries

GBDatabase:

MySQL

downloadGBFormHtmlFiles

GBFormHtmlFiles

true

(UI2) GB entries deleted

due to SQL injection

Hacker

submit(name,SQLinjection)

selectAllGBEntries()

noGBEntries

display(noGBEntries)

Fig. 8. Identifying a first path in which UI2 may occur.

terations of the expected behavior of the guest book, as a result of the occurrence
of UI2, and are therefore shown as messages representing alterations.

A second example of an unwanted incident, that compromises the availabil-
ity of the guest book entries, is the deletion of the guest book entries before it
reaches the client expecting them. This may be achieved by, for example, first
intercepting the HTTPS response transmitted from the guest book form, and
then deleting the guest book entries situated inside the captured HTTPS re-
sponse. We identify this as unwanted incident UI3, as represented by message
(UI3) GB entries deleted by intercepting HTTPS response in Fig. 9.

Similar to the third path in which UI1 occurs, we assume that a hacker uses a
proxy tool for intercepting the HTTPS connection between the guest book form
and the client. The hacker first configures the tool for automatically deleting

16

deleteAllGBEntries

sd B1-Path1_UI3

<<create>>

interceptGBForm

HTTPSResponse

Availability of

GB Entries

GBDatabase:

MySQL

(UI3) GB entries deleted by intercepting HTTPS response

Hacker

interceptHTTPSResponse

signGB(name,msg)

GBForm :

PHPForm
C : Client

PT :

ProxyTool

configureAutoDelete

GBEntriesInHTTPSResponse

submit(name,msg)

true

selectAllGBEntries()

allGBEntries

display(allGBEntries)

PTdisplay(noGBEntries)

Fig. 9. Identifying a first path in which UI3 may occur.

the guest book entries situated inside the HTTPS responses (<<create>> and
configureAutoDeleteGBEntriesInHTTPSResponse). Then, the hacker starts the
interception feature of the tool for intercepting the HTTPS response between
the guest book form and the client (interceptGBFormHTTPSResponse and in-
terceptHTTPSResponse). The consequence of intercepting the HTTPS responses
sent from the guest book form is the redirection of message display(allGBEntries)
to the proxy tool. The redirection of message display(allGBEntries) is an alter-
ation of the expected behavior of the guest book. Thus, we replace message
display(allGBEntries) with a message representing an alteration.

Having successfully intercepted the HTTPS response from the guest book
form, the proxy tool automatically deletes all guest book entries situated in
the HTTPS response (deleteAllGBEntries). This leads to the occurrence of un-
wanted incident UI3. Finally, the proxy tool sends the altered HTTPS response
containing no guest book entries to the client (PTdisplay(noGBEntries)).

17

5 Step 2: Threat Scenario Risk Estimation

Table 2 shows the likelihood scale that we assume has been established during
preparation of the risk analysis. The likelihood scale is given in terms of frequency
intervals.

Table 2. Likelihood scale.

Likelihood Description

Rare [0, 10>:1y Zero to less than ten times per year
Unlikely [10, 50>:1y Ten to less than fifty times per year
Possible [50, 150>:1y Fifty to less than one hundred and fifty times per year
Likely [150, 300>:1y One hundred and fifty to less than three hundred times

per year
Certain [300, ∞>:1y Three hundred times or more per year

In practice, it is common to use one likelihood scale when estimating the
likelihood for the occurrence of threat scenarios and unwanted incidents. It is
also possible to use one consequence scale, when estimating the consequence
unwanted incidents have on certain assets. However, this may be difficult and
impractical because the consequence unwanted incidents have on different assets
may be difficult to measure by the same means. As mentioned in Sect. 4, we
consider two different assets in this demonstration, namely the integrity of the
guest-book’s source code and the availability of the guest book entries.

Table 3 shows the consequence scale for security asset integrity of the guest-
book’s source code. The consequence scale in Table 3 is given in terms of impact
on the integrity of certain categories of the guest-book’s source code. For ex-
ample, an unwanted incident has a catastrophic impact on the security asset
if it compromises the integrity of the guest-book’s source code that carries out
database transactions. Similar interpretations apply for the other consequences
in Table 3. Table 4, on the other hand, shows the consequence scale for security
asset availability of the guest book entries. The consequence scale in Table 4 is
given in terms of impact on the availability of the guest book entries. For ex-
ample, an unwanted incident has a catastrophic impact on the security asset if
it makes the guest book entries unavailable for one week or more. Similar inter-
pretations apply for the other consequences in Table 4. We assume that these
consequence scales have been established during preparation of the risk analysis.

In Sects. 5.1 and 5.2, we make use of Table 2 for estimating the likelihood for
the occurrence of threat scenarios and unwanted incidents. When estimating the
consequence unwanted incidents have on the security assets, however, we make
use of the consequence scale addressing the asset under consideration. That is,
in Sect. 5.1 we use Table 3 and in Sect. 5.2 we use Table 4.

18

Table 3. Consequence scale for security asset integrity of the guest-book’s source code.

Consequence Description

Insignificant The integrity of the source code that generates the aesthetics is
compromised

Minor The integrity of the source code that retrieves third party ads is
compromised

Moderate The integrity of the source code that generates the user interface is
compromised

Major The integrity of the source code that manages sessions and cookies is
compromised

Catastrophic The integrity of the source code that carries out database transactions
is compromised

Table 4. Consequence scale for security asset availability of the guest book entries.

Consequence Description

Insignificant Guest book entries are unavailable in range [0, 1 minute>
Minor Guest book entries are unavailable in range [1 minute, 1 hour>
Moderate Guest book entries are unavailable in range [1 hour, 1 day>
Major Guest book entries are unavailable in range [1 day, 1 week>
Catastrophic Guest book entries are unavailable in range [1 week, ∞>

5.1 Estimating Risks Posed on the Integrity of the Guest-book’s
Source Code

Figure 10 shows likelihood estimates for the first path in which unwanted in-
cident UI1 occurs, as well as a consequence estimate for UI1. The tester may
estimate likelihood values and consequence values based on expert judgment,
statistical data, a combination of both, etc. Let us say we have acquired informa-
tion indicating that hackers most likely prepare injection attacks in the manner
described by the interaction starting with message downloadGBFormHtmlFiles,
and ending with message LocalCopyGB in Fig. 10. For this reason, we choose to
assign likelihood Likely on this interaction. Note that Likely corresponds to the
frequency interval [150, 300>:1y (see Table 2).

XSS script injection attacks are less likely to be initiated by hackers com-
pared to other kinds of injection attacks they initiate (such as SQL-injection
attacks) [22]. For this reason, we choose to assign a probability 0.8 on message
HsignGB(name,XSSscript), indicating that it will occur with probability 0.8
given that the messages preceding it has occurred. This probability assignment
leads to a different frequency interval for the interaction starting with message
downloadGBFormHtmlFiles and ending with messageHsignGB(name,XSSscript).
The frequency interval for the aforementioned interaction is calculated by mul-
tiplying [150, 300>:1y with 0.8, which results in the frequency interval [120,
240>:1y. This frequency interval is in turn used to calculate the subsequent

19

C : Client

sd A3-Path1_UI1

LocalCopyGBForm :

PHPForm

<<create>>

referFormActionToOriginalGBForm

removeOnSubmitRestriction

removeOnClickRestriction

GBForm :

PHPForm

openLocalCopyGB

loadLocalCopyGB

LocalCopyGB

HsignGB(name,XSSscript)

signGB(name,XSSscript)

Integrity of GB

Source Code

GBDatabase:

MySQL

downloadGBFormHtmlFiles

Likely

GBFormHtmlFiles

0.8

true

(UI1) XSS script

injected in database

0.6

Moderate

Hacker

submit(name,XSSscript)

Possible

1

1

Fig. 10. Estimating the likelihood of the first path in which unwanted incident UI1
occurs, as well as the consequence of UI1.

frequency interval, in the path, in a similar manner. This procedure is carried
out until the frequency interval for the whole path is calculated. The frequency
interval for the whole path is then mapped to the likelihood scale in Table 2
in order to deduce a likelihood value. The deduced likelihood value represents
the likelihood value for the whole path, and thereby the likelihood value for the
unwanted incident included in the path.

We proceed the estimation by identifying conditional probabilities for the
remaining messages. We assume message signGB(name,XSSscript) will occur
with probability 1 since the hacker has removed all restrictions on the local
copy of the guest book form. The guest book form is programmed in the script-
ing language PHP. Although PHP makes use of what is known as “prepared
statements” to validate input directed to the database, bypassing the validation
is still possible if the prepared statements are not handled correctly [23]. These
kinds of bypasses require insight into the structure of the source code and are

20

therefore harder to exploit. For this reason, we choose to assign a probability 0.6
on message submit(name,XSSscript). We assume message true will occur with
probability 1, as there is nothing that prevents the database from executing the
query containing the XSS script if it has made all its way into the database.

We calculate the frequency interval for the whole path by multiplying [150,
300>:1y with the product of the abovementioned conditional probabilities. That
is, we multiply [150, 300>:1y with 0.48, which results in the frequency inter-
val [72, 144>:1y. By mapping this frequency interval to the likelihood scale in
Table 2, we see that the frequency interval is within the boundaries of likeli-
hood Possible. This means that the path represented by the sequence diagram
in Fig. 10, and thereby unwanted incident UI1, may occur with likelihood Possi-
ble. Finally, an XSS script injected in the database has the objective to execute a
script on the end user’s web browser for different purposes. This means that the
injected XSS script modifies the source code that generates the user interface.
Thus, UI1 has an impact on the security asset with a moderate consequence.

Figure 11 shows likelihood estimates for the second path in which UI1 occurs.
As explained in Sect. 4.1, the second path shows an example of how the hacker
may inject an XSS script in the guest book database by performing a cross-site
request forgery attack. The detection of whether a web application is vulnera-
ble to cross-site request forgery attacks is easy [19], and thus an attack hackers
most likely will try to exploit. Based on this, we assign likelihood Likely on the
interaction composed of message forgedURLReplacingMsgWithXSSscript. How-
ever, the increased awareness of cross-site request forgery attacks has, in turn,
brought about an increased usage of countermeasures preventing successful ex-
ecution of such attacks [21]. For this reason, we choose to assign a probability
0.5 on message executeForgedURL.

Given that the forged URL is successfully executed, then there is nothing
preventing the client in submitting the guest book entry containing the XSS
script (signGB(name,XSSscript)). The probability for the occurrence of message
signGB(name,XSSscript) is therefore 1. The probability for the occurrence of
messages submit(name,XSSscript) and true is 0.6 and 1, respectively, for the
same reason as given for the first path. The likelihood value for the second path
is calculated in a similar way as explained for the first path. That is, we multiply
the frequency interval [150, 300>:1y (likelihood Likely) with the product of
the conditional probabilities assigned on the messages succeeding the likelihood
assignment in the path, which in this case is 0.3. This results in the frequency
interval [45, 90>:1y. By mapping this frequency interval to the likelihood scale in
Table 2, we see that it overlaps Unlikely and Possible. However, we also see that
the frequency interval is skewed more towards Possible than Unlikely. For this
reason, we choose to assign Possible on the second path, which means that UI1
may occur with likelihood Possible in the second path. If a frequency interval
overlaps several likelihood values, as it does for the second path, then the tester
has to decide on which likelihood value to assign. In this demonstration, we
decide to assign a likelihood value by analyzing the skewness of the frequency

21

sd A3-Path2_UI1

Integrity of GB

Source Code

GBDatabase:

MySQL

true

(UI1) XSS script

injected in database

Hacker

submit(name,XSSscript)

executeForgedURL

GBForm :

PHPForm
C : Client

forgedURLReplacing

MsgWithXSSscript

signGB(name,XSSscript)

Moderate

0.6

Likely

0.5

Possible

1

1

Fig. 11. Estimating the likelihood of the second path in which UI1 occurs.

interval. Such decisions may vary from situation to situation and has to be made
and justified by the tester.

Figure 12 shows likelihood estimates for the third path in which UI1 occurs.
Intercepting HTTPS connections is possible and in some situations easy to carry
out [1]. However, the exploitability of vulnerabilities in encrypted communication
protocols, such as HTTPS, is difficult on a large scale [20]. For this reason, we
choose to assign likelihood Possible on the interaction starting with message
<<create>> and ending with message interceptHTTPSRequest.

Let us, for the sake of the example, assume that the guest book is making
use of proper countermeasures, e.g., as presented in [17], in order to signifi-
cantly mitigate the possibility for successful HTTPS interceptions. Assuming
this, we choose to assign a probability 0.2 on message signGB(name,msg). If
the HTTPS connection between the client and the guest book form is success-
fully intercepted, however, the proxy tool injects the msg parameter of mes-
sage signGB(name, msg) with an XSS script (injectXSSscriptInMsg). Then, the
proxy tool sends the guest book entry containing the XSS script to the guest
book form (PTsignGB(name,XSSscript)). The probability for the occurrence of
messages injectXSSscriptInMsg and PTsignGB(name,XSSscript) is therefore 1.
The probability for the occurrence of messages submit(name,XSSscript) and true
is 0.6 and 1, respectively, for the same reasons as given for the first path.

We calculate the likelihood value for the third path as explained for the
first and the second path. That is, we multiply frequency interval [50, 150>:1y
(likelihood Possible) with the product of the conditional probabilities assigned
on the messages succeeding the likelihood assignment in the path, which in this

22

injectXSS

scriptInMsg

sd A3-Path3_UI1

<<create>>

interceptClientHTTPSRequest

Integrity of GB

Source Code

GBDatabase:

MySQL

true

(UI1) XSS script

injected in database

Hacker

submit(name,XSSscript)

interceptHTTPSRequest

signGB(name,msg)

GBForm :

PHPForm
C : Client

PT :

ProxyTool

configureAutoInjectXSSscript

InMsgInHTTPSRequest

PTsignGB(name,XSSscript)

Possible

0.2

0.6

Moderate

Unlikely

1

1

1

Fig. 12. Estimating the likelihood of the third path in which UI1 occurs.

case is 0.12. This results in the frequency interval [6, 18>:1y. We map this
frequency interval to the likelihood scale in Table 2, and see that it is skewed
more towards Unlikely than Rare. Based on this, we choose to assign likelihood
Unlikely on the third path. Hence, UI1 occurs with likelihood Unlikely in the
third path.

5.2 Estimating Risks Posed on the Availability of the Guest Book
Entries

As pointed out in Sect. 4.2, the path in which UI2 occurs (see Fig. 13) is sim-
ilar to the first path in which UI1 occurs (see Fig. 10). In fact, the interaction
starting with message downloadGBFormHtmlFiles and ending with message Lo-
calCopyGB is identical in both paths. As shown in Fig. 10, we assigned likelihood
Likely on the aforementioned interaction. Given that the aforementioned inter-
action is identical in both paths, we also assign likelihood Likely on the same
interaction in the path where UI2 occurs.

Hackers performing injection attacks will most likely carry out SQL-injection
attacks [22]. We therefore choose to assign probability 1 on message HsignGB(

23

selectAllGBEntries()

C : Client

sd B1-Path1_UI2

LocalCopyGBForm :

PHPForm

<<create>>

referFormActionToOriginalGBForm

removeOnSubmitRestriction

removeOnClickRestriction

GBForm :

PHPForm

openLocalCopyGB

loadLocalCopyGB

LocalCopyGB

HsignGB(name,SQLinjection)

signGB(name,SQLinjection)

Availability of

GB Entries

GBDatabase:

MySQL

downloadGBFormHtmlFiles

Likely

GBFormHtmlFiles

1

true

(UI2) GB entries deleted

due to SQL injection

0.6

Catastrophic

Hacker

Possible

submit(name,SQLinjection)
1

1

noGBEntries

display(noGBEntries)

Fig. 13. Estimating the likelihood of the path in which UI2 occurs, as well as the
consequence of UI2.

name, SQLinjection). The probability for the occurrence of messages signGB(
name, SQLinjection), submit(name,SQLinjection) and true is 1, 0.6 and 1,
respectively. The justification for assigning these three probability values is
the same as the justification given for messages signGB(name,XSSscript), sub-
mit(name,XSSscript) and true in the path shown in Fig. 10. Based on these
conditional probabilities and likelihood Likely, we calculate the frequency inter-
val for the whole path, i.e., the frequency interval for the occurrence of UI2, in a
similar manner as explained throughout Sect. 5.1. The frequency interval for the
occurrence of UI2 is [90, 180>:1y, from which we have deduced likelihood Pos-
sible as shown in Fig. 13. Finally, the occurrence of UI2 implies that the guest
book entries in the database are deleted. Since the guest book in this demon-

24

stration does not have any mechanisms for creating a backup of the guest book
entries, the deleted guest book entries will most likely never be available again.
Thus, UI2 has an impact on the security asset with a catastrophic consequence.

Figure 14 shows likelihood estimates for the path in which UI3 occurs, as
well as a consequence estimate for UI3. Similar to the third path in which UI1
occurs (see Fig. 12), we assume that a hacker uses a proxy tool for intercepting
the HTTPS connection between the client and the guest book form. Based on the
same justification given for the third path where UI1 occurs, we assign likelihood
Possible on the interaction starting with message <<create>> and ending with
message interceptHTTPSResponse.

deleteAllGBEntries

sd B1-Path1_UI3

<<create>>

interceptGBForm

HTTPSResponse

Availability of

GB Entries

GBDatabase:

MySQL

(UI3) GB entries deleted by intercepting HTTPS response

Hacker

interceptHTTPSResponse

signGB(name,msg)

GBForm :

PHPForm
C : Client

PT :

ProxyTool

configureAutoDelete

GBEntriesInHTTPSResponse

submit(name,msg)

true

selectAllGBEntries()

allGBEntries

display(allGBEntries)

PTdisplay(noGBEntries)

Possible

0.2

Unlikely

Moderate

1

Fig. 14. Estimating the likelihood of the path leading to unwanted incident UI3, as
well as the consequence of UI3.

Given that the guest book makes use of proper countermeasures against
HTTPS interceptions, we assign probability 0.2 on message display(allGBEntries).
If, however, the HTTPS response gets intercepted, then there is nothing pre-
venting the proxy tool from deleting the guest book entries situated inside the
HTTPS response. Thus, we assign probability 1 on message deleteAllGBEntries.
We calculate likelihood values as explained throughout Sect. 5.1 and see from
Fig. 14 that UI3 occurs with likelihood Unlikely. The occurrence of UI3 im-
plies that the guest book entries are deleted at an HTTPS response level. This

25

means that the guest book entries are only deleted while in transit from the
guest book to the client. Since the purpose of the guest book is to read and
submit guest book entries, it is easily noticeable if the guest book constantly
produces responses containing no guest book entries. Based on this observation,
and because the guest book in this demonstration is rather simple and easy to
administrate, one should be able to apply a fix within a day. Thus, UI3 has an
impact on the security asset with a moderate consequence.

6 Step 3: Threat Scenario Prioritization

Figure 15 shows the risk evaluation matrix established during preparation of the
risk analysis. The risk evaluation matrix is composed of the likelihood scale in
Table 2 and the consequence scale in Tables 3 and 4. In traditional risk analysis,
risk evaluation matrices are designed to group the various combinations of likeli-
hood and consequence into three to five risk levels (e.g., low, medium and high).
Such risk levels cover a wide spectrum of likelihood and consequence combina-
tions and are typically used as a basis for deciding whether to accept, monitor
or treat risks. However, in the setting of risk-driven testing, one is concerned
about prioritizing risks to test certain aspects of the SUT exposed to risks. A
higher granularity with respect to risk levels may therefore be more practical.
The risk evaluation matrix in Fig. 15 represents nine risk levels, horizontally
on the matrix. The tester defines the interpretation of the risk levels. In this
demonstration we let numerical values represent risk levels; [1] represents the
lowest risk level and [9] represents the highest risk level.

In Step 1, we identified five different paths. Three of these paths, i.e., the
paths shown in Figs. 4, 5 and 6 includes UI1, which is a risk posed on the integrity
of the guest-book’s source code. Let us name these paths UI1P1, UI1P2 and
UI1P3, respectively. Similarly, let us name the path including UI2 (see Fig. 8)
as UI2P1, and the path including UI3 (see Fig. 9) as UI3P1. UI2 and UI3 are
risks posed on the availability of the guest book entries.

In Step 2, we estimated that UI1P1 and UI1P2 occur with likelihood Pos-
sible, and that UI1P3 occurs with likelihood Unlikely. The risk caused by these
paths, i.e., UI1, was estimated to have a moderate consequence on the integrity
of the guest-book’s source code. The likelihood for the occurrence of UI2P1
was estimated to Possible, while the likelihood for the occurrence of UI3P1 was
estimated to Unlikely. Moreover, UI2 and UI3 were estimated to have a catas-
trophic and moderate consequence, respectively, on the availability of the guest
book entries.

We map each path to the risk evaluation matrix with respect to the likelihood
value and the consequence value of the risk included in the path. The result is
shown in the risk evaluation matrix in Fig. 15. Let us say we are only interested
in testing the paths that have a risk level [5] or higher. Based on this, we see
from the risk evaluation matrix in Fig. 15 that we need to select UI1P1, UI1P2
and UI2P1 for testing. However, this selection excludes UI1P3, which is the
third path that leads to UI1, and which is only one risk level less than the other

26

[9]

[8]

[7]

[6]

[5]

[4]

[3]

[2]

[1]

C
ertain

LikelyP
ossibleU

nlikely
R
are

C
at
as
tro
ph
ic

M
aj
or

M
od
er
at
e

M
in
or

In
si
gn
ifi
ca
nt

UI1P1

UI1P2

UI1P3

UI2P1

UI3P1

Fig. 15. Risk evaluation matrix.

two paths leading to UI1. Such clear cut selections are often difficult to justify
because it is not obvious why some paths are selected for testing, while others
are excluded. One way to come up with supporting evidence for confirming or
refuting such clear cut selections, is to aggregate the likelihood values in the
paths leading to the same risk.

UI1P1, UI1P2 and UI1P3 are separate paths. By separate paths, we mean
paths that do not overlap in content such that no possible instance of one path
can be an instance of the other. This also means that one path cannot be a
special case of the other. We may therefore identify an aggregated likelihood
value by summing up the frequency interval in each path. The frequency inter-
val in UI1P1, UI1P2 and UI1P3 is [72, 144>:1y, [45, 90>:1y and [6, 18>:1y,
respectively. We sum up these frequency intervals and get the new frequency
interval [123, 252>:1y. We map this frequency interval to the likelihood scale in
Table 2 and see that it is skewed more towards Likely than Possible. This means
that the aggregated likelihood value for the paths UI1P1, UI1P2 and UI1P3 is
Likely. However, we see from the frequency interval for UI1P3 that it has an
insignificant contribution for the aggregated likelihood value. In fact, we still get
Likely as the aggregated likelihood value if we exclude the frequency interval for
UI1P3 from the aggregation. Because of this, we choose not to select UI1P3 for
testing. We select UI1P1, UI1P2 and UI2P1 for testing.

27

7 Step 4: Threat Scenario Test Case Design

Suppose, for the sake of the example, the following suspension criteria is given:
“Define no more than two test objectives per path selected for testing, and
specify a test case with respect to each test objective you define”. The paths we
selected for testing in Step 3 are UI1P1, UI1P2 and UI2P1. The following lists
one test objective for path UI1P1, one test objective for path UI1P2, and two
test objectives for path UI2P1.

– Test objective 1 for path UI1P1 : Verify whether the guest book database
(lifeline GBDatabase) stores an XSS script, by submitting an XSS script via
the client (lifeline C).

– Test objective 1 for path UI1P2 : Verify whether the guest book database
(lifeline GBDatabase) stores an XSS script by executing a forged URL, con-
taining an XSS script, on the client (lifeline C).

– Test objective 1 for path UI2P1 : Verify whether the guest book form
(lifeline GBForm) displays no guest book entries by submitting an SQL
query, via the client (lifeline C), that is constructed for deleting the guest
book entries.

– Test objective 2 for path UI2P1 : Verify whether the guest book database
(lifeline GBDatabase) deletes guest book entries by submitting an SQL
query, via the client (lifeline C), that is constructed for deleting the guest
book entries.

We proceed by specifying test cases with respect to the test objectives. First,
for each test objective, we identify the necessary interaction in the relevant
path. By necessary interaction, we mean the interaction that is necessary in
order to fulfill the test objective. Then, we copy the necessary interaction into
a new sequence diagram. Finally, we annotate the new sequence diagrams, with
respect to the test objectives, using the UML Testing Profile [16]. Because the
tester defines the test objectives, it is the tester who knows which interactions
are necessary to fulfill the test objectives. In test objective 1 for path UI1P1,
we are interested in testing whether the guest book database stores an XSS
script injected via the client. That is, we are interested in testing the interaction
consisting of messages signGB(name,XSSscript), submit(name,XSSscript) and
true in path UI1P1 (Fig. 4). Thus, we copy this interaction from path UI1P1
into a new sequence diagram. The result is shown in Fig. 16a. Note that we choose
not to copy other messages from path UI1P1 because they are not needed for
fulfilling the test objective.

In test objective 1 for path UI1P2 (Fig. 5), we are interested in testing the
interaction consisting of messages executeForgedURL, signGB(name,XSSscript),
submit(name,XSSscript) and true. In test objective 1 for path UI2P1 (Fig. 8),
we are interested in testing the interaction consisting of messages signGB(name,
SQLinjection) and display(noGBEntries). Finally, in test objective 2 for path
UI2P1 (Fig. 8), we are interested in testing the interaction consisting of mes-
sages signGB(name, SQLinjection), submit(name,SQLinjection) and true. We

28

C : Client

sd TestObjective1_UI2P1

GBForm :

PHPForm

signGB(name,SQLinjection)

display(noGBEntries)

C : Client

sd TestObjective2_UI2P1

GBForm :

PHPForm

signGB(name,SQLinjection)

GBDatabase:

MySQL

true

submit(name,SQLinjection)

C : Client

sd TestObjective1_UI1P2

GBForm :

PHPForm

signGB(name,XSSscript)

GBDatabase:

MySQL

true

submit(name,XSSscript)

C : Client

sd TestObjective1_UI1P1

GBForm :

PHPForm

signGB(name,XSSscript)

GBDatabase:

MySQL

true

submit(name,XSSscript)

executeForgedURL

(b)

(a) (c)

(d)

Fig. 16. (a) The interaction necessary to fulfill test objective 1 for path UI1P1. (b)
The interaction necessary to fulfill test objective 1 for path UI1P2. (c) The interaction
necessary to fulfill test objective 1 for path UI2P1. (d) The interaction necessary to
fulfill test objective 2 for path UI2P1.

follow the same procedure as described above and model sequence diagrams
containing the interactions necessary for fulfilling each of the test objectives in
this paragraph. Figures 16b, 16c, and 16d show the interactions necessary for
fulfilling test objective 1 for path UI1P2, test objective 1 for path UI2P1, and
test objective 2 for path UI2P1, respectively.

We specify test cases by annotating the sequence diagrams in Fig. 16 using the
stereotypes given in the UML Testing Profile [16]: The stereotype <<SUT>> is
applied to one or more properties of a classifier to specify that they constitute the
system under test. The stereotype <<TestComponent>> is used to represent
a component that is a part of the test environment which communicates with
the SUT or other test components. Test components are used in test cases for
stimulating the SUT with test data and for evaluating whether the responses of
the SUT adhere with the expected ones. The stereotype <<ValidationAction>>
is used on execution specifications, on lifelines representing test components, to
set verdicts in test cases. The UML Testing Profile defines the following five
verdicts: None (the test case has not been executed yet), pass (the SUT adheres
to the expectations), inconclusive (the evaluation cannot be evaluated to be

29

pass or fail), fail (the SUT differs from the expectation) and error (an error
has occurred within the testing environment). The number of verdicts may be
extended, if required.

The system under test in Fig. 16a is the guest book database (lifeline GB-
Database), because we are testing whether the guest book database stores an
XSS script submitted via the client. The system under test in Figs. 16b and 16d
is also the guest book database. In the former, we again test whether the guest
book database stores an XSS script, but this time we execute a forged URL
containing an XSS script via the client. In the latter, we test whether the guest
book database deletes the guest book entries by submitting an SQL query via
the client. The system under test in Fig. 16c is the guest book form (lifeline GB-
Form), because we are testing whether the guest book form displays no guest
book entries as a result of executing an SQL injection. Based on this, we an-
notate lifeline GBDatabase in Figs. 16a, 16b and 16d, and lifeline GBForm in
Fig. 16c with stereotype <<SUT>>.

The client (lifeline C) and the guest book form (lifeline GBForm) in Figs. 16a,
16b and 16d stimulate the system under test, i.e., the guest book database, with
test data in terms of XSSscript, XSSscript, and SQLinjection, respectively. Thus,
we annotate lifelines C and GBForm in Figs. 16a, 16b and 16d with stereotype
<<TestComponent>>. In Fig. 16c, however, it is only the client that stimulates
the system under test, which in this case is the guest book form. Thus, we an-
notate the client (lifeline C) in Fig. 16c with stereotype <<TestComponent>>.

As mentioned above, test components are also used for evaluating whether the
responses of the SUT adhere with the expected ones. We see from Figs. 16a, 16b
and 16d that the test components receiving the responses of the SUT is the
guest book form. Thus, we add an execution specification on lifeline GBForm in
Figs. 16a, 16b and 16d, annotated with stereotype <<ValidationAction>> to
set the verdict for the test case. Similarly, we add an execution specification on
lifeline C in Fig. 16c, annotated with stereotype <<ValidationAction>>. The
verdict is set to fail meaning that the SUT differs from the expected behavior.
For example, if XSS script injection is successfully carried out then the SUT
differs from the expected behavior, which should be to prevent XSS injections.

The outcome of these annotations is one test case, per test objective, as shown
in Figs. 17, 18, 19 and 20. Figure 17 represents a test case specified with respect
to test objective 1 for path UI1P1. Figure 18 represents a test case specified
with respect to test objective 1 for path UI1P2. Figure 19 represents a test case
specified with respect to test objective 1 for path UI2P1. Figure 20 represents a
test case specified with respect to test objective 2 for path UI2P1.

30

<<TestComponent>>

C : Client

sd TestCase_TestObjective1_UI1P1:Verdict

<<TestComponent>>

GBForm : PHPForm

signGB(name,XSSscript)

<<SUT>>

GBDatabase: MySQL

true

submit(name,XSSscript)

<<validationAction>>

fail

Fig. 17. Test case specified with respect to test objective 1 for path UI1P1.

<<TestComponent>>

C : Client

sd TestCase_TestObjective1_UI1P2:Verdict

<<TestComponent>>

GBForm : PHPForm

signGB(name,XSSscript)

<<SUT>>

GBDatabase: MySQL

true

submit(name,XSSscript)

<<validationAction>>

fail

executeForgedURL

Fig. 18. Test case specified with respect to test objective 1 for path UI1P2.

<<TestComponent>>

C : Client

sd TestCase_TestObjective1_UI2P1:Verdict

<<SUT>>

GBForm : PHPForm

signGB(name,SQLinjection)

<<validationAction>>

fail

display(noGBEntries)

Fig. 19. Test case specified with respect to test objective 1 for path UI2P1.

31

<<TestComponent>>

C : Client

sd TestCase_TestObjective2_UI2P1:Verdict

<<TestComponent>>

GBForm : PHPForm

signGB(name,SQLinjection)

<<SUT>>

GBDatabase: MySQL

true

submit(name,SQLinjection)

<<validationAction>>

fail

Fig. 20. Test case specified with respect to test objective 2 for path UI2P1.

8 Related Work

Although risk analysis, within risk-driven testing, is traditionally used as a basis
for planning the test process, few approaches also provide guidelines for deriving
test cases as part of the approach. These approaches explain the process of iden-
tifying, estimating and prioritizing risks either partly or by briefly mentioning
it. In [2, 11], risks are identified by making use of fault tree analysis, however,
there is no explanation on how to estimate and prioritize the risks. In [7], the
authors refer to fault tree analysis for identifying risks. There is no explanation
on how to estimate and prioritize risks. In [13], the authors refer to a risk analysis
approach published by NIST [25] for identifying security risks. However, there
is no further explanation on how to identify and estimate the security risks,
yet, security risks are prioritized with respect to a predefined risk assessment
matrix. In [27], security risks are identified solely by matching attack patterns
on the public interfaces of a SUT. The estimation and prioritization of risks are
only based on a complexity factor for specific operations in the SUT. In prac-
tice, other factors may be considered, e.g., vulnerability statistics and incident
reports. In [3], test cases are prioritized by calculating a risk exposure for test
cases, with the objective to quantitatively measure the quality of test cases. Risk
estimation is carried out by multiplying the probability of a fault occurring with
the costs related to the fault. However, there is no explanation about how risks
are identified. In [24], risks are estimated by multiplying the probability that
an entity contains fault with the associated damage. Similar to [3], this value
is used to prioritize test cases, and there is no explanation about how risks are
identified.

All of these approaches use separate modeling languages or techniques for
representing the risk analysis and the test cases: In [2, 7, 11], fault trees are used
to identify risks, while test cases are derived from state machine diagrams with
respect to information provided by the fault trees. In [13], high level risks are
detailed by making use of threat modeling. Misuse cases are developed with
respect to the threat models, which are then used as a basis for deriving test
cases represented textually. In [27], risk models are generated automatically by

32

making use of a vulnerability knowledge database. The risk models are used as
input for generating misuse cases, which are also identified in similar manner.
Misuse cases are used as a basis for deriving test cases. In [3, 24], a test case is
a path in an activity diagram, starting from the activity diagram’s initial node
and ending at its final node. In [3], risks are estimated using tables, while in [24],
risk information is annotated on the activities of an activity diagram, only in
terms of probability, damage and their product.

9 Conclusion

In order to bridge the gap between high level risks and low level test cases, risk-
driven testing approaches must provide testers with a systematic method for
designing test cases by making use of the risk analysis. Our method is specifically
designed to meet this goal.

The method starts after test planning, but before test design, according to
the testing process presented by ISO/IEC/IEEE 29119 [10]. It brings risk anal-
ysis to the work bench of testers because it employs UML sequence diagrams as
the modeling language, conservatively extended with our own notation for rep-
resenting risk information. Sequence diagrams are widely recognized and used
within the testing community and it is among the top three modeling languages
applied within the model based testing community [14]. Risk identification, es-
timation and prioritization in our method are in line with what is referred to as
risk assessment in ISO 31000 [8]. Finally, our approach makes use of the UML
Testing Profile [16] to specify test cases in sequence diagrams. This means that
our method is based on widely accepted standards and languages, thus facilitat-
ing adoption among the software testing community.

Acknowledgments. This work has been conducted as a part of the DIAMONDS
project (201579/S10) funded by the Research Council of Norway, the NESSoS
network of excellence (256980) and the RASEN project (316853) funded by the
European Commission within the 7th Framework Programme, as well as the
CONCERTO project funded by the ARTEMIS Joint Undertaking (333053) and
the Research Council of Norway (232059).

References

1. F. Callegati, W. Cerroni, and M. Ramilli. Man-in-the-Middle Attack to the HTTPS
Protocol. IEEE Security & Privacy, 7(1):78–81, 2009.

2. R. Casado, J. Tuya, and M. Younas. Testing Long-lived Web Services Transactions
Using a Risk-based Approach. In Proc. 10th International Conference on Quality
Software (QSIC’10), pages 337–340. IEEE Computer Society, 2010.

3. Y. Chen, R.L. Probert, and D.P. Sims. Specification-based Regression Test Se-
lection with Risk Analysis. In Proc. 2002 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON’02), pages 1–14. IBM Press, 2002.

33

4. Damn Vulnerable Web Application (DVWA). http://www.dvwa.co.uk/. Accessed
August 11, 2013.

5. G. Erdogan, Y. Li, R.K. Runde, F. Seehusen, and K. Stølen. Conceptual Frame-
work for the DIAMONDS Project. Technical Report A22798, SINTEF Information
and Communication Technology, 2012.

6. V. Garousi and J. Zhi. A survey of software testing practices in Canada. Journal
of Systems and Software, 86(5):1354–1376, 2013.

7. M. Gleirscher. Hazard-based Selection of Test Cases. In Proc. 6th International
Workshop on Automation of Software Test (AST’11), pages 64–70. ACM, 2011.

8. International Organization for Standardization. ISO 31000:2009(E), Risk man-
agement – Principles and guidelines, 2009.

9. International Organization for Standardization. ISO/IEC/IEEE 29119-1:2013(E),
Software and system engineering - Software testing - Part 1: Concepts and defini-
tions, 2013.

10. International Organization for Standardization. ISO/IEC/IEEE 29119-2:2013(E),
Software and system engineering - Software testing - Part 2: Test process, 2013.

11. J. Kloos, T. Hussain, and R. Eschbach. Risk-based Testing of Safety-Critical Em-
bedded Systems Driven by Fault Tree Analysis. In Proc. 4th International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW’11),
pages 26–33. IEEE Computer Society, 2011.

12. M.S. Lund, B. Solhaug, and K. Stølen. Model-Driven Risk Analysis: The CORAS
Approach. Springer, 2011.

13. K.K. Murthy, K.R. Thakkar, and S. Laxminarayan. Leveraging Risk Based Testing
in Enterprise Systems Security Validation. In Proc. 1st International Conference on
Emerging Network Intelligence (EMERGING’09), pages 111–116. IEEE Computer
Society, 2009.

14. A.C. Dias Neto, R. Subramanyan, M. Vieira, and G.H. Travassos. A Survey on
Model-based Testing Approaches: A Systematic Review. In Proc. 1st ACM Inter-
national Workshop on Empirical Assessment of Software Engineering Languages
and Technologies (WEASELTech’07), pages 31–36. ACM, 2007.

15. Object Management Group. Unified Modeling Language (UML), superstructure,
version 2.4.1, 2011. OMG Document Number: formal/2011-08-06.

16. Object Management Group. UML Testing Profile (UTP), version 1.2, 2013. OMG
Document Number: formal/2013-04-03.

17. R. Oppliger, R. Hauser, and D. Basin. SSL/TLS session-aware user authentication
- Or how to effectively thwart the man-in-the-middle. Computer Communications,
29(12):2238–2246, 2006.

18. Open Web Application Security Project (OWASP).
https://www.owasp.org/index.php/Cross-site Scripting (XSS). Accessed Septem-
ber 5, 2013.

19. Open Web Application Security Project (OWASP).
https://www.owasp.org/index.php/Top 10 2013-A8-Cross-
Site Request Forgery (CSRF). Accessed December 16, 2013.

20. OWASP Top 10 2013 – A6 – Sensitive Data Exposure.
https://www.owasp.org/index.php/Top 10 2013-A6-Sensitive Data Exposure.
Accessed December 17, 2013.

21. OWASP Top 10 2013 – Release Notes. https://www.owasp.org/index.php/Top 10 2013-
Release Notes. Accessed September 6, 2013.

22. OWASP Top 10 Application Security Risks – 2013.
https://www.owasp.org/index.php/Category:OWASP Top Ten Project. Ac-
cessed September 6, 2013.

34

23. PHP manual. http://php.net/manual/en/pdo.prepared-statements.php. Accessed
September 6, 2013.

24. H. Stallbaum, A. Metzger, and K. Pohl. An Automated Technique for Risk-based
Test Case Generation and Prioritization. In Proc. 3rd International Workshop on
Automation of Software Test (AST’08), pages 67–70. ACM, 2008.

25. G. Stoneburner, A. Goguen, and A. Feringa. Risk Management Guide for Infor-
mation Technology Systems. NIST Special Publication 800-30, National Institute
of Standards and Technology, 2002.

26. XAMPP. http://www.apachefriends.org/en/xampp.html. Accessed August 11,
2013.

27. P. Zech, M. Felderer, and R. Breu. Towards a Model Based Security Testing Ap-
proach of Cloud Computing Environments. In Proc. 6th International Conference
on Software Security and Reliability Companion (SERE-C’12), pages 47–56. IEEE
Computer Society, 2012.

35

Technology for a better society
www.sintef.no

	01
	02
	ge_rst_p1
	04

