
A Pattern-driven and Model-Based Test
Generation Toolchain for Web Vulnerability

Alexandre Vernotte1, Bruno Legeard1,2, and Fabien Peureux1,2

1 Institut FEMTO-ST, UMR CNRS 6174 – Route de Gray, 25030 Besançon, France
{avernott,blegeard,fpeureux}@femto-st.fr

2 Smartesting R&D Center – 2G, Avenue des Montboucons, 25000 Besançon, France,
bruno.legeard@smartesting.com

Abstract. The purpose of this demonstration is to present a tooled
Pattern-driven and Model-based Vulnerability Testing approach (PMVT
for short) to improve the capability of detection of various vulnerability
types such as injections (Cross-Site Scripting, SQL injections, etc.). This
approach relies on generic vulnerability test patterns, which are applied
on a behavioral model of the application under test, in order to generate
vulnerability test cases. Hence, we propose to demonstrate the toolchain
especially regarding XSS and SQLI vulnerabilities. This prototype has
been experimented and validated on real-life Web applications, showing a
strong improvement of detection ability w.r.t. Web application scanners
for these vulnerabilities. This work is partially supported by the FP7
European project RASEN (http://www.rasenproject.eu).

1 Context

Based on the current state of the art on security and on all the security re-
ports like OWASP Top Ten 2013 CWE/SANS 25 and WhiteHat Website Secu-
rity Statistic Report 2013, Web applications are the most popular targets when
speaking of cyber-attacks. The mosaic of technologies used in current Web appli-
cations increases the risk of security breaches. This situation has led to significant
growth in application-level vulnerabilities.

Application-level vulnerability testing is first performed by developers, but
they often lack the sufficient in-depth knowledge in recent vulnerabilities and
related exploits. This kind of tests can also be achieved by companies specialized
in security testing, in penetration testing for instance. But they mainly use
manual approaches, making the dissemination of their techniques very difficult,
and the impact of this knowledge very low. Finally, Web application vulnerability
scanners can be used to automate the detection of vulnerabilities, but since they
often generate many false positive and false negative results, human investigation
is also required [2].

The approach we propose, called Pattern-driven and Model-based Vulner-
ability Testing (PMVT for short) aims to improve the accuracy and precision
of vulnerability testing, by proposing an automated testing approach driven by
vulnerability test patterns composed with a behavioral model of the system under
test (SUT). The next sections respectively introduce the principles of the PMVT
approach and describe the architecture of the toolchain implementing it.



2

2 Principles of the PMVT Approach

The PMVT process, shown in Fig. 1, is composed of the four following activities.

Test

Purposes

Model

Vulnerability 

Test

Patterns

Adaptation

Security Test Engineer

Test Execution

1

2

Automated

Test

Generation

3

4

Vulnerability 

Tests

SUT

Functionnal

Specification

Legend :

Fig. 1. Pattern-driven and Model-based Vulnerability Test Process

¬ The Test Purpose design activity. It consists of formalizing a test
procedure from vulnerability test patterns (vTP) that the generated test cases
have to cover. Each procedure, targeting a dedicated vulnerability, is given by a
test purposes, which is a high-level expression. It formalizes a testing objective
and drives the automated test generation on the behavioral model of SUT.

 The Modeling activity. As for every Model-Based Testing (MBT) ap-
proach, the modeling activity consists of designing a test model that will be used
to automatically generate abstract test cases. To ease and accelerate this model-
ing activity, we have developed a Domain Specific Modeling Language (DSML),
called DASTML, that allows to model the global structure of a Web application.

® The Test Generation activity. It consists of automatically producing
abstract test cases, including expected results, from the artifacts defined during
the two previous activities.

¯ The Adaptation, Test Execution and Observation activity. Dur-
ing the modeling activity, all data used by the application are modeled at an
abstract level. As a consequence, the test cases are abstract and cannot thus be
executed as they are. To bridge the gap, this activity mainly consists of linking
the abstract data to concretes one in order to provide executable test scripts.
It should be underlined that these test scripts embed the test sequence and the
observation procedure in order to automate the verdict assignment.

Basically, the main contribution (that we aim to illustrate and emphasize
during demonstration) of this tooled approach concerns [4]:

– The formalization of vulnerability test patterns using generic test purposes
to drive the test generation engine.

– The use of a DSML to ease and accelerate the functional modeling of the
Web application under test.

– The full automation of the testing process, including test generation, test
execution and verdict assignment.



3

3 Overview of the PMVT toolchain

All the PMVT activities are supported by a dedicated toolchain, based on an
existing Model-Based Testing (MBT) software named CertifyIt [3] provided by
the company Smartesting3. CertifyIt is a test generator that takes as input a
test model (written with a subset of UML called UML4MBT [1]), capturing the
behavior of the SUT. This model is managed using a dedicated plugin in IBM
Rational Software Architect4.

The process supported by the toolchain takes as input one or several vulner-
ability test purpose (vTP) and a UML4MBT model of the SUT. A test purpose
formalizes a given vulnerability in relation with associated generic vulnerabil-
ity test pattern catalogues. The demonstration will address Cross-Site Scripting
(XSS) and SQL injections (SQLI), but the security test pattern catalogue is cur-
rently being extended to address the OWASP Top 10 weaknesses. Basically, such
a test purpose is a sequence of significant steps that has to be exercised by the
test case scenario in order to assess the robustness of the application under test
w.r.t. the related vulnerability. Each step takes the form of a set of operations
to execute, or specific state to be reached on the UML4MBT behavioral model.
For instance, Fig. 2 shows the test purpose formalizing the vTP for SQLI.

Fig. 2. SQLI Vulnerability Test Purpose

During test generation, this test purpose drives the vulnerability test gen-
eration on the UML4MBT behavioral model. This model is designed using a
dedicated DSML (called DASTML) that allows to describe all the structural
entities and behaviors, of the Web application under test, which are needed to
generate vulnerability test cases: pages, available actions on each page, etc.
3 http://www.smartesting.com [October 2014]
4 http://www-03.ibm.com/software/products/en/ratisoftarch [October 2014]



4

At this stage, the test generator automatically combines model and test pur-
poses to compute abstract test cases, as shown in Fig. 3(a), regarding SQLI.
To automate test execution, the test engineer has to match each abstract value
with a concrete value. This consists of automatically creating a JUnit test suite,
in which each abstract test case is exported as a JUnit test case. The test case
generator also produces a file containing the signature of each operation that the
test engineer has to implement using a Web navigation library such as HtmlUnit
or Selenium. Once this task is completed, test cases can be executed and verdict
is assigned automatically, as shown in Fig 3(b).

(a) Test Generation (b) Test Execution
Fig. 3. Test Case Generation and Execution using PMVT Approach

In order to illustrate the PMVT approach during Demonstration Session, we
will use the toy example WackoPicko5. This deliberately-unsecured Web appli-
cation allows users to authenticate themselves, share comment and buy pictures.
To keep it simple, we will focus on Cross-Site Scripting vulnerability: a malicious
user injects a script and forces victims visiting the page to execute them.

References
1. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.: A test generation solution

to automate software testing. In: Proc. of the 3rd Int. Workshop on Automation of
Software Test (AST’08). pp. 45–48. ACM Press, Leipzig, Germany (May 2008)

2. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-
box web vulnerability scanners. In: Proc. of the 7th Int. Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA’10). pp. 111–131.
Springer, Bonn, Germany (July 2010)

3. Legeard, B., Bouzy, A.: Smartesting CertifyIt: Model-Based Testing for Enterprise
IT. In: Proc. of the 6th Int. Conference on Software Testing, Verification and Vali-
dation (ICST’13). pp. 391–397. IEEE CS, Luxembourg (March 2013)

4. Vernotte, A., Dadeau, F., Lebeau, F., Legeard, B., Peureux, F., Piat, F.: Efficient
detection of multi-step cross-site scripting vulnerabilities. In: Proceedings of the
10th International Conference on Information Systems Security (ICISS’14). LNCS,
vol. 8880, pp. 359–378. Springer, Hyderabad, India (Dec 2014)

5 https://github.com/adamdoupe/WackoPicko [October 2014]


