
 
 

 
   

RASEN - 316853 
 

 

 
 
 
 

Deliverable D4.2.2 

 
Techniques for Compositional Risk-Based 

Security Testing v.2 
 

  



 
 

 
  

RASEN - 316853 Page 2 / 61 
 

Project title: RASEN 

Project number: 316853 

Call identifier: FP7-ICT-2011-8 

Objective: ICT-8-1.4 Trustworthy ICT 

Funding scheme: STREP – Small or medium scale focused research project 

 
Work package: WP4 

Deliverable number: D4.2.2 

Nature of deliverable: Report 

Dissemination level: PU 

Internal version number: 1.0 

Contractual delivery date: 2014-09-30 

Actual delivery date: 2015-09-30 

Responsible partner: Fraunhofer 

 



 
 

 
  

RASEN - 316853 Page 3 / 61 
 

Contributors 
 

Editor(s) Martin Schneider (FOKUS) 

Contributor(s) Fredrik Seehusen (SINTEF), Fabien Peureux (SMA), Julien Botella (SMA), 
Martin Schneider (FOKUS), Johannes Viehmann (FOKUS) 

Quality assuror(s) SAG, SMA 

 
 
Version history 
 
Version Date Description 

0.1 20-06-06 TOC proposition 

0.2 27-08-14 SINTEF contribution 

0.3 10-09-14 SMA contribution 

0.4 11-09-14 FOKUS contribution 

0.5 19-09-14 SINTEF contribution updated based on internal review feedback 

0.6 19-09-14 FOKUS and SMA contribution updated based on internal review feedback 

1.0 29-09-14 Final quality check 

 
 
Abstract 

Work package 4 develops a framework for security testing guided by risk assessment and 
compositional analysis. This framework, starting from security test patterns and test generation 
models, aims to propose a compositional security testing approach able to deal with large scale 
networked systems. This report provides the evolved results based on the previous deliverable 
D4.2.1. The results comprise risk-based testing using CAPEC attack patterns. An improved security 
test pattern-based approach for test case generation is presented as well as improvements of the 
behavioral fuzzing approach in order to address certain vulnerabilities. Test case generation using 
security test patterns together with a test purpose language is extended for security testing. In 
addition, first results regarding security testing metrics are described. This deliverable will be refined 
by D4.2.3. 

 
 
Keywords 

Security testing, risk-based security testing, fuzzing on security models, security testing metrics, 
large-scale networked systems, test selection, test prioritization 

 



 
 

 
  

RASEN - 316853 Page 4 / 61 
 

Executive Summary 
The overall objective of RASEN WP4 is to develop techniques for the use of risk assessment as 
guidance and basis for security testing, and to develop an approach that supports a systematic 
aggregation of security testing results by means of security testing metrics. The objective includes the 
development of a tool-based integrated process for guiding security testing by means of reasonable 
risk coverage and probability metrics. 

This document provides techniques for test procedure identification, prioritization and selection and 
test case derivation based on risk assessment results. The starting point for the development of these 
techniques is defined by the RASEN deliverable D4.2.1 that presented the first results on these tasks. 

The description of the techniques for deriving test cases from risk assessment results covers the 
research task T4.1“Deriving test cases from risk assessment results, security test patterns and test 
generation models in a compositional way”. The research question relevant in this context is: 

What are good methods and tools for deriving, selecting, and prioritizing security test cases from risk 
assessment results? 

This deliverable is the second of three deliverables that cover this question. It presents techniques for 
the parts of this research question for identification of security test cases based on risk assessment 
results, prioritization and selection of security test cases based on risk assessment result, and deriving 
security test cases from risk assessment results. 
 
Additionally to tasks addressed by D4.2.1, this deliverable covers also metric aspects regarding the 
research question 
 
What are suitable metrics for quantitative security assessment in complex environments? 
 
First results regarding this research questions are a categorization of security testing metrics and 
exemplary definitions of security testing metrics. 



 
 

 
  

RASEN - 316853 Page 5 / 61 
 

Table of contents 
TABLE OF CONTENTS ...................................................................................................................................... 5 

1 INTRODUCTION ....................................................................................................................................... 7 
2 USING CAPEC FOR RISK-BASED TESTING ...................................................................................... 9 

2.1 STEP I: FROM CAPEC TO GENERIC CORAS RISK MODELS ...................................................................... 9 
2.1.1 CORAS Risk Models ...................................................................................................................... 9 
2.1.2 Common Attack Pattern Enumeration and Classification (CAPEC) ............................................. 10 
2.1.3 From CAPEC Instances to Generic CORAS Risk Models ........................................................... 13 

2.2 STEP II: FROM GENERIC CORAS RISK MODELS TO TARGET SPECIFIC RISK MODELS ............................ 14 
2.2.1 Refinement of Likelihood and Consequence Values..................................................................... 14 
2.2.2 Refinement by Element Splitting .................................................................................................. 15 
2.2.3 Refinement by Element Merging .................................................................................................. 15 
2.2.4 Refinement by Element Addition .................................................................................................. 16 

2.3 STEP III: FROM SPECIFIC RISK MODELS TO TEST PROCEDURES............................................................... 17 
2.3.1 Risk Evaluation and Visualization ................................................................................................ 17 
2.3.2 Test Scenario Prioritization and Selection .................................................................................... 19 

3 SECURITY TEST PATTERNS ............................................................................................................... 22 
3.1 SECURITY TEST STRATEGIES ................................................................................................................... 22 

3.1.1 Stimulation Strategies ................................................................................................................... 22 
3.1.2 Observation Strategies ................................................................................................................... 24 

3.2 TEST COVERAGE ITEMS ........................................................................................................................... 25 
3.3 REVISED SECURITY TEST PATTERN DESCRIPTION ................................................................................... 25 
3.4 SECURITY TEST PATTERNS ...................................................................................................................... 27 

3.4.1 Improper Input Validation ............................................................................................................. 27 
3.4.2 SQL Injection ................................................................................................................................ 28 
3.4.3 SQL Injection through a Database Abstraction Layer ................................................................... 29 
3.4.4 Uncontrolled Format String........................................................................................................... 30 
3.4.5 Missing Authentication for Critical Function ................................................................................ 31 
3.4.6 Authentication Bypass by Replay Attack ...................................................................................... 32 
3.4.7 Cross-Site Request Forgery ........................................................................................................... 33 

3.5 FORMALIZATION OF TEST PATTERNS WITH TEST PURPOSE LANGUAGE ................................................... 33 
3.5.1 Test Purpose Language ................................................................................................................. 33 
3.5.2 Test Purpose Example ................................................................................................................... 34 
3.5.3 Test Purpose Catalog ..................................................................................................................... 34 
3.5.4 DSL for Test Model Creation ........................................................................................................ 34 

4 INSTANTIATING TEST PATTERNS FOR TEST CASE GENERATION ....................................... 36 
4.1 OVERVIEW OF THE TEST GENERATION PROCESS ..................................................................................... 36 
4.2 TEST SEQUENCE GENERATION BASED ON SECURITY TEST PURPOSES ..................................................... 40 
4.3 TEST CASE EXECUTION ........................................................................................................................... 42 

5 BEHAVIORAL FUZZING FOR SECURITY TESTING ..................................................................... 45 
5.1 BROKEN AUTHENTICATION AND SESSION MANAGEMENT (OWASP TOP 10 A2) .................................... 45 
5.2 MISSING FUNCTION LEVEL ACCESS CONTROL (OWASP TOP 10 A7) ..................................................... 46 
5.3 CROSS-SITE REQUEST FORGERY (OWASP TOP 10 A8) .......................................................................... 47 

6 SECURITY TESTING METRICS .......................................................................................................... 48 
6.1 RASEN SECURITY TESTING METRICS FORMAT ...................................................................................... 48 
6.2 APPLICATION OF SECURITY TESTING METRICS WITHIN THE COMBINED RISK ASSESSMENT AND SECURITY 

TESTING PROCESS ............................................................................................................................................. 49 
6.3 CATEGORIES OF METRICS ........................................................................................................................ 50 

6.3.1 List Up Metrics ............................................................................................................................. 50 
6.3.2 Coverage Metrics .......................................................................................................................... 50 
6.3.3 Efficiency Metrics ......................................................................................................................... 51 



 
 

 
  

RASEN - 316853 Page 6 / 61 
 

6.3.4 Technical impact metrics............................................................................................................... 51 
6.4 EXEMPLARY SECURITY TESTING METRIC AND ITS INSTANTIATION ......................................................... 51 
6.5 CONCLUSION ........................................................................................................................................... 54 

7 SUMMARY ................................................................................................................................................ 55 

8 APPENDIX ................................................................................................................................................ 56 
8.1 TEST PATTERN SAMPLE: SQL INJECTION................................................................................................. 56 
8.2 DSL FILE SAMPLE FOR THE MEDIPEDIA USE CASE .................................................................................. 57 

REFERENCES .................................................................................................................................................... 59 

 

 



 
 

 
  

RASEN - 316853 Page 7 / 61 
 

1 Introduction 
The overall objective of RASEN WP4 is to develop techniques for how to use risk assessment as 
guidance and basis for security testing, and to develop an approach that supports a systematic 
aggregation of security testing results. The objective includes the development of a tool-based 
integrated process for guiding security testing by means of reasonable risk coverage and probability 
metrics. 

This document provides techniques for test procedure identification, prioritization and selection and 
test case derivation based on risk assessment results. The starting point for the development of these 
techniques is defined by the RASEN deliverable D4.2.1 that presented the first results on these tasks. 

The description of the techniques for deriving test cases from risk assessment results covers the 
research task T4.1“Deriving test cases from risk assessment results, security test patterns and test 
generation models in a compositional way”. The research question relevant in this context is: 

What are good methods and tools for deriving, selecting, and prioritizing security test cases from risk 
assessment results? 

This deliverable is the second one deliverables that cover this question. It presents techniques for the 
parts of this research question for identification of security test cases based on risk assessment 
results, prioritization and selection of security test cases based on risk assessment result, and deriving 
security test cases from risk assessment results.  
 

 

Figure 1 – Overall process of security testing based on risk assessment results 
 
An approach for risk-based test procedure identification, prioritization and selection based on attack 
patterns from the CAPEC database is presented in Section 2. This constitutes the starting point for the 
risk-based testing process. Refinements of security test patterns are described in Section 3 comprising 
security test strategies. Section 4 describes test pattern instantiation and test sequence generation 
based on security test purposes and Section 5 security testing techniques for selected OWASP Top 
10 vulnerabilities employing behavioral fuzzing techniques. 
 
Additionally to D4.2.1, this deliverable covers also metric aspects regarding the research question 
 
What are suitable metrics for quantitative security assessment in complex environments? 
 



 
 

 
  

RASEN - 316853 Page 8 / 61 
 

First results regarding this research questions are a categorization of security testing metrics and first, 
exemplary definitions of security testing metrics and is covered by Section 6. 



 
 

 
  

RASEN - 316853 Page 9 / 61 
 

2 Using CAPEC for Risk-Based Testing 
CAPEC is a catalogue of common security attacks. In this Section, we describe a technique for using 
CAPEC for risk-based test procedure identification, prioritization and selection. As illustrated in Figure 
2, the techniques are meant to be used as part of a three step process where in step I, the CAPEC 
catalog is automatically transformed into a generic risk model. In step 2, the generic risk model is 
manually refined to make it specific to the target of evaluation. We discuss some techniques for doing 
this. In step 3, the target specific risk model obtained from step 2 is used as a basis for test procedure 
identification, prioritization and selection. The outcome of step 3 is a prioritized list of selected test 
procedures that are meant to be used as a starting point for test implementation and execution. 

Step I: CAPEC 
to risk model

Step II: Risk 
model 

refinement

Step III: Test 
procedure 

identification
 

Figure 2 – The steps of the process 
 

2.1 Step I: From CAPEC to Generic CORAS Risk Models 
In this Section, we describe a technique for automatically generating a risk model from the CAPEC 
catalog. The kind of risk model we use are so-called CORAS threat diagrams. We first describe 
CORAS risk models (in Section 2.1.1), and the CAPEC catalog (in Section 2.1.2), before describing 
the translation from CAPEC to the CORAS risk model (in Section 2.1.3). 

2.1.1 CORAS Risk Models 
In this Section, we describe CORAS risk models which are used to document risks and 
events/circumstances that can cause risks. As illustrated by the example in Figure 3, a CORAS risk 
model is a directed acyclic graph where every node is of one of the following kinds: 

• Threat A potential cause of an unwanted incident or threat scenario. 

• Threat scenario A chain or series of events that is initiated by a threat and that may lead to 
an unwanted incident. 

• Unwanted incident An event that harms or reduces the value of an asset. 

• Asset Something to which a party assigns value and hence for which the party requires 
protection. 

Note that risks can also be represented in a CORAS risk model, but these correspond to pairs of 
unwanted incidents and assets. If an unwanted incident harms exactly one asset, as is the case in 
Figure 3, then this unwanted incident will represent a single risk.  

A relation in a CORAS model may be of one of the following kinds: 

• Initiates relation going from a threat A to a threat scenario or unwanted incident B, meaning 
that A initiates B. 

• Leads to relation going from a threat scenario or unwanted incident A to a threat scenario or 
un-wanted incident B, meaning that A leads to B. 

• Harms relation going from an unwanted incident A to an asset B, meaning that A harms B. 

Relations and nodes may have assignments, in particular 

• Likelihood values may be assigned to a threat scenario and unwanted incident A, estimating 
the likelihood of A occurring. 

• Conditional likelihood values may be assigned leads to relations going from A to B, 
estimating the conditional likelihood that B occurs given that A has occurred. 



 
 

 
  

RASEN - 316853 Page 10 / 61 
 

• Consequence values may be assigned to harms relations going from A to B, estimation the 
consequence the occurrence of A has on B. 

• Vulnerabilities may be assigned to leads to relations going from A to B, describing a 
weakness, flaw or deficiency that opens for A leading to B. 

 

Figure 3 – Example of a CORAS risk model 
 

2.1.2 Common Attack Pattern Enumeration and Classification (CAPEC) 
CAPEC is catalogue containing common security attack patterns. CAPEC provides a template/data 
format for documenting common characteristics of security attacks. The template is shown in Table 1 
below. 

Name The Name is a descriptive name used to give the reader an idea of the 
meaning behind the compound attack pattern structure. 

Typical severity This element reflects the typical severity of an attack on a scale of 
{Very Low, Low, Medium, High, Very High}. USAGE: This element is 
used to capture an overall typical average value for this type of attack 
with the understanding that it will not be completely accurate for all 
attacks. 

Description This field provides a description of this Structure, whether it is an 
Attack Pattern, Category or Compound Element. Its primary 
subelement is Description_Summary which is intended to serve as a 
minimalistic description which provides the information necessary to 
understand the primary focus of this entry. Additionally, it has the 
subelement Extended_Description which is optional and is used to 
provide further information pertaining to this attack pattern. 

Attack prerequisites This field describes the conditions that must exist or the functionality 
and characteristics that the target software must have or behavior it 
must exhibit for an attack of this type to succeed 

Typical likelihood of 
exploit 

This element represents the typical likelihood that the attack will 
succeed, and provides a likelihood estimate and an explanation that 
qualifies the estimate. USAGE: This element is used to capture an 
overall typical average value for this type of attack with the 
understanding that it will not be completely accurate for all attacks. 

Methods of attack This field describes the mechanism of attack used by this pattern. This 
field can help define the applicable attack surface required for this 
attack. 

Examples-instances This element represents a container of one or more example 
instances. An example instance details an explanatory example or 
demonstrative exploit instance of this attack, USAGE: This element is 



 
 

 
  

RASEN - 316853 Page 11 / 61 
 

used to help the reader understand the nature, context and variability 
of the attack in more practical and concrete terms. 

Attacker skill or 
knowledge required 

This element reflects the level of knowledge or skill required to execute 
this type of attack on a scale of { Low, Medium, High }. USAGE: This 
element is used to represent the level with respect to a specified type 
of skill or knowledge, e.g., low - basic SQL knowledge, high - expert 
knowledge of LINUX kernel, etc. 

Resources required This field describes the resources (CPU cycles, IP addresses, tools, 
etc.) required by an attacker to effectively execute this type of attack. 

Probing techniques A probing technique describes a method used to probe and 
reconnoiter a potential target to determine vulnerability and/or to 
prepare for this type of attack. 

Indicator-warnings of 
attack 

This element provides an explanatory description of the indicator 
warning of attack. 

Solutions and mitigations This element represents a container of one or more solutions or 
mitigations. A solution or mitigation describes actions or approaches to 
prevent or mitigate the risk of this attack by improving the resilience of 
the target system, reduce its attack surface or to reduce the impact of 
the attack if it is successful. 

Attack motivation-
consequences 

This element represents a container of one ore more attack motivation 
consequences. Attack motivation consequence represents the desired 
technical results that could be achieved/leveraged by this attack 
pattern, represented as an enumerated list of defined adversary 
motivations/consequences. USAGE: This element is used to identify 
specific technical results that could be leveraged to achieve the 
adversary's business or mission objective. This information is useful for 
aligning attack patterns to threat models and for determining which 
attack patterns are relevant for a given context. 

Technical context This element characterizes the technical context where this pattern is 
applicable 

Injection vector This element details the mechanism and format of an input-driven 
attack of this type. Injection vectors take into account the grammar of 
an attack, the syntax accepted by the system, the position of various 
fields, and the ranges of data that are acceptable. 

Payload This element describes the code, configuration or other data to be 
executed or otherwise activated as part of an injection-based attack of 
this type. 

Activation zone This element describes the area within the target software that is 
capable of executing or otherwise activating the payload of an 
injection-based attack of this type. The activation zone is where the 
intent of the attacker is put into action. The activation zone may be a 
command interpreter, some active machine code in a buffer, a client 
browser, a system API call, etc. 

Payload activation impact This element provides an explanatory description of the payload 
activation impact. 

CIA impact This element characterizes the typical relative impact of this pattern on 
the confidentiality, integrity, and availability of the targeted software. 

CWE ID (Related 
weaknesses) 

The CWE_ID is a field that exists for all weaknesses enumerated in the 
Common Weakness Enumeration (CWE). It is a unique value that 
allows each weakness to be unambiguously identified. The CWE_ID 
field for the attack pattern contains the value of the CWE_ID for the 
specific related weakness. 

Relevant security 
requirements 

This element represents a container of one or more relevant security 
requirements. A relevant security requirement is a general security 
requirement that is relevant to this type of attack. 

Related security principles This element represents a container of one or more related security 
principles. A principle is defined as a rule or standard for good 
behavior. A related security principle is a security rule or practice that 



 
 

 
  

RASEN - 316853 Page 12 / 61 
 

impedes this attack pattern. USAGE: Usage defined in NIST SP 800-
27A, "Engineering Principles for Information Technology Security", 
Revision A. 

Related guidelines This element represents a container of one or more related guidelines. 
A related guideline represents a security guideline that is relevant to 
identifying or mitigating this type of attack. USAGE: It would be helpful 
to provide a usage reference. However links to security principle and 
guideline documentation on the BSI site appear to be broken. NIST SP 
800-27 uses the terms principle and guideline interchangeably. 

References The References element contains one or more Reference elements, 
each of which provide further reading and insight into this attack 
pattern. 

Table 1– CAPEC template 
 
Our goal is to automatically transform a set of CAPEC attack patterns into a CORAS risk model. To 
determine what parts of the CAPEC pattern that are relevant for translation into a risk model, we must 
first ask what can be represented in the CORAS risk model. In answer to this question, we believe that 
the following information about a security attack can be represented and would be of value in a risk 
model: 
 

• A: The name of the attack. 
• B: An estimate of how likely it is that the attack is initiated. 
• C: An estimate of how likely it is that the attack will succeed given that it is initiated. 
• D: A list of consequences/unwanted incidents which a successful attack can cause/lead to. 
• E: An estimate of how likely it is that a successful attack will lead to the unwanted incidents. 
• F: A list of assets that can be affected by the unwanted incidents of successful attacks. 
• G: A description of which assets that can be harmed by an unwanted incident. 
• H: An estimate of the consequence that an unwanted incident has on each of its assets. 
• I: A list of vulnerabilities that can be exploited by the attack. 

 
By examining the CAPEC template, we see that the items that can be derived from a CAPEC pattern 
are A, C, D, F, G, and H. These items can be derived from the attributes: Name, Typical likelihood of 
exploit, Attack motivation-consequences, CIA impact, and CWE ID (Related weaknesses). For the 
purpose of defining the translation from CAPEC to risk models, we will refer to a CAPEC patterns with 
only the above mentioned attributes described as specified in Table 2 as a CAPEC instance. 
 

Name A pair (ID,N) where ID denotes the identifier of the attack pattern and N 
denotes the name of the pattern.  

Typical likelihood of 
exploit 

A likelihood LE denoting the likelihood that the attack will succeed. 

Attack motivation-
consequences 

A list (TI1, S1), (TI2, S2), …, (TIn, Sn) of n  pairs of the form (TI,S), where 
TI denotes the name of a technical impact and S denotes the scope of TI 
given as a subset of the set {Availability, Confidentiality, Integrity} 
 

CIA impact A triple (cia_c, cia_i, cia_a) denoting the impact/consequence the attack 
has on confidentiality, integrity, and availability, respectively. 

CWE ID (Related 
weaknesses) 

A list v1, v2, …,vn of n elements denoting CWE vulnerabilities that can be 
exploited by the attack. 

Table 2– CAPEC instance 
In Table 3 and Table 4 we show two examples of CAPEC instances which describe the CAPEC 
patterns 34 and 62, respectively. 

Name (CAPEC-34, HTTP Response Splitting) 
Typical likelihood of 
exploit 

Medium 

Attack motivation-
consequences 

(Execute unauthorized code or commands, {Confidentiality, Integrity, 
Availability}), 



 
 

 
  

RASEN - 316853 Page 13 / 61 
 

(Gain privileges / assume identify, {Confidentiality}) 
CIA impact (High, High, Low) 
CWE ID (Related 
weaknesses) 

CWE-113 Improper Neutralization of CRLF Sequences in HTTP Headers 
('HTTP Response Splitting'),  
CWE-697 Insufficient Comparison,  
CWE-707 Improper Enforcement of Message or Data Structure, 
CWE-713 OWASP Top Ten 2007 Category A2 - Injection Flaws 

Table 3– CAPEC-34 instance example 
 

Name (CAPEC-62,Cross Site Request Forgery (aka Session Riding)) 
Typical likelihood of 
exploit 

High 

Attack motivation-
consequences 

(Read application data, {Confidentiality}), 
(Modify application data, {Integrity}), 
(Gain privileges / assume identity, {Confidentiality}) 

CIA impact (High, High, Low) 
CWE ID (Related 
weaknesses) 

CWE-352 Cross-Site Request Forgery (CSRF),  
CWE-664 Improper Control of a Resource Through its Lifetime,  
CWE-732 Incorrect Permission Assignment for Critical Resource, 
CWE-716 OWASP Top Ten 2007 Category A5 - Cross Site Request 
Forgery (CSRF) 

Table 4– CAPEC-62 instance example 
 

2.1.3 From CAPEC Instances to Generic CORAS Risk Models 
Having explained what is meant by a CORAS risk model and a CAPEC instance we now describe the 
translation from CAPEC to CORAS risk model. Because there is information that we would like to 
represent in a risk model, but which cannot be derived from a CAPEC pattern, we need to supply this 
additional information as input to the transformation. In particular, we need, in addition to the CAPEC 
instance, 

• a mapping lm from CAPEC likelihoods to CORAS likelihoods denoted; 

• a default initiation likelihood dil, specifying the likelihood that an attack will be initiated; 

• a default technical impact likelihood dtil specifying the conditional likelihood of a successful 
attack leading to a technical impact 

Given this information, our transformation to a CORAS risk model will in the general case result in the 
risk model shown in Figure 4 

 

Figure 4– CORAS risk model showing outcome of translation function 
 

To distinguish between variables and strings/constants, we have in Figure 4 denoted all non-variables 
inside quotation marks. For instance, we have written "Attacker", meaning that Attacker is not a 



 
 

 
  

RASEN - 316853 Page 14 / 61 
 

variable, but should appear as a string. The variables in the diagram such as ID, N, v1,dil, etc. are all 
taken from the CAPEC instance which is assumed to be the input to the translation (see Table 2).  

As illustrated in Figure 4, each CAPEC instance is translated into two threat scenarios: one threat 
scenario corresponding to the initiation of the attack, and one threat scenario corresponding to a 
successful attack. The threat scenario describing attack initiation is given likelihood dil. The condition 
likelihood that the attack will be successful given that it is initiated is given by lm(LE), i.e. the exploit 
likelihood of the CAPEC instance LE translated to the CORAS model likelihood by function lm. 

Given that the attack described by the CAPEC instance is successful, it can lead to one or more 
technical impacts with conditional likelihood dtil. Each technical impact of the CAPEC instance is 
translated to an unwanted incident in the CORAS model. These unwanted incidents may in turn be 
connected to one of the three assets, Availability, Confidentiality, or Integrity, and the consequences of 
the unwanted incidents towards these is given by the CIA values of the CAPEC instance.  

The assets that a technical impact is connected to are decided by the scope of the technical impact. 
For instance, if the scope of the technical impact includes all three assets, then the technical impact 
will be connected to all the three assets. If the scope only includes e.g. Confidentiality, then the 
technical impact will only be connected to the Confidentiality asset. 

As an example, assume that we supply the following input to the translation: 

• The CAPEC instance example shown in Table 3. 

• A mapping lm defined by the mapping {Low ->eLow, Medium ->eMedium, High ->eHigh} 

• A default initiation likelihood iHigh 

• A default technical impact likelihood tMedium 

then the output of the translation will be the CORAS risk model shown in Figure 5. 

 

Figure 5– Result obtained by applying the translation to the CAPEC instance example 
 

2.2 Step II: From Generic CORAS Risk Models to Target Specific 
Risk Models 

The translation of CAPEC instances results in a CORAS risk model which is not specific to a particular 
target of evaluation. For this reason, we suggest that CORAS risk model be manually refined to make 
it more relevant for a particular target of evaluation. There are several different ways that the CORAS 
risk model can be refined. In this Section, we cover the most important ones. 

2.2.1 Refinement of Likelihood and Consequence Values 
All likelihood and consequences of the CORAS risk model obtained from a set of CAPEC instances 
are not specific to the target of evaluation. One way of making the risk model more specific to the 
target of evaluation is therefore to examine each likelihood and consequence estimate of the risk 
model, and adjust them as necessary. 



 
 

 
  

RASEN - 316853 Page 15 / 61 
 

An example of this kind of refinement is shown in Figure 6, where we see that many of the likelihood 
values of the risk model in Figure 5 have been refined. 

 

Figure 6 – Example of refinement of likelihood and consequence values 
 

2.2.2 Refinement by Element Splitting 
In some cases, it may be that some of the attacks or technical impacts derived from the CAPEC 
instances are described in a too generic way. In these cases, it might be relevant to refine the risk 
model by splitting threat scenarios or unwanted incidents. An example is shown in Figure 7, where we 
assume that it is of interest to distinguish between different features of the target of evaluation that are 
subject to the attack. The risk model of Figure 7 can be seen as a refinement (by splitting) of Figure 5 
where the threat scenario I.CAPEC-34: HTTP Response Splitting has been split into two threat 
scenarios. 

 

Figure 7– Example of refinement by element splitting 
 

2.2.3 Refinement by Element Merging 
In certain cases, it might be relevant to merge threat scenarios or unwanted incidents if they describe 
similar phenomena. In particular, this may be relevant for the unwanted incidents. If many CAPEC 
instances are transformed into a risk model, then we can potentially end up with a great number of 
possible risks (recall that a risk corresponds to an unwanted incident that harms an asset). Therefore 
merging similar unwanted incidents might be a good way of making the risk model more 
understandable. 

As an example, consider the risk model shown in Figure 8, which has been obtained by translating the 
CAPEC instances of Table 3 and Table 4. In the risk model, we can see two unwanted incidents with a 
similar effect (Gain privileges / assume identify). In Figure 9, these unwanted incidents have been 
merged into one unwanted incident. 

 



 
 

 
  

RASEN - 316853 Page 16 / 61 
 

 

Figure 8– Risk model obtained by translation of CAPEC-34 and CAPEC-62 

 

Figure 9 – Example of refinement by element merging 
 

2.2.4 Refinement by Element Addition 
The final kind of refinement that we will consider is refinement by element addition. This kind of 
refinement may be particularly relevant for defining new risks that are specific to the target of 
evaluation. After all, all unwanted incidents in a risk model derived from CAPEC instances correspond 
to technical impacts which are described in a quite general manner. Defining new unwanted incidents 



 
 

 
  

RASEN - 316853 Page 17 / 61 
 

which are more specific to the target of evaluation and that can be caused by the technical impacts 
may therefore be relevant. 

An example of this is given in Figure 10 where the risk model of Figure 8 has been refined by adding 
three new unwanted incidents to the risk model, and connecting these to the old unwanted incidents 
and the assets. 

 

Figure 10– Example of refinement by element addition 

2.3 Step III: From Specific Risk Models to Test Procedures 
In this Section, we describe how test procedures can be derived from the risk models. 

2.3.1 Risk Evaluation and Visualization 
Given that we have defined all likelihood values precisely and that we have a risk model that is 
complete in the sense that all initial threat scenarios and all edges/transitions have been given 
likelihood values, we can use the calculation technique described in [1] and [2] to calculate the 
likelihood of all nodes in a risk model. In particular, we can calculate the likelihood of the risks, i.e. the 
unwanted incidents that have an impact on the assets that we are interested in.  

To illustrate this, assume that we have the following likelihood scales:  

Likelihood Definition Interval 

iLow 0-1 times per year [0, 1>:1y 

iMedium 1-30 times per year [1,30>:1y 

iHigh Over 30 times per year [30,Infinity>:1y 

Table 5 – Likelihood scale for estimating risk and attack initiation 
 

Likelihood Definition Probability 

eLow 
1 out of 100000 attacks successful – 1 out of 10000 
successful 

[0.00001 – 0.0001> 

eMedium 
1 out of 10000 attacks successful – 1 out of 1000 
successful 

[0.0001 – 0.001> 

eHigh 1 out of 1000 attacks is successful – 1 out 10 attacks is 
successful [0.001 – 0.1> 



 
 

 
  

RASEN - 316853 Page 18 / 61 
 

Table 6 – Likelihood scale for estimating probability of successful attacks 
 

Likelihood Definition Probability 

tLow 
0 out of 10 successful attacks will cause an incident  - 1 out 
of 10 successful attacks will cause an incident 

[0.0 - 0.10> 

tMedium 
1 out of 10 successful attacks will cause an incident  - 1 out 
of 4 successful attacks will cause an incident 

[0.10 - 0.25> 

tHigh 
1 out of 4 successful attacks will cause an incident  - 1 out 
of 2 attacks will cause an incident 

[0.25 - 0.5> 

Table 7 – Likelihood scale for estimating the probability that a successful attack will cause an 
unwanted incident 

 

Then the result of calculating all the likelihood values of the risk model given in Figure 10 is shown in 
Figure 11. 

 

Figure 11 – Risk model with calculated likelihood values 
 
In Figure 11, the risks are the three unwanted incidents on the far right hand side that are associated 
with the assets. These risks can also be visualized in a risk matrix. This is a common way of risk 
visualization. However, if some measure of likelihood confidence is used, then we strongly suggest 
that should be represented visually in the risk matrix. For example, if intervals are used for likelihood 
estimates and the width of the intervals are used as a confidence measure, then the risk should be 
represented in the matrix as a box spanning the likelihood axis such that the interval is visualized.  

In Figure 12, we have visualized the three risks of Figure 11 in a risk matrix. Here the vertical axis 
shows the consequence scale and the horizontal axis shows the likelihood scale. Since the likelihoods 
of the risks are given as intervals, the width of the boxes representing risks to show these intervals, i.e. 
the left hand side of the box indicates the minimum likelihood of the interval, and the right hand side 
indicates the maximum likelihood. 



 
 

 
  

RASEN - 316853 Page 19 / 61 
 

Low

Medium

High

iLow iMedium iHigh

R1

R1: Attacker gains unauthorized access to core data base with customer data
R2: Attacker causes service unavailability
R3: Attacker gains unauthorized access to user data

R3

R2

 

Figure 12– Risk matrix 

2.3.2 Test Scenario Prioritization and Selection 
The main purpose of our approach is to identify and prioritize tests based on risk models. The 
outcome of the testing can be used as a means of increasing the confidence in the likelihood values of 
a risk model. 

Given that risk values have been obtained from all risks in a risk model, we must first decide whether 
or not it is necessary to perform the testing, i.e. whether an increased confidence in the correctness of 
the likelihood values will have an impact on the decisions that are made based on the risk model. This 
can be determined by looking at the risk matrix visualization. To see what we mean by this, consider 
the risk matrix shown in Figure 13. The risk matrix is separated into two risk values (acceptable and 
unacceptable) by the diagonal line. Assume that risks classified as acceptable can be accepted 
without treatment, and that the unacceptable risks must be treated. We consider each of the three 
risks in turn, and ask whether or not the decision regarding its treatment is affected by acquiring new 
knowledge about the correctness of its likelihood value.  

Risk A is fully contained in the acceptable area. Thus, assuming that the risk model is correct in the 
sense that actual real likelihood of the risk is within the likelihood interval of risk A then there is no 
need to obtain new information through testing to reduce the size of the likelihood interval. Similarly, 
risk B is fully contained in the unacceptable area and it can therefore be treated. Thus the decisions 
regarding treatment for risk A and risk B is not affected by our confidence in their likelihood estimates, 
and if these were the only risks of the risk matrix, then there would have been no need to perform any 
testing on the basis of the risk assessment. However, risk C is a different matter, it spans both the 
acceptable and the unacceptable area, thus the problem is not necessarily that the risk is 
unacceptable, but that we do not know whether it is acceptable or not. Regarding risk C, it makes 
sense to perform testing to gain new knowledge that allows us to determine whether C should be 
treated or not. 



 
 

 
  

RASEN - 316853 Page 20 / 61 
 

Low

Medium

High

iLow iMedium iHigh

A

B

C

U
na

cc
ep

ta
bl

e

Acceptable
 

Figure 13 – Risk matrix with risk values 
 

We have previously described a technique for test prioritization and selection based on a risk model. 
For a technical description of the technique, the reader is referred to [1] and [2]. For the purpose of 
self-containment we will only briefly describe the technique here and illustrate it with an example.  

A risk model can be seen as a set of statements about the world. Testing a risk model corresponds to 
checking the degree to which these statements are correct. Given a risk model, the first question we 
must ask is which of its kinds of statements are the most natural starting point for test identification? 
As discussed further in [2], we believe that the statements derived from edges of a risk model are the 
most natural starting point. An edges going from a node A to a node B with conditional likelihood l 
means that "A leads to B with conditional likelihood l", thus a test procedure corresponding to this 
edge is a statement of the form "Check that A leads to B with conditional likelihood l".  

Potentially, every edge of risk model gives rise to a test procedure. However, in practice we do not 
have time to test every one of these test procedures. Thus we have to prioritize and then select the 
test procedures that are most important. To achieve this, we must for each edge of a risk model ask 
whether its corresponding test procedure is within the scope of the risk assessment, and if yes, 
estimate the resources/effort it would require to implement and execute the test procedure. 
Subsequently, given an estimate of maximum total effort available for testing, we can use the 
technique described in [1] and [2] to obtain a prioritized list of test procedures that should be 
implemented and tested. In the following, we illustrate this in an example. 

Assume we want to identify test procedures on the basis of the risk model shown in Figure 11. Our 
first task is to check whether the test procedure corresponding to each edge of the risk model is within 
the scope of the assessment, and if yes, estimate the time it will take to test it. Assuming that we are 
only interested in performing software security testing, we cannot check how often attacks are initiated 
in the first place. Thus the two outgoing edges from the Attacker are out of scope. Assume also that all 
edges after the threat scenarios describing successful attacks are regarded as out of scope. We are 
then only left with the two edges going from the threat scenarios describing attack initiation to 
successful attacks. Assume that we estimate the time it takes to implement and execute these tests 
procedures to 1 day each, and that we only have 1 day in total available for doing the testing. We are 
thus forced to choose which one of the test procedures to test. In order to decide this, we use our 
technique for test procedure prioritization described in[1] and [2], and we obtain the priority values 
shown in Table 8. Since test procedure id1 has a higher priority than test procedure id2, we choose 
id1 as the test procedure to test. 

Test procedure Priority 

Id1: Check that Cross Site Request Forgery (aka Session Riding) leads to Cross 
Site Request Forgery (aka Session Riding) successful with conditional likelihood 
[0.001, 0.1], due to vulnerabilities OWASP Top Ten 2007 Category A5 - Cross Site 
Request Forgery (CSRF), Incorrect Permission Assignment for Critical Resource, 
Cross-Site Request Forgery (CSRF) and Improper Control of a Resource Through 

2.138E-4 



 
 

 
  

RASEN - 316853 Page 21 / 61 
 

Test procedure Priority 

its Lifetime.  

Id2: Check that HTTP Response Splitting leads to HTTP Response Splitting 
successful with conditional likelihood [1.0E-4, 0.001], due to vulnerabilities 
Insufficient Comparison, Improper Neutralization of CRLF Sequences in HTTP 
Headers ('HTTP Response Splitting'), Improper Enforcement of Message or Data 
Structure and OWASP Top Ten 2007 Category A2 - Injection Flaws. 

3.152E-8 

Table 8 – Prioritized test procedures 
 



 
 

 
  

RASEN - 316853 Page 22 / 61 
 

3 Security Test Patterns 

3.1 Security Test Strategies 
Security test strategies constitute an abstract mechanism to specify a goal that shall be achieved by a 
test case. Whereas such a strategy specifies the goal, it does not define how it can be achieved. In 
this way, a strategy is a specification that has to be implemented. A test case has mainly two aspects, 
therefore there are two kinds of security test strategies: 

 Stimulation, i.e. submitting inputs to the system under test. The goal of such a stimulus or a 
set of stimuli is to trigger a potential vulnerability. Often fuzzing is used to generate stimuli for 
security testing. 

 Observation, i.e. checking how the system under tests behaves when stimulated with certain 
inputs. The observation of actual behavior of the system under test is compared to the 
expected behavior in order to determine the test verdict. While for functional testing the SUT’s 
interfaces are observed, this might not be sufficient for security testing to detect whether a 
vulnerability has been triggered. 

A stimulation strategy is a specification that a SUT shall be stimulated in such a way that a certain 
vulnerability may be revealed. The stimulation is generated by an implementation of such a stimulation 
strategy. There may be several implementations of a stimulation strategy. These implementations may 
differ from one to another, e.g. in the programming language or in the tools that are employed to 
provide appropriate test data or test cases. Several implementations in different programming 
languages allow for an easy integration in different testing tools that would take advantage of the 
security test pattern catalog by integrating the corresponding security test strategies’ implementation 
of a pattern. 

In addition to the name of a security test strategy, an interface description is provided. Each 
implementation of a certain security test strategy has to follow this interface. Such an interface 
description serves two purposes: On the one hand, it gives a tool provider the possibility to implement 
a strategy or to adapt the interface of an existing test generator to a strategy’s interface. On the other 
hand, such an interface specification enables a tool developer the integration of test strategies’ 
implementations by using this interface. Since several implementations of a strategy in different 
(programming) languages are possible, it seems not useful to provide the interface description itself in 
one programming language. Furthermore, the implementation of a test strategy can be in natural 
language to support manual usage of a test pattern. Hence, a programming language seems not 
appropriate for the interface description. Therefore, the interface description is provided in natural 
language, where each parameter and the return value are declared and accompanied by an informal 
description in natural language. 

The question how strategies are finally used is open. They can be directly used by a risk-based 
security testing tool that selects for each vulnerability, the corresponding security test pattern and 
starts test case generation by executing an appropriate implementation of a test strategy. This 
approach can be used to directly stimulate the SUT’s interfaces by submitting the generated test data 
or whole test cases. The approach also allows for model-based testing. In this case, the corresponding 
test strategies have to be applied to a model of the SUT’s behavior. However, the integration of a 
stimulation strategy in a tool has to be done manually with the help of interface description provided in 
natural language, while the actual stimulus generation is provided by an implementation of the 
strategy within a security test pattern. 

3.1.1 Stimulation Strategies 
Stimulation strategies describe what shall be achieved by stimulating a system under test. In the 
context of the RASEN project, this is the weakness that is referenced by and the target of a security 
test pattern and shall be triggered by stimuli. Therefore, an individual stimulation strategy is specified 
for each weakness.  

There is a generalization hierarchy of security test patterns, e.g. there is a pattern Improper Input 
Validation[1] that is a generalization of the patterns for SQL Injection[1]and Uncontrolled Format 



 
 

 
  

RASEN - 316853 Page 23 / 61 
 

String[1]. The same hierarchy is constituted by the stimulation strategies of those test patterns that 
reference these strategies and is depicted by Figure 14. Therefore, a stimulation strategy of a general 
pattern subsumes the stimulation strategies of its specializing patterns. 

 

 

Figure 14 – Generalization hierarchy of stimulation strategies for data fuzzing (excerpt) 
 

Depending on the goal, a stimulation strategy requires that either test data or whole test cases is 
generated. For instance, in order to detect a SQL injection vulnerability, corresponding input data that 
is able to manipulate a SQL query string shall be generated whereas for a replay attack vulnerability, a 
message sequence has to be generated (consisting of an authentication message, a logout message 
and the first authentication message again). Hence, appropriate input may be required by a strategy in 
order to generate the correct test data or test sequences. In case of the SQL injection vulnerability, 
this might be information about the database management system and the database schema, in case 
of the replay attack vulnerability, this is the authentication and the logout message. This is realized by 
the aforementioned interface description. 

Test coverage items allow the automatic assignment of appropriate values to the strategies’ interface 
once the items have been determined. They are described in Section 3.2. 

In order to generate actual test cases or test data, a stimulation strategy is interpreted by a 
corresponding tool. In order to allow model-based test generation, we developed a UML profile that 
contains all the stimulation strategies in a generalization hierarchy, as described above using the 
example of SQL injection. Figure 15 shows an excerpt of this profile for data fuzzing stimulation 
strategies. These stereotypes refer to messages in UML sequence diagrams, parameters of the 
corresponding operation and, in case of data fuzzing generators, to value specifications, the 
arguments of a message. The reference means that this message argument shall carry fuzz test data 
generated by the applied stimulation strategy. The individual stimulation strategies’ stereotypes has 
properties that correspond to the strategy’s interface described above.  

 

Figure 15 – Excerpt of UML profile for stimulation strategies for data fuzzing 



 
 

 
  

RASEN - 316853 Page 24 / 61 
 

 

Actually, we developed two separate UML profiles for stimulation strategies, one for the test design 
technique data fuzzing (Figure 15 shows an excerpt of it) and a second one for behavioral fuzzing. 
Section 5 described stimulation strategies specific  

3.1.2 Observation Strategies 
In contrast to stimulation strategies, observation strategies are used to determine the test verdict. In 
contrast to functional testing, the test verdict for security test cases cannot necessarily be determined 
by evaluating the immediate answer to a stimulus. A security-relevant weakness that is triggered by a 
stimulus does not necessarily show a characteristic behavior as a response to the stimulus. For 
instance, a successful SQL injection may add records to the database, e.g. a new user with 
administrative privileges. This new database record may be generated due to an SQL injection attack 
using a completely different functionality. Hence, this new record as a result of the SQL injection attack 
can only be observed if someone authenticates with this new user or an administrator calls the user 
management functionality. In case of a buffer overflow that injects code to the SUT, this code may be 
executed later. Stored cross-site scripting may be visible on a completely different page of a website. 

Observation strategies take this into account by defining what modification or behavior of a system 
shall be looked for in order to determine whether a test case was successful in triggering a weakness. 
However, the kind of observation to be made on a system after possibly triggering a vulnerability may 
depend on the individual test case and may differ from test case to test case. 

Considering SQL injection attacks, the result of such an attack may be an error message on the 
frontend of a web application, a bypassed authentication or a new database record. This depends on 
the actual SQL query part that is injected to the SUT and the database management system employed 
by the SUT (different database management systems have a slightly different SQL syntax, therefore 
the very same SQL injection string may result in a new record for one database system and a SQL 
syntax error for another system). Hence, each observation strategy suitable for a certain weakness 
(and thus, security test pattern) has to be applied to each test case and its implementation executed 
after the stimulation part of a test case in order to determine the test verdict. If one observation 
strategy detects the modification in question, previous stimuli to the SUT triggered a vulnerability and 
the test verdict is FAIL. 

The simplest observation strategy, often used for fuzzing, is a connectivity check [8] that simply 
checks at the end of a security test case whether the SUT crashed by trying to connect to it. If attempt 
to connect fails, the SUT crashed or hanged and the test verdict is FAIL. Therefore, this observation 
strategy can only detect weaknesses with respect to availability of the CIA triad (confidentiality, 
integrity, availability). 

Slightly more advanced is the so called valid case instrumentation that executes after each security 
test case a valid functional test case in order to determine whether the SUT behaves as expected and 
specified [7]. This strategy may lead to false positives as well as to false negatives. False positives 
occur if the functional test case employed for test verdict arbitration depends on the state of the SUT 
that may be changed from the previous stimuli without triggering a vulnerability. If the chosen 
functional test case tests a different part of the SUT than the one tested by the previous security test 
case, this may result in false negatives because a triggered weakness does not have an effect on the 
functionality involved in the functional test case. Therefore, valid case instrumentation has several 
pitfalls that make it less useful for security testing than required. It would lead to false negatives, i.e. 
actual vulnerabilities are not detected, and to false positives that require manual analysis although no 
vulnerability was triggered. 

Less general observation strategies that are tailored to the weakness in questions seem reasonable 
and necessary. While different monitoring techniques are available, they are not related to 
vulnerabilities by themselves. This is where security test patterns can contribute to security testing by 
combining all the required information for testing for a certain vulnerability: the vulnerability itself, 
appropriate stimulation strategies that are able to trigger such a vulnerability and observation 
strategies that are tailored to the individual vulnerability to be detected, that are more specific than 
general monitoring techniques such as simple connectivity checks or valid case instrumentation that 
might miss triggered vulnerabilities. Additionally, such vulnerability-dependent observation strategies 



 
 

 
  

RASEN - 316853 Page 25 / 61 
 

may reduce the effort for security testing. Only the mechanisms that are appropriate for certain 
vulnerabilities, i.e. mentioned in the corresponding security test pattern, are necessary to implement. 
Additionally, several observation strategies may be appropriate across different 
vulnerabilities/patterns, and thus, reusing these strategies may also reduce the effort for effective test 
verdict arbitration. For instance, a cross-site scripting attempt as well as an SQL injection attempt may 
lead to error messages in the SUT’s frontend (user interface) or backend (log files). Therefore, tests 
for several vulnerabilities may benefit from an implementation of the corresponding observation 
strategy without losing the precision of the verdict arbitration. Additionally, they may also allow a 
precise verdict arbitration that can be performed automatically. 

However, an implementation may strongly depend on the SUT’s implementation. Checking for added 
records in a database depends on the installed database management system, its credentials required 
to access the database and the machine that the database hosts. While completely universal 
implementations of observation strategies are sometimes prevented, the abovementioned parameters 
for the security test strategies may overcome this impediment partially. These parameters can be used 
to give an observation strategy the necessary information to access the database and check its tables 
for newly added records. Thus, an implementation catalogue of observation strategies can be 
established that provides either generic implementations with parameters whose appropriate values 
are assigned during test pattern instantiation (see Section4) while some observation strategies may be 
generic without any parameters, e.g. checks for an error message in the frontend of a web application. 
However, there will still remain cases where an individual implementation of observation strategies is 
necessary. At least, when the implementation of an observation strategy for a certain system is done, 
the approach still enables automated security test generation and execution. 

3.2 Test Coverage Items 
According to ISO29119-1, a test coverage item is derived from a testable aspect of a component or 
system by a test design technique and enables the measurement of test execution [9]. Generally, test 
coverage items can be divided into two categories: they can be a part of the SUT, i.e. an interface, a 
protocol, a certain message or message parameter, or they can result from a test design technique 
and thus, constitute the test case space. For instance, fuzz testing can be used to determine test 
coverage [9]. 

Test coverage items serve two purposes: they are used as input for test purposes and test strategies 
for test case generation and as input for metrics. Items that are part of the SUT may serve as input for 
test purposes that are used for test sequence generation as basis for data and behavioral fuzzing 
(Section4.2) and may be employed by test strategies for data and behavioral fuzzing 
(Sections 3.1 and 5). Items that are part of the SUT and those that result from the test design 
technique may serve as input for test metrics, in particular test coverage metrics, of course (Section6). 

While the test coverage items that result from the test design technique can be automatically obtained 
by executing a security test strategy, this is not necessarily the case for those items that are part of the 
SUT. For instance, the interfaces that may be exercised in order to test for a weakness have to be 
determined manually. This can be done with tool support either in the risk model where vulnerabilities 
are mapped to SUT’s interfaces or during test pattern instantiation. 

3.3 Revised Security Test Pattern Description 
The security test pattern template is updated according the previous refinements resulting in the 
changes described in Table 9 

Original Field Change Rationale 

Solution removed manual solution 
The manual solution is realized by an 
implementation of the stimulation and observation 
strategies. 

Solution 
added field observation 
strategies 

As described in Section3.1.2, observation 
strategies are used to determine the test verdict 
and thus, are a natural supplement for a test 
pattern. 



 
 

 
  

RASEN - 316853 Page 26 / 61 
 

Original Field Change Rationale 

Test Coverage 
Items 

subdivided into several 
field 

Test coverage items are, according to Section3.2, 
divided into SUT dependent and test design 
technique dependent items divided. This 
facilitates their determination by the user and their 
usage for security testing metrics. 

Test Data removed 
Test data are generated by an implementation of 
a stimulation strategy, and thus, removed. 

Testing Tools removed 
Test tools are referenced by an implementation of 
a stimulation strategy, and thus, removed. 

Table 9 – Overview of Changes to Security Test Pattern Template 

 
Pattern Name A meaningful name for the pattern, e.g. the name of the weakness. 

CWE-ID(s) The IDs of a weakness from the Common Weakness Enumeration. 

Weakness 
Description 

A high-level description of the weakness. 

Solution Test Design 
Technique 

Test design technique that is able to find the weakness. 

Stimulation 
Strategies 

Stimulation strategies specify the goal to be achieved by 
generated test cases. 

Observation 
Strategies 

Observation strategies specify what shall be checked after 
test case execution in order to determine the test verdict. 

Effort The effort to generate and execute such test cases on a 
scale with the values ‘low’, ‘medium’, and ‘high’. 

Effectiveness How effective is the test design technique in finding such a 
weakness (how many test cases are necessary to find one 
weakness, how many weaknesses might be missed). 

Test Coverage 
Items 

SUT dependent Description of test coverage items in natural language that 
describe parts of the SUT that shall be exercised by test 
cases generated from this pattern. 

Test Design 
Technique 
Dependent 

Description of test coverage items in natural language that 
describe those that are relevant for test metrics. 

Metrics Appropriate security testing metrics. See Section6. 

Discussion A short discussion on the pitfalls of applying the pattern and the potential impact 
it has on test design in general and on other patterns applicable to that same 
context in particular. 

Specializations References to other security test patterns that are specializing this pattern. 

References  References to OWASP Top 10 weaknesses CWE descriptions, related CAPEC 
attack patterns 

Table 10 – Revised Security Test Pattern Template 



 
 

 
  

RASEN - 316853 Page 27 / 61 
 

3.4 Security Test Patterns 
According to the new test pattern description, we updated the existing test patterns presented in [1] 
and added some new patterns addressing vulnerabilities from the OWASP Top 10 vulnerabilities [10]. 

 

3.4.1 Improper Input Validation 

Pattern Name Improper Input Validation 

CWE-ID(s) CWE-20 

Weakness 
Description 

The product does not validate or incorrectly validates input that can affect the 
control flow or data flow of a program.[20] 

Solution Test Design 
Technique 

Data Fuzzing 

Stimulation 
Strategies 

ImproperInputValidation (subsumes all the stimulation 
strategies of the specializations of this pattern) 

Observation 
Strategies 

• Check for error message 

Effort Low to medium: can be highly automated using fuzzing 
techniques or injection dictionaries, in particular if a model 
of the protocol already exists. 

Effectiveness Low: Without any constraints, any kind of input that could 
possibly interpreted by the system under test has to be 
used as stimulus. 

Test Coverage 
Items 

SUT dependent • All interfaces of the system under test that get input 
from the external world, including the kind of data 
potentially exchanged through those interfaces [40] 

• User input fields 

Test Design 
Technique 
Dependent 

• Injection payloads 

Discussion The level of test automation for this pattern will mainly depend on the 
mechanism for submitting input to the SUT and for evaluating potential events 
triggered by an interpretation of the added probe code. [36 

Specializations • SQL Injection 
• Uncontrolled Format String 

References  • OWASP Top 10 (2013): A1-Injection[35] 
• CWE-20: Improper Input Validation[20] 
• CAPEC-152: Injection (Injecting Control Plane content through the Data 

Plane)[18] 

Table 11 – Security test pattern “Improper Input Validation” 

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/20.html
http://capec.mitre.org/data/definitions/152.html
http://capec.mitre.org/data/definitions/152.html


 
 

 
  

RASEN - 316853 Page 28 / 61 
 

3.4.2 SQL Injection 

Pattern Name SQL Injection 

CWE-ID(s) CWE-89 

Weakness 
Description 

The software constructs all or part of an SQL command using externally-
influenced input from an upstream component, but it does not neutralize or 
incorrectly neutralizes special elements that could modify the intended SQL 
command when it is sent to a downstream component.[21] 

Solution Test Design 
Technique 

Data fuzzing 

Stimulation 
Strategies 

SQL Injection 

Observation 
Strategies 

• Check database for new records 
• Check authentication state 
• Check for error message 
• Check for information disclosure 

Effort Low to medium: can be highly automated using fuzzing 
techniques or SQL injection dictionaries. 

Effectiveness Medium [21]to high, depending on detection capabilities by 
access to the affected database and to error messages 

Test Coverage 
Items 

SUT dependent • Functionality that involves user input, e.g. dialogs, 
URLs of a web application, that might be used in a 
database query 

• User and hidden input fields 
• Names of tables and rows of the database schema 
• Values of existing records 
• Identifier of one record of each table 

Test Design 
Technique 
Dependent 

• SQL injection payloads 

 

Discussion SQL injection is a task that could be rather trivial but also very complex. This 
depends on several factors. For instance, error messages resulting from 
incorrect SQL constructs caused by SQL injection are very helpful in deciding 
whether SQL injection is generally possible. 

In order to detect whether table data can be modified, it is helpful to have 
knowledge of the database management system (different systems have little 
differences in SQL syntax) and the database schema (modifying existing 
records may require knowledge in which tables they are stored). 

If SQL injection is possible, the extent of SQL injection can be assessed by 
trying to modify existing data which requires knowledge of existing values in 
the database tables. This enables to determine whether existing database 
entries can be read, modified or deleted. 

Specializations SQL Injection through a Database Abstraction Layer 

References  • OWASP Top 10 (2013): A1-Injection[35] 
• CWE-89: SQL Injection[21] 
• CAPEC-7: Blind SQL Injection[12] 
• CAPEC-66: SQL Injection[13] 
• OWASP Testing Guide: Testing for SQL Injection (OWASP-DV-005)[32] 
• OWASP: Automated Audit using SQLMap[39] 

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/89.html
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/66.html
http://capec.mitre.org/data/definitions/66.html
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-005%29
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-005%29
https://www.owasp.org/index.php/Automated_Audit_using_SQLMap
https://www.owasp.org/index.php/Automated_Audit_using_SQLMap


 
 

 
  

RASEN - 316853 Page 29 / 61 
 

Table 12 – Security Test Pattern “Improper Input Validation” 

3.4.3 SQL Injection through a Database Abstraction Layer 

Pattern Name SQL Injection through a Database Abstraction Layer 

CWE-ID(s) CWE-564, CWE-100 

Weakness 
Description 

Using a database abstraction layer to execute a dynamic SQL or abstraction 
layer-specific statement built with user-controlled input can allow an attacker to 
modify the statement's meaning or to execute arbitrary SQL or abstraction 
layer-specific commands.[28] 

Solution Test Design 
Technique 

Data Fuzzing 

Stimulation 
Strategies 

SQLInjection 

Observation 
Strategies 

• Check database for new records 
• Check authentication state 
• Check for error message 
• Check for information disclosure 

Effort Medium to high 

Effectiveness Medium 

Test Coverage 
Items 

SUT dependent • Functionality that involves user input, e.g. dialogs, 
URLs of a web application, that might be used in a 
database query 

• User and hidden input fields 
• Names of tables and rows of the database schema 
• Values of existing records 
• Identifier of one record of each table 

Test Design 
Technique 
Dependent 

• Database abstraction layer-specific injection payloads 

 

Discussion Using a database abstraction layer does not necessarily mean to be safe 
against SQL injections. A database abstraction layer may provide interfaces 
that can be used to avoid SQL injection vulnerabilities. However, such 
interfaces have to be used by the developer. Additionally, such a layer may 
provide its own query language (e.g. Hibernate provides HQL). Using such a 
query language may induce vulnerabilities to such a query language. 

Testing for vulnerabilities resulting from the inadequate usage of such a 
database abstraction layer requires testing for SQL injection vulnerabilities 
injected through abstraction-layer specific queries. This may require 
knowledge of the abstraction layer-specific language and how SQL queries are 
constructed from it. 

Specializations  

References • OWASP Top 10 (2013): A1-Injection[35] 
• OWASP Testing Guide: Testing for SQL Injection (OWASP-DV-005)[32] 
• CWE-564: SQL Injection: Hibernate[28] 
• OWASP Testing Guide: Testing for ORM Injection (OWASP-DV-007)[31] 

Table 13 – Security test pattern “SQL Injection through a Database Abstraction Layer” 

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-005%29
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-005%29
http://cwe.mitre.org/data/definitions/564.html
http://cwe.mitre.org/data/definitions/564.html
https://www.owasp.org/index.php/Testing_for_ORM_Injection
https://www.owasp.org/index.php/Testing_for_ORM_Injection


 
 

 
  

RASEN - 316853 Page 30 / 61 
 

3.4.4 Uncontrolled Format String 

Pattern Name Uncontrolled Format String 

CWE-ID(s) CWE-134 

Weakness 
Description 

The software uses externally-controlled format strings in printf-style functions, 
which can lead to buffer overflows or data representation problems. [23] 

Solution Test Design 
Technique 

Data Fuzzing 

Stimulation 
Strategies 

Format String 

Observation 
Strategies 

• Check for messages containing memory dumps 
(differing substantially from regular messages received 
when valid messages were sent) 

Effort Low: can be highly automated using fuzzing techniques 
and/or format string attack dictionaries. 

Effectiveness Medium [23]to high, depending on detection capabilities by 
access to error logs and error messages 

Test Coverage 
Items 

SUT dependent • Functionality that involves user input, e.g. dialogs, 
URLs of a web application, that might be used in a 
format string function  

• User input fields, parameters, external variables 

Test Design 
Technique 
Dependent 

• Format string attack payloads 

Discussion An attacker includes formatting characters in a string input field on the target 
application. Most applications assume that users will provide static text and 
may respond unpredictably to the presence of formatting character. For 
example, in certain functions of the C programming languages such as printf, 
the formatting character %s will print the contents of a memory location 
expecting this location to identify a string and the formatting character %n 
prints the number of DWORD written in the memory.[17] 

Specializations  

References • OWASP Top 10 (2013): A1-Injection[35] 
• CWE-134: Uncontrolled Format String[23] 
• CAPEC-67: String Format Overflow in syslog()[14] 
• CAPEC-135: Format String Injection[17] 
• OWASP Testing Guide: Testing for Format String[33] 

Table 14 – Security test pattern “Uncontrolled Format String” 

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/134.html
http://capec.mitre.org/data/definitions/67.html
http://capec.mitre.org/data/definitions/67.html
http://capec.mitre.org/data/definitions/135.html
http://capec.mitre.org/data/definitions/135.html
https://www.owasp.org/index.php/Testing_for_Format_String
https://www.owasp.org/index.php/Testing_for_Format_String


 
 

 
  

RASEN - 316853 Page 31 / 61 
 

3.4.5 Missing Authentication for Critical Function 

Pattern Name Missing Authentication for Critical Function 

CWE-ID(s) CWE-306 

Weakness 
Description 

The software does not perform any authentication for functionality that requires 
a provable user identity.[26] 

Solution Test Design 
Technique 

Behavioral Fuzzing 

Stimulation 
Strategies 

Missing Authentication (see Section5.2) 

Observation 
Strategies 

• Check for successfully invoked function 

Effort Low 

Effectiveness High 

Test Coverage 
Items 

SUT dependent • Interfaces that provide functions requiring 
authentication 

• Functions that require authentication  
• Authentication messages 

Test Design 
Technique 
dependent 

• All sequences trying to access functions requiring 
authentication without prior authentication 

Discussion Missing access control on function level can be exploited if authentication is 
performed on client-side but not on server-side or if it is just missing. 

Specializations  

References • OWASP Top 10 (2013): A7-Missing Function Level Access Control[37] 
• CWE-306: Missing Authentication for Critical Function[26] 

Table 15 – Security test pattern “Missing Authentication for Critical Function” 

 

https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/306.html


 
 

 
  

RASEN - 316853 Page 32 / 61 
 

3.4.6 Authentication Bypass by Replay Attack 

Pattern Name Authentication Bypass by Replay Attack 

CWE-ID(s) CWE-294 

Weakness 
Description 

A capture-replay flaw exists when the design of the software makes it possible 
for a malicious user to sniff network traffic and bypass authentication by 
replaying it to the server in question to the same effect as the original message 
(or with minor changes). [24] 

Solution Test Design 
Technique 

Behavioral Fuzzing 

Stimulation 
Strategies 

Capture Replay Attack (see Section5.1) 

Observation 
Strategies 

• Check authentication state 

Effort Low 

Effectiveness High 

Test Coverage 
Items 

SUT dependent • Interfaces that provide functions requiring 
authentication 

• Authentication messages 

Test Design 
Technique 
dependent 

• All sequences trying to perform a capture-replay attack 

Discussion Capture-replay attacks are common and can be difficult to defeat without 
cryptography. They are a subset of network injection attacks that rely on 
observing previously-sent valid commands, then changing them slightly if 
necessary and resending the same commands to the server. [24] 

Specializations  

References  • OWASP Top 10 (2013): A2-Broken Authentication and Session 
Management[36] 

• CWE-294: Authentication Bypass by Capture-replay[24] 

Table 16 – Security test pattern “Authentication Bypass by Replay Attack” 

 

https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
http://cwe.mitre.org/data/definitions/294.html
http://cwe.mitre.org/data/definitions/294.html


 
 

 
  

RASEN - 316853 Page 33 / 61 
 

3.4.7 Cross-Site Request Forgery 

Pattern Name Cross-Site Request Forgery (CSRF) 

CWE-ID(s) CWE-352 

Weakness 
Description 

The web application does not, or cannot, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who 
submitted the request. [27] 

Solution Test Design 
Technique 

Behavioral Fuzzing 

Stimulation 
Strategies 

CSRF Attack (see Section5.3) 

Observation 
Strategies 

• Check for successfully performed request 

Effort Low 

Effectiveness High 

Test Coverage 
Items 

SUT dependent • Interfaces that provide functions requiring 
authentication 

• messages 

Test Design 
Technique 
dependent 

• All sequences trying to perform a CSRF attack 

Discussion When a web server is designed to receive a request from a client without any 
mechanism for verifying that it was intentionally sent, then it might be possible 
for an attacker to trick a client into making an unintentional request to the web 
server which will be treated as an authentic request. This can be done via a 
URL, image load, XMLHttpRequest, etc. and can result in exposure of data or 
unintended code execution. [27] 

Specializations  

References  • OWASP Top 10 (2013): A8-Cross-Site Request Forgery[38] 
• CWE-352: Cross-Site Request Forgery (CSRF) [27] 

Table 17 – Security test pattern “Cross-Site Request Forgery” 

 

3.5 Formalization of Test Patterns with Test Purpose Language 
A test pattern is the expression of the essence of a well-understood solution to a recurring software 
testing problem. It can be represented as a table containing informal information about the problem. In 
the RASEN project, we would like to formalize the pattern part concerning the test intention, in order to 
produce automatically the corresponding test cases with model based testing. 

3.5.1 Test Purpose Language 
Within model-based testing, we propose to use a dedicated language, called Test Purpose Language. 
A test purpose is a textual expression, based on a regular expression that formalizes a test intention 
linked to a testing objective to drive the automated test generation on the behavioral model. 
This language should also be close to natural language, in order to make it possible to understand the 
test objective easily, without prior test purpose language knowledge. The language description is 
detailed in the RASEN deliverable D4.2.1. [1]. The language enables to create several test objectives 
from a unique expression. 

https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_%28CSRF%29
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_%28CSRF%29
http://cwe.mitre.org/data/definitions/306.html


 
 

 
  

RASEN - 316853 Page 34 / 61 
 

3.5.2 Test Purpose Example 
 
In the RASEN context, we propose to use test purposes to formalize security test patterns. This allows 
the formalization of security test intention in terms of states to be reached and operations to be called. 
 
As an example, the test pattern 2 [Appendix 8.1] concerning SQL Injection describes manual solutions 
based on attack pattern CAPEC-66. We can read in this Section: 
 
Use the application, client or web browser to inject SQL constructs input through text fields or through HTTP GET parameters. 
 

The idea is to inject SQL constructs on each input, and of each page of the application. 

So we would like to obtain tests that navigate through the application to reach each of its pages, and 
then inject the SQL construct on each input field of this page. Each of those tests will be executed for 
each SQL construct provided by one of the Test Data tool specified in the Test Pattern, here Fuzzing 
Library Fuzzino [43].  

This can be represented by a test purpose as shown in Figure 13. 

 

3.5.3 Test Purpose Catalog 
 
This test purpose is stored in a Test Purpose catalog (in xml format), with a reference to the pattern it 
belongs to. During the test generation process, regarding the information present in the CORAS 
diagram, the corresponding test pattern is chosen and the correct test purposes are selected for the 
test generation.  
 
The test purposes must be generic and applicable to any SUT model, which are created using UML 
within the RASEN technology. For this reasons, some rules have to be respected when creating UML 
models of the SUT. For instance each input (text fields, http parameters, ...) must be represented as 
an instance of the “Param” class, each page as an instance of the “Page” class, and so on. To make it 
easier to create such a model, a domain-specific language (DSL) has been created. 

3.5.4 DSL for Test Model Creation 
The wizard presented in Section 4.1 enables to generate a UML model describing the SUT from a file 
in the DSL format.  

This DSL is designed to capture the minimal information needed to navigate through all the SUT 
pages, and for each page the actions and inputs it contains, and the navigations between the pages, 
as shown in Figure 14. 

for_eachinstance $param from 
"Data.allInstances()->select(d:Data|not(d.action.oclIsUndefined()))" on_instance sut, 
 
useany_operationany_number_of_timesto_reach 
"SUT.allInstances()->any(true).webAppStructure.ongoingAction.all_inputs-
>exists(d:Data|d=self)" on_instance $param then 
 
use threat.injectSQLi($param) then 
 
useany_operationany_number_of_timesto_reach 
 "self.webAppStructure.ongoingAction.oclIsUndefined()"  
on_instance sut then 
 

use threat.checkBlindSQLi() 

Figure 16 – Test Purpose sample for SQL Injection 



 
 

 
  

RASEN - 316853 Page 35 / 61 
 

 

 

 

An example from the Medipedia Use Case can be found in Appendix 8.2.  

The UML model of the SUT generated from the presented DSL can be completed later to add more 
information and to specify further functional constraints about the SUT’s expected behavior. However, 
it can be directly used as it is to generate test cases from the selected test purposes. 

PAGES { 

 “PAGE1”:INIT { 

  ACTIONS { 

   “ACTION1” (“PARAM1” = “value1” => “PAGE2”, “PARAM2” = “value2”) 

    -> “PAGE2”, 

   “ACTION2” ( …) 

    -> "PAGE3"} 

  NAVIGATIONS { 

   "GOTO_PAGE4" 

    -> "PAGE4"} 

 } 

 "PAGE2" { … 

 }… 

} 

 Figure 17 – DSL structure for test model creation 



 
 

 
  

RASEN - 316853 Page 36 / 61 
 

4 Instantiating Test Patterns for Test Case Generation 
When test patterns relevant for the analyzed risks are selected and prioritized, test cases have to be 
generated. This is called test pattern instantiation. During instantiation, all the relevant values are 
determined and used to prepare and subsequently perform the test case generation. Currently, the 
instantiation process consists of four steps. 

1. Identification of test coverage items 

Test coverage items that are part of the SUT are determined in this step. The items are taken 
from a system model of the SUT. Since the identification of test coverage items has to be 
performed manually (see Section 3.2), it should be supported by a tool. The natural language 
item descriptions also support the user in how to determine appropriate model elements. The 
identified items serve as input for step 2. Test coverage items are described in Section 3.2. 

2. Application of stimulation strategies 

In this step, the identified test coverage items determined in step 1 are used to annotate them 
with the stimulation strategies referenced. For this purpose, we developed a UML profile that 
contains all the supported stimulation strategies. Its stereotypes are applied to the system 
model and reference the identified coverage items. Stimulation strategies are described in 
Section 3.1.1. 

3. Test sequence generation 

In this step, test sequences as UML sequence diagrams are generated from the behavioral 
description of the system model. Generic test purpose definitions are supplemented with the 
elements annotated with stimulation strategies that shall be part of the test sequences. The 
test sequences constitute valid message sequences and test data. This process is described 
in Section 4.2. 

4. Behavioral fuzz test case generation 

On the basis of the generated test sequences, behavioral fuzzing is applied when 
corresponding stimulation strategies are referenced by the test pattern. As a result, behavioral 
fuzz test cases are generated as UML sequence diagrams. Corresponding stimulation 
strategies and their realization employing behavioral fuzzing are described in Section 5. 

 

4.1 Overview of the Test Generation Process 
 

 

Figure 18– Test Generation Process 
 



 
 

 
  

RASEN - 316853 Page 37 / 61 
 

The process starts on the left at the risk model as a result from the risk assessment. As introduced in 
Section 2, a CORAS risk model (in relation with associated generic test pattern and vulnerability 
catalogues) enables to select security test purposes and to prioritize them regarding risk estimation. 
Security test patterns express the testing procedures of recurring problems in security testing and 
drive the risk-based security test generation. Figure 19 shows an example of such a CORAS risk 
model describing the SQL Injection threat scenario. 
 

 
Figure 19 – Example of Risk Model from CORAS Tool 

 



 
 

 
  

RASEN - 316853 Page 38 / 61 
 

 
(a) Initialization of the Test Project 

 

 
(b) Definition of the testing Artefacts to import 

Figure 20– Configuration Screenshots to create the Test Project 



 
 

 
  

RASEN - 316853 Page 39 / 61 
 

 

Figure 20 depicts the screenshots of the RASEN tooling to initialize the test project. It allows creating 
all of the artefacts needed to apply the RASEN security testing strategies in a single environment: 

• Each identified threat scenario of the CORAS risk model is linked to a dedicated security test 
pattern (introduced in Section 3) that defines the testing procedure allowing the detection of 
the corresponding threat in the system under test. This way, the security test patterns that 
have to be used by the test generation algorithm are gathered from the threat scenarios of 
each CORAS model related to the SUT. Moreover, likelihood and consequence are also 
collected from the CORAS model to assign a priority to the threat scenarios, and thus to 
prioritize them. 

• To apply Model-Based approach, a UML test model is generated, using the DSL introduced in 
Section 3.5.4, to represent the Web application to be tested. Concretely, a UML test model 
consists of a class diagram to represent the static view of the system (with classes, 
associations, enumerations, class attributes and operations), a UML Object diagram to list the 
concrete objects used to compute test cases and to define the initial state of the system under 
test, and finally a state machine annotated with constraints (the Object Constraint Language 
specified by the OMG) to specify the dynamic view of the system. 

 

For example, Figure 21 illustrates the resulting state machine of the SUT, which is automatically 
generated from the DSL instructions. This diagram graphically represents the behavioral aspect of the 
INFOWORLD "Medipedia" case-study, by modeling the navigation between pages of this Web 
application. States model Web pages, and transitions model the available links between these Web 
pages (HTML links, form submissions, etc.). Triggers of transitions are the UML operations of the 
class diagram. Guards of transitions (specified using OCL) precisely define the execution context of 
the transition. Finally, effects of the transitions (also specified using OCL) precisely describe its 
expected behavior that should be modeled for vulnerability test generation. 

This model is also annotated by the test purpose identifiers and related information about prioritization 
and test procedure to be applied, which are inherited from the CORAS risk model and linked to test 
pattern catalog. 



 
 

 
  

RASEN - 316853 Page 40 / 61 
 

 

Figure 21 – State Machine of the SUT annotated by Test Purpose Identifiers 
 

The next subsection introduces the test generation approach that is used to derive the security test 
cases from the test model and security test purposes. 

 

4.2 Test Sequence Generation based on Security Test Purposes 
Security test patterns based on prioritized vulnerabilities from the CORAS risk model thus provide the 
starting point for security test case derivation by providing information how appropriate security test 
cases can be created from risk analysis results. Therefore, as shown in Section 3 and depicted in 
Figure 22, dedicated and generic test purposes make it possible to formalize each targeted 
vulnerability imported from the test pattern catalogue. Hence, the test purpose, which is a high level or 
regular expression that formalizes a test objective (in terms of states to be reached, behaviors to be 
activated and operations to be called), is used to drive the automated test generation on the 
behavioral test model of the application under test.  



 
 

 
  

RASEN - 316853 Page 41 / 61 
 

 

Figure 22 – Test Purpose Definition and Information 
 
Each test purpose produces one or more abstract test cases verifying the test purpose specification 
and the behavioral test model constraints. As shown in Figure 23, such a test case takes the form of a 
sequence of steps, where a step corresponds to an operation call representing either an action or an 
observation of the system under test. It also embeds the security test strategies (from security test 
patterns) that is next used to apply data and behavioral fuzzing strategies during test scripts 
generation and execution. 

Each test case can also be described and handled using UTP sequence diagrams. 



 
 

 
  

RASEN - 316853 Page 42 / 61 
 

 

Figure 23 – Example of Abstract Test Cases Generated for SQLI 
 

4.3 Test Case Execution 
The last phase consists of exporting and executing the test cases in the execution environment. In our 
case, it consists of creating a JUnit test suite, where each abstract fuzzed test case is exported as a 
JUnit test case, and creating an interface. This interface defines the prototype of each operation of the 
application and links the abstract structures / data of the test cases to the concrete ones. Figure 24 
shows a JUnit environment supporting the management of the executable test suite and its 
computation to assign the execution verdict. 
 



 
 

 
  

RASEN - 316853 Page 43 / 61 
 

 

Figure 24– Screenshot of test execution using a JUnit environment 



 
 

 
  

RASEN - 316853 Page 44 / 61 
 

 

Since this process ensures the traceability between the verdict of the test case execution and the 
targeted vulnerabilities identified during risk assessment, the test results are gathered to automatically 
complement the risk picture of the system under test.  

This overall testing process has been experimented using the industrial case-studies proposed by the 
RASEN project partners (Software AG, InfoWorld and Evry), and has proven to be successful 
regarding risk assessment guidance. However, these experiments have to be carried on to confirm the 
relevance and benefits of the approach to address large scale systems. For the last year of the 
RASEN project, in order to demonstrate such a scalability, we will evaluate the capacity of the 
approach to support a compositional testing strategy. On the one hand, this strategy is based on the 
composition of the test model and directives, which should enable to aggregate and re-use results 
from sub-models when addressing a global system. On the other hand, the use of the DSL, introduced 
in Section 3.5.4, should help and ease engineers to deal with large-scale systems by providing a 
simplified language to incrementally specify the SUT. These features, combined with the high level of 
automation of the RASEN techniques (about risk assessment guidance), should offer an iterative and 
incremental approach to perform risk-based testing for large-scale systems. 

 



 
 

 
  

RASEN - 316853 Page 45 / 61 
 

5 Behavioral Fuzzing for Security Testing 
Behavioral fuzzing consists in mutating a valid message sequence to an invalid one by, for instance, 
removing or moving messages or modifying control structures (e.g. if-conditions, loop bounds). For 
this purpose, dedicated operators have been developed for UML sequence diagrams [D4.1.1, 
Behavioral fuzzing operators for UML sequence diagrams]. However, an invalid message sequence 
generated by applying a single behavioral fuzzing operator generally does not necessarily address a 
certain weakness. We explain how behavioral fuzzing operators can be composed such that a certain 
weakness is addressed on the example of the OWASP Top 10 weakness “broken authentication and 
session management”. Employing compositional behavioral fuzzing operators narrows the scope of 
behavioral fuzzing to certain weaknesses and thus, reduces the number of test cases to be generated. 
This goal can also be achieved if the elements to which behavioral fuzzing operators are applied are 
constrained.  

Therefore, we considered OWASP Top 10 vulnerabilities, and selected those vulnerabilities that may 
be revealed by behavioral fuzzing. In the next step, we looked at the actual message sequences that 
triggers these vulnerabilities and how these message sequences can be constructed from a valid 
message sequence by behavioral fuzzing operators. 

The result of this process are stimulation strategies for the OWASP Top 10 vulnerabilities and their 
realization using behavioral fuzzing operators for UML sequence diagrams where several operators 
are composed and the elements to which they are applied are constrained. Additionally, there are 
often several ways to address a certain weakness depending on the weakness and the way the 
protocol is modelled (see Section5.2). 

5.1 Broken Authentication and Session Management (OWASP Top 
10 A2) 

This item of the OWASP Top 10 subsumes several weaknesses such as authentication bypass issues 
(CWE-592) and session fixation (CWE-384). An authentication bypass issue may be a capture-replay 
attack (CWE-294). This means that a valid login request is captured by an attacker and replayed later 
on to gain access to a system without proper credentials. 

Behavioral fuzzing is able to trigger such weaknesses from a valid message sequence containing a 
login message and a logout message. Applying the behavioral fuzzing operator “Repeat Message” to 
the login message and applying the “Move Message” operator to the repeated login message in order 
to move it after the logout message. This composition of behavioral fuzzing operators imitates a 
capture-replay-attack. 

However, such an attack is usually performed by an attacker from another machine. Behavioral 
fuzzing operators developed so far are not able to cope with this fact. When performing behavioral 
fuzzing, a valid UML sequence diagram is used and behavioral fuzzing operators are applied to 
elements of this sequence diagram (i.e. messages and combined fragments) in order to generate an 
invalid one. The lifelines of such a sequence diagram represent valid actors, e.g. a client, and the 
system under test. Security testing that considers malicious users, known as attackers, are not 
represented by such a valid sequence diagram. However, simply adding a lifeline for the attacker is 
not sufficient because this attacker has to perform its attack by sending malicious messages or 
message sequences to the SUT. These messages may result from behavioral fuzzing. 

 

Figure 25 – (a) Valid message sequence and (b) resulting sequence after applying the operator 
“Move Message End to Other Lifeline” 



 
 

 
  

RASEN - 316853 Page 46 / 61 
 

 

A capture-replay attack is performed by e.g. sniffing network traffic of a valid user that interacts with 
the system the attacker would like to gain access. The sniffed network traffic is then replayed by the 
attacker using its own machine. This can be simulated by the attacker’s lifeline in the sequence 
diagram and requires a new behavioral fuzzing operator that moves one end of a message to another 
lifeline. This is depicted in Figure 25: (a) shows a valid message sequence consisting of a single login 
message. When performing behavioral fuzzing for security testing, a lifeline representing the attacker 
is added (b). The behavioral fuzzing operator “Move Message End to Other Lifeline” was applied to the 
login message to move the sending message end to the lifeline that represents the attacker. 

Using the new behavioral fuzzing operator, another composition of operators is possible in order to 
generate a capture-replay attack that brings the attacker into play: “Repeat Message” is applied to the 
login message and afterwards, the sending message end of the repeated login message is moved 
from the Client lifeline to the Attacker lifeline. 

 

Figure 26: A capture-replay attack generated from applying (a) “Repeat Message” and “Move 
Message” and (b) “Repeat Message” and “Move Message End to Other Lifeline” 

 

5.2 Missing Function Level Access Control (OWASP Top 10 A7) 
This weakness addresses two aspects of access control: authentication and authorization. 
Weaknesses in the implementation may allow an unauthenticated user to get access to functions that 
require authentication or authenticated users to get access to functions for which the user has not the 
appropriate authorization. This may result if the authentication or authorization checks are 
implemented in a client and are not performed by the server. Therefore, such weaknesses may be 
revealed if the communication with server is not performed using the client application but directly on 
the protocol level. For instance, in case of a web application, an HTTP request to an authentication or 
authorization requiring function can be performed that cannot be done from the currently active web 
page. If the access control is not performed by the server, such an HTTP may be successful but must 
not. 

Checking function level access control can be done using behavioral fuzzing by applying the operator 
“Remove Message” to the authentication message.  

Authorization issues can be partially addressed by behavioral fuzzing, e.g. by inserting a message that 
requires higher authorization than the currently logged in user has, or by modifying combined 
fragments of a sequence diagram: 

 The operator “Exchange Message” can be applied to the logon message and exchange it with 
another one with fewer privileges. 

 If combined fragments are used to specify which functionally can be invoked depending on the 
authorization of a user, the corresponding guards can be modified by the “Negate Interaction 
Constraint” operator in case of a combined fragment of kind “optional”, and by the “Exchange 
Interaction Constraints” in case of an “alternatives” combined fragment. 



 
 

 
  

RASEN - 316853 Page 47 / 61 
 

 

Figure 27: Checking for missing function level access control by applying "Exchange 
Interaction Constraints" to the alternative combined fragment (a) that tests whether a standard 

user can call administrator functionality (b) 
 

5.3 Cross-Site Request Forgery (OWASP Top 10 A8) 
Cross-site request forgery (CSRF) means that an attacker brings a user to make HTTP requests to a 
website that trusts a user. Thus, the attacker can perform requests with the credentials and the 
privileges of the user that performs as a proxy of the CSRF attack. This can be done by URL injected 
in an image-tag’s source attribute of an HTML formatted e-mail that might be automatically followed by 
the e-mail client software. There have been several CSRF attacks in the past [41],[42]. A CSRF 
weakness can be triggered by the behavioral fuzzing operator “Insert Message” that uses e.g. an 
invalid token (see Figure 28) or no token, depending on the protocol. 

 

Figure 28 – A CSRF attack generated from a valid sequence (a) that calls a function by a valid 
token and (b) the resulting message sequence after "Insert Message" has been applied 



 
 

 
  

RASEN - 316853 Page 48 / 61 
 

6 Security Testing Metrics 
Security metrics in general are described in [3]. Security testing metrics are a special case of security 
metrics providing generic functions that can be used to evaluate and interpret results from security 
testing. 

Within the RASEN context, security testing metrics are a concept for the transfer of information from 
security testing to risk assessment. The results of the security testing metric functions should help to 
characterize the security risks of the system under test. Hence, it should be possible to improve a risk 
assessment based upon the results. Ideally, the functions of the security testing metrics yield risk 
assessment artifacts without requiring any further manual analysis effort or non-trivial conversions. 

Taking test results and other information about the test and the system under test as input, these 
functions might for example be used to calculate likelihood values for the exploitability of some threat 
scenario. Testing metrics should support automation as far as possible. Unfortunately, there are no 
extensive catalogues with security testing metrics that are adequate for automation. Hence, we 
designed a new formal security testing metrics format and we started to build a new security testing 
metrics catalogue using that format. 

6.1 RASEN Security Testing Metrics Format 
Security testing metrics must have a name and a unique identifier. If some metric is altered in a way 
that it produces different results, then a new unique identifier has to be chosen for the altered metric. 

Field Description Format 

Identifier 
Unique identifier, new for each version 
significantly changed 

Number 

Name Meaningful identifier Text 

Category 
Generalization of what the metric can be used 
for 

Text 

[Parameter] >0 
Type The type of the parameter 

XSD or text (notation 
format, {code}) 

Description Information about the parameter Informal XHTML 

Return value 
Type The return type 

XSD or text (notation 
format, {code}) 

Description Information about the return value Informal XHTML 

[Function] >0 
Notation 

The notation format, e.g. the name of the 
programming language 

Text 

Code Function signature and function body {In function notation} 

Description for all Functions Information about what the functions do Informal XHTML 

[Feedback] ≥0 

User Who gives the feedback RFC 822 Address 

Rating Overall rating from poor (0) to excellent (10) Number 

Application How has the metric been used or analyzed? Informal XHTML 

Results Description of the results Informal XHTML 

Comments User experiences Informal XHTML 

Table 18 – The RASEN security testing metric structured format 



 
 

 
  

RASEN - 316853 Page 49 / 61 
 

In contrast to the identifier, the name is not required to be unique. The name should be descriptive for 
the entire testing metric. 

Each security testing metric has at least one input parameter. Input parameters are specified with type 
and an informal description of what the parameter is expected to be semantically. 

Any security testing metric returns one single value, for which a type has to be specified and a 
description has to be provided. Since the type of the return value might be a complex type, it is 
possible to return any number of objects. 

The actual function of a security testing metric might be noted in some programming language. It is 
possible and encouraged to give multiple different notations of the same function within a single 
metric. However, all functions within one metric must produce exactly the same results. Because all 
functions noted within one metric are required to produce identical outputs, there should be only a 
single common human readable description for all notations within each security testing pattern. 

Optionally, security testing metrics might contain user feedback. Testing metrics should be shared and 
reused, thereby the community might provide vital information. Users might want to share what they 
did, what the results were and what their overall impression is. Note that adding feedback information 
does never require a new unique identifier for the metric because the functions of the metric still 
produce the same results. 

Table 18 shows the full structured format of RASEN security testing metrics. 

6.2 Application of Security Testing Metrics within the Combined 
Risk Assessment and Security Testing Process 

In the RASEN project, we develop a combined process of Test-Based Security Risk Assessment 
(TBRA – sometimes also TBSR is used as acronym) and Risk-Based Security Testing (RBST) as 
shown in Figure 29. The security testing metrics are vital for the TBRA step between test execution 
and security risk assessment. 

 

Figure 29 – Combined TBRA and RBST process 



 
 

 
  

RASEN - 316853 Page 50 / 61 
 

 

The RBST step between test identification and test preparation is basically done with the help of 
security test patterns and their relations to risk analysis artifacts as well as to system components. 
With the help of appropriate security test patterns, automated risk-based test case generation and test 
execution can be achieved. Test patterns also contain observation strategies, which can be used to 
collect raw test results. 

Since the combined process includes Test-Based Security Risk Assessment, tests and the obtained 
test results should contribute to improve the risk assessment. Therefore, the tests and their results 
have to be further interpreted and evaluated. This is precisely where the security testing metrics come 
into play. Sound interpretation is highly dependent on the tests themselves. It depends on what was 
tested and how it was tested. That is basically the information that a test pattern contains. Therefore, 
the test patterns should indicate which security test metrics are most appropriate to analyze the testing 
process and the test results. 

Each test pattern may suggest multiple applicable test metrics. For highly pattern specific metrics, the 
test pattern should contain the entire security testing metric. In contrast, for metrics that are more 
pattern independent, giving just the ID of the security testing metrics and keeping the metric separately 
so that it can be shared with other test patterns is preferable. 

The risk analysts decide manually which metrics they want to use. Chosen metrics have to be 
instantiated, which should be possible at least semi automatically. Since all alternative function codes 
of each metric are required to produce equivalent results, it is possible to select the code format that 
fits best in the tool environment used for evaluating the function. Any function of a security testing 
metric will always require data for some input parameters. Typically, information used to instantiate 
and configure the test pattern has to be passed as input to the testing metric function. This includes 
especially, which elements of the risk model are actually tested. Additionally, any function of a security 
testing metric will expect information about the executed test cases and about the results that are 
observed with the help of the observation strategies of the test pattern. Some metric’s functions might 
need further information, for example about the test execution time or about the entire time spend on 
testing including the instantiation of the test pattern. Security test patterns should contain information 
and even code snippets that help assigning the input parameters and calling the functions of the 
suggested metrics correctly. We refer to this as a bridge between a test pattern and a testing metric. 

6.3 Categories of Metrics 

6.3.1 List Up Metrics 
These are the most basic kind of a testing metrics. Applying their functions does nothing but listing up 
a summary of the most important test results in a format specified by the metric. The results may be 
used as documentation in the risk graphs.  

Additionally, list up metrics can be used to identify any unexpected incidents. These can be suggested 
as potential new unwanted incidents to the risk analysts. 

6.3.2 Coverage Metrics 
This kind of metric tries to calculate how complete the testing was. Such metrics measure for example, 
how much of the potential input value space has actually been created as test data or how much of 
the code of the system under test has in fact been executed during the testing process. Coverage 
metrics are widely used for all kinds of testing and there is a large amount of literature on that subject 
[6][5][4]. 

Coverage metrics are typically used as an indicator for the overall test quality. Results can be used for 
documentation purpose within the risk analysis. Eventually coverage of negative tests might be an 
indicator for the likelihood that some vulnerability exists at all.  



 
 

 
  

RASEN - 316853 Page 51 / 61 
 

6.3.3 Efficiency Metrics 
Efficiency metrics are used to calculate how much effort has been spend for testing. These metrics are 
especially interesting for the case that with the testing effort spend so far no fault or unwanted incident 
has been triggered. The idea is that using the same attack strategy which was used for testing, an 
attacker will probably have to spend even more resources in order to trigger an unwanted incident. 

The result of an efficiency metrics for security testing is an indicator for the costs of related threat 
scenario. Taking the resources and the calculation power potential attackers have in relation to these 
costs might be a good indicator for the likelihood that the threat scenario will be exploited successfully 
within a given time period. 

6.3.4 Technical impact metrics 
A technical impact metric tries to evaluate how much an entire system was affected by the testing 
process. Such metrics can be used to interpret the occurrence of multiple incidents in conjunction. 
Technical impact metrics are for example applicable to analyze the robustness against denial of 
service attacks. 

6.4 Exemplary Security Testing Metric and its Instantiation 
For demonstration, we present here an advanced high level efficiency metric. It analyzes the test 
results from an economical point of view. 

Field Description 

Identifier 201 

Name Monetary_Feasibility 

Category Efficiency metric 

Parameter 
Tests_Executed 

Type xsd:long 

Description Total number of tests that were executed 

Parameter 
Tests_Successfull 

Type xsd:long 

Description Number of tests that did not trigger any unwanted incidents 

Parameter  
Testing_Duration 

Type xsd:long 

Description Duration of the entire testing process in milliseconds 

Parameter 
Attackers_Funding_Base 

Type xsd:long 

Description 
Optional. How much money would potential attackers 
spend? 

Parameter 
Related_Risk_Artefact 

Type <xsd:complexType name=”CBaseNodeInRiskGraph”> … 

Description 

Optional. The extended CORAS risk analysis artefact the 
test pattern is associated with. Typically this is a threat 
scenario. Used only to calculate attackers funding base if 
parameter Attackers_Funding_Base is not specified. 

Parameter 
Test_System_Costs 

Type xsd:long 

Description 
Optional. The price of the technical systems used for 
generating and executing the test 

Parameter  Type xsd:long 



 
 

 
  

RASEN - 316853 Page 52 / 61 
 

Field Description 

Testing_Costs_Per_Hour Description Optional. Estimated running costs for testing one hour 

Return value 

Type <xsd:complexType name=”CLikelihoodFunction”> … 

Description 

This is an expression of likelihood as a function over time. 
The function can be used to calculate for any given point of 
time the likelihood that the related unwanted incidents or 
faults will be triggered by attackers. The likelihood function 
expects a starting point of time as input and it returns some 
constant likelihood value as output. 

Function 
Notation CSharp 

Code … 

Description for all Functions 

First of all, the function calculates how long it takes to 
trigger an unwanted incident or fault. If no incidents have 
been triggered, then it is assumed that it will probably take 
twice the Testing_Duration. Let T be the calculated time it 
takes to trigger an incident with the system used for testing. 

Then the function calculates the price PN indicating how 
expensive it is currently to trigger an unwanted incident, i.e.: 

𝑃𝑁 = 𝑇𝑒𝑠𝑡_𝑆𝑦𝑠𝑡𝑒𝑚_𝐶𝑜𝑠𝑡𝑠 +  𝑇𝑒𝑠𝑡𝑖𝑛𝑔_𝐶𝑜𝑠𝑡𝑠_𝑃𝑒𝑟_𝐻𝑜𝑢𝑟 ∗  𝑇 

If the parameters are not specified, then default values 
Test_System_Costs = 1000 € and  
Testing_Costs_Per_Hour = 30 € are used. 

Due to technical progress, it is expected that the price will 
be halved at least every four years. Let X be the time 
between now and the beginning of the attack in years. Then 
the price PX at the time now plus X years is: 

𝑃𝑋 =  𝑃𝑁 ∗ 0.5𝑋÷4 

Let C be the amount of money a potential attacker would 
probably spend. If the parameter Attackers_Funding_Base 
is set, then C is set to its value. 

Else if Related_Risk_Artefact is set, then the function tries 
to identify all the assets that might be affected if that risk 
artefact is exploited. The sum of the monetary values 
associated with these assets is in indicator for how much 
money probably attackers would be willing to spend. Hence, 
C is set to that sum. The function also tries to identify all 
human threats that might become attackers. If their financial 
capability is specified, then C is reduced to the highest 
financial capability of a potential attacker. 

If neither parameter Attackers_Funding_Base nor 
parameter Related_Risk_Artefact are set, then C is set to a 
default value of 3000 €. 

The returned likelihood function calculates time period X 
from its start time parameter and the point of time N for 
which PN was calculated. It yields the following values: 

Description for all Functions (continued) Low  if 𝑃𝑋 ÷ 𝐶 > 1 



 
 

 
  

RASEN - 316853 Page 53 / 61 
 

Field Description 

Medium if 0.1 ≤ 𝑃𝑋 ÷ 𝐶 ≤ 1 

High  if 𝑃𝑋 ÷ 𝐶 < 0.1 

Table 19 – Efficiency metric for economic feasibility 
 
The efficiency metric for economic feasibility shown in Table 19 can take benefit from the information 
that an extended CORAS risk graph can provide about the assets and about the human threats. 
However, since the one and only method specific parameter Related_Risk_Artefact is optional, the 
metric can also be used with other risk assessment methods. 

Instantiation of the shown security testing metric can be completely automated. All non-optional 
parameters can be taken directly from the testing process. Values for Tests_Executed and 
Tests_Successfull can be obtained from the pattern code for test generation and test observation. 
Testing_Duration for completely automated testing is basically the test case generation time plus the 
test execution and observation time, so a value can also be produced with the help of the test pattern 
code itself. If CORAS is used for risk assessment, then the Related_Risk_Artefact parameter can be 
assigned automatically, too, since the test pattern is associated with some rick analysis artefact within 
the RBST process. 

No doubt, the non-optional parameters can be taken directly from the testing process – but how 
exactly? For automation, there must be some kind of bridge, some mapping between the principally 
available information and the actual parameters of the security testing metric function which should be 
called. This bridge can be a code snippet that just passes values from the test pattern instance and 
observations from the actual test execution directly to the appropriate input parameters of the metric’s 
function. Clearly, that bridge is test pattern specific and therefore it must be a part of the test pattern, 
rather than the testing metric. 

The parameters Attackers_Funding_Base, Test_System_Costs and Testing_Costs_Per_Hour can 
only be set manually. These parameters are optional, but if the default values are not appropriate, 
then some manual action will be required for proper instantiation of the metric. Therefore, the test 
pattern specific bridge that should help automated metric instantiation must offer these optional 
parameters for optional manual input to the users. 

Let CTestPatternSpecificRawDatabe a test pattern specific class that holds any raw data about 
the testing process collected during pattern instantiation, test case generation, test execution and test 
observation. The following C# code snippet could be used as a bridge for the efficiency metric 
economic feasibility function: 

publicCLikelihoodFunctionCalculate_Monetary_Feasibility_Pattern_Specific_Bridge( 

 CTestPatternSpecificRawData i_oTestPatternSpecificRawData, 

 long ? i_nlAttackers_Funding_Base, 

 long ? i_nlTest_System_Costs, 

 long ? i_nlTesting_Costs_Per_Hour ) 

 { 

  // call the pattern independent security testing metric function 

  returnCalculate_Monetary_Feasibility( 

   i_oTestPatternSpecificRawData.m_lTests_Executed, 

   i_oTestPatternSpecificRawData.m_lTests_Successfull, 

   i_oTestPatternSpecificRawData.m_lTesting_Duration, 

   i_nlAttackers_Funding_Base, 

   i_oTestPatternSpecificRawData.m_oBaseNodeInRiskGraphRelated_Risk_Artefact, 

   i_nlTest_System_Costs, 

   i_nlTesting_Costs_Per_Hour ); 

 } 



 
 

 
  

RASEN - 316853 Page 54 / 61 
 

6.5 Conclusion 
With appropriate security testing metrics it is possible to do a more or less completely automated Risk-
Based Security Testing and Test-Based Security Risk Assessment as described in D 3.2.2 chapter 4.1 
(the RACOMAT method). However, the metrics need to be identified and instantiated. If the security 
test patterns contain bridges, then this can be solved without much manual effort. 

The biggest problem at the moment is that there are only a few security testing metrics defined. The 
same is also true for the security test patterns – for many threat scenarios there are currently no 
existing appropriate security test patterns. Once there are extensive catalogues of patterns and 
metrics, then the concepts presented here will make the entire combined risk assessment and security 
testing process much easier. 

Creating a library of good security test patterns and security testing metrics is not a trivial task. With 
the RACOMAT tool, we have now at least a tool that supports creating and editing testing metrics as 
well as test patterns. This allows us to create the metrics and patterns we need within the RASEN 
project. For the future, we plan to let an open community work with our pattern and metrics database, 
developing it further in collaboration. We expect that user feedback will be essential for quality 
assurance and for continuous improvement. Therefore, our testing metrics format integrates user 
feedback as a vital part of the metrics themselves. 

 



 
 

 
  

RASEN - 316853 Page 55 / 61 
 

7 Summary 
The overall objective of RASEN WP4 is to develop techniques to use risk assessment as guidance 
and basis for security testing, and to develop an approach that supports a systematic aggregation of 
security testing results by means of security testing metrics. The objective includes the development of 
a tool-based integrated process for guiding security testing by means of reasonable risk coverage and 
probability metrics. 

In this deliverable, techniques for test procedure identification, prioritization and selection and test 
case derivation based on risk assessment results using CAPEC attack patterns were presented. It 
describes how a test procedure can be derived in three steps by (1) generating generic risk models 
from CAPEC attack patterns, (2) adapting them to the target of the risk assessment and (3) deriving 
from the target-specific risk model a test procedure consisting of select and prioritized test scenarios. 

Based on these test scenarios, test patterns may be selected as starting point for test case derivation. 
They provide refined techniques for test generation (stimulation strategies) and test verdict arbitration 
(observation strategies). The actual test case generation starts by instantiating a security test pattern, 
employing security test purposes for test sequence generation and fuzzing techniques for actual 
security test case generation. In order to provide an overview of test progress and results, security 
testing metrics come into play serving as the first step from testing backwards to a refined risk model. 

  



 
 

 
  

RASEN - 316853 Page 56 / 61 
 

8 Appendix 

8.1 Test Pattern sample: SQL Injection 
<Test_Pattern ID="2"Name="SQL Injection"> 
<Effort>LowToMedium</Effort> 
<Effectiveness>MediumToHigh</Effectiveness> 
<!--optional attributes --> 
<Test_Technique>Data fuzzing</Test_Technique> 
<Weakness_Description>The software constructs all or part of an SQL command using externally-influenced input from an 

upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the 
intended SQL command when it is sent to a downstream component. 

  </Weakness_Description> 
<Manual_Solution>Based on attack pattern CAPEC-66.&#xD; 
          1. Use the application, client or web browser to inject SQL constructs input through text fields or through HTTP GET 

parameters.&#xD; 
          2. Use a possibly modified client application or web application debugging tool such to submit SQL constructs for 

submitted values or to modify HTTP POST parameters, hidden fields, non-freeform fields, etc.&#xD; 
          3. Check for error messages, delays, disclosed values in the client application and new/modified/deleted values in the 

database.</Manual_Solution> 
<Effort_Description>Can be highly automated using fuzzing techniques or SQL injection dictionaries. 
  </Effort_Description> 
<Effectiveness_Description>Depending on detection capabilities by access to the affected database and to error messages. 
 </Effectiveness_Description> 
<Discussion>SQL injection is a task that could be rather trivial but also very complex. This depends on several factors. For 

instance, error messages resulting from incorrect SQL constructs caused by SQL injection are very helpful in deciding 
whether SQL injection is generally possible. In order to detect whether table data can be modified, it is helpful to have 
knowledge of the database management system (different systems have little differences in SQL syntax) and the 
database schema (modifying existing records may require knowledge in which tables they are stored). If SQL injection is 
possible, the extent of SQL injection can be assessed by trying to modify existing data which requires knowledge of 
existing values in the database tables. This enables to determine whether existing database entries can be read, 
modified or deleted.</Discussion> 

<Description_Of_Test_Coverage_Items> 
<Test_Coverage_Item>Functionality that involves user input, e.g. dialogs, URLs of a web application, that might be used in a 

database query</Test_Coverage_Item> 
<Test_Coverage_Item>User input fields</Test_Coverage_Item> 
<Test_Coverage_Item>SQL injection payloads</Test_Coverage_Item> 
<Test_Coverage_Item>Names of tables and rows of the database schema</Test_Coverage_Item> 
<Test_Coverage_Item>Values of existing records</Test_Coverage_Item> 
</Description_Of_Test_Coverage_Items> 
<Generalization_Of>SQL Injection through a Database Abstraction Layer</Generalization_Of> 
<Test_Data>SQL Injection Cheat Sheet</Test_Data> 
<Test_Data>Fuzzing library Fuzzino</Test_Data> 
<Test_Tool>Fuzzing framework Sulley</Test_Tool> 
<Test_Tool>Sqlmap</Test_Tool> 
<References> 
<Reference ID="89"ReferenceLink="http://cwe.mitre.org/data/definitions/89.html"Title="SQL Injection"Type="CWE"/> 
<Reference ID="7"ReferenceLink="http://capec.mitre.org/data/definitions/7.html"Title="Blind SQL Injection"Type="CAPEC"/> 
<Reference ID="66"ReferenceLink="http://capec.mitre.org/data/definitions/66.html"Title="SQL Injection"Type="CAPEC"/> 
<Reference ReferenceLink="https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-

005%29"Title="OWASP Testing Guide: Testing for SQL Injection (OWASP-DV-005)"Type="Other"/> 
<Reference ReferenceLink="https://www.owasp.org/index.php/Top_10_2013-A1-Injection"Title="OWASP Top 10 (2013): A1-

Injection"Type="Other"/> 
<Reference ReferenceLink="https://www.owasp.org/index.php/Automated_Audit_using_SQLMap"Title="OWASP: Automated 

Audit using SQLMap"Type="Other"/> 
</References> 
<Test_Stimulation_Strategies> 
<Strategy Name="SQL Injection"Description="A list of SQL injection test data will be generated by usage the fuzzing library"> 
<Parameter Direction="RETURN"Name="sqlInjectionData"Type="List of Fuzz Test Data"Description="A list of SQL injection test 

data"/> 
<Process Language="Java"> 
<Data><![CDATA[ 
                      public List<FuzzedValue<String>> generateSQLInjections() { 
 
                      StringSpecification stringSpecSQL = RequestFactory.INSTANCE.createStringSpecification(); 
                      stringSpecSQL.setType(StringType.SQL); 
                      SQLInjectionsGenerator sqlInjections = StringGeneratorFactory.INSTANCE.createSqlInjections(stringSpecSQL, 

0); 
 
                      sqlIterator = sqlInjections.iterator(); 

http://cwe.mitre.org/data/definitions/89.html
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/66.html
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-005%29
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-005%29
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Automated_Audit_using_SQLMap


 
 

 
  

RASEN - 316853 Page 57 / 61 
 

 
                      List<FuzzedValue<String>> sqlInjectionData = new LinkedList<>(); 
                      int maxNumVal = 50; 
                      while (sqlIterator.hasNext() && maxNumVal-- > 0) { 
                      sqlInjectionData.add(sqlIterator.next()); 
                      } 
 
                      return sqlInjectionData; 
                      } 
]]></Data> 
</Process> 
</Strategy> 
</Test_Stimulation_Strategies> 
<Test_Observation_Strategies> 
<Strategy Name="Check Database for new Records"Description="Login in database in SUT and check if new records are 

created with injection stimuli."> 
<Parameter Direction="IN"Name="name"Type="string"Description="valid user name"/> 
<Parameter Direction="IN"Name="password"Type="string"Description="valid password"/> 
<Parameter Direction="IN"Name="sqlRequest"Type="string"Description="request for DB validation"/> 
<Parameter Direction="RETURN"Name="newRecordsFound"Type="string"Description="'true' if new records are found, 'false' 

otherwise. If request could not be send, 'error' will be returned."/> 
<Process Language="Java"> 
<Data><![CDATA[ 
                      String newRecordsFound(String name, String password, String sqlRequest) { 
                      try { 
                      Connection con = connectToDB(name, password); 
                      Statement stmt = con.createStatement(); 
                      ResultSet result = stmt.executeQuery(sqlRequest); 
                      return newEntryFound(result); 
                      } 
                      catch (Exception e) { 
                      return "error"; 
                      } 
                      } 
]]></Data> 
</Process> 
</Strategy> 
<Strategy Name="Check Authentication State" /> 
<Strategy Name="Check for Error Message" /> 
<Strategy Name="Check for Information Disclosure" /> 
</Test_Observation_Strategies> 
</Test_Pattern> 

8.2 DSL file sample for the Medipedia Use Case 
PAGES { 

 "HOME":INIT { 

  ACTIONS { 

   "LOGIN" ("USERNAME" = "admin" => "ADMIN_LOGGED_IN", "PASSWORD" = "parola-10") 

    -> "ADMIN_LOGGED_IN", 

   "LOGIN" ("USERNAME" = "admin2" => "ADMIN_LOGGED_IN", "PASSWORD" = "parola-10") 

    -> "ADMIN_LOGGED_IN", 

   "LOGIN" ("USERNAME" = "homed" => "DOCTOR_LOGGED_IN", "PASSWORD" = "parola-10") 

    -> "DOCTOR_LOGGED_IN", 

   "LOGIN" ("USERNAME" = "test_med2" => "DOCTOR_LOGGED_IN", "PASSWORD" = "parola-
10") 

    -> "DOCTOR_LOGGED_IN", 

   "LOGIN" ("USERNAME" = "hopac" => "PATIENT_LOGGED_IN", "PASSWORD" = "parola-10") 

    -> "PATIENT_LOGGED_IN",  

   "LOGIN" ("USERNAME" = "iliecatalin" => "PATIENT_LOGGED_IN", "PASSWORD" = "parola-10") 

    -> "PATIENT_LOGGED_IN"      
   

  } 



 
 

 
  

RASEN - 316853 Page 58 / 61 
 

  NAVIGATIONS { 

   "GOTO_REGISTER" 

    -> "REGISTER"  

  } 

 } 

 "ADMIN_LOGGED_IN" { 

  NAVIGATIONS { 

   "LOGOUT" 

    -> "HOME" 

  } 

 }   

 "DOCTOR_LOGGED_IN" { 

  ACTIONS {    

   "SELECT_PATIENT" ("NAME" = "ILIE" => "DOCTOR_PATIENT_PAGE", "FIRST_NAME" = 
"Catalin" => "DOCTOR_PATIENT_PAGE", "CNP" = "1701102033100" => "DOCTOR_PATIENT_PAGE") 

    -> "DOCTOR_PATIENT_PAGE" 

  } 

  NAVIGATIONS { 

   "LOGOUT" 

    -> "HOME" 

  } 

 } 

 "DOCTOR_PATIENT_PAGE" { 

  NAVIGATIONS { 

   "LOGOUT" 

    -> "HOME" 

  } 

 } 

 "PATIENT_LOGGED_IN" { 

  NAVIGATIONS { 

   "LOGOUT" 

    -> "HOME" 

  } 

 } 

 "REGISTER" { 

  NAVIGATIONS { 

   "GOTO_LOGIN" 

    -> "HOME" 

  } 

 }  

} 

 



 
 

 
  

RASEN - 316853 Page 59 / 61 
 

References 
[1] RASEN deliverable D4.2.1, Techniques for Compositional Risk-Based Security Testing v.1, 

2013 
[2] F. Seehusen, A Technique for Risk-Based Test Procedure Identification, Prioritization and 

Selection, Proc. of the 6th International Symposium On Leveraging Applications of Formal 
Methods, Verification and Validation, to appear. 

[3] Wayne Jansen: Directions in Security Metrics Research, NISTIR 7564, Computer Security 
Division, Information Technology Laboratory, National Institute of Standards and 
Technology, Gaithersburg 2009 

[4] Whalen, Michael W.; Rajan, Ajitha; Heimdahl, Mats P.E.; Miller, Steven P.:Coverage Metrics 
for Requirements-based Testing, Proceedings of the 2006 International Symposium on 
Software Testing and Analysis, pp. 25-36, ACM New York 

[5] Ammann, Paul E.; Black, Paul E.: A Specification-Based Coverage Metric to Evaluate Test 
Sets, International Journal of Reliability, Quality & Safety Engineering. Dec 2001, Vol. 8 
Issue 4, pp. 275-299, World Scientic Publishing 2001 

[6] Chilenski, John Joseph; Miller, Steven P.: Applicability of modified condition/decision 
coverage to software testing, Software Engineering Journal, Volume 9, Issue 5, September 
1994, pp. 193 – 200, Institution of Electrical Engineers 1994 

[7] J. DeMott, C. Miller, A. Takanen, "Fuzzing for software security testing and quality 
assurance," Artech House (2008) 

[8] M. Sutton, A. Greene, P. Amini: Fuzzing: Brute Force Vulnerability Discovery. Addison-
Wesley (2007) 

[9] International Organization for Standardization/: ISO/IEC 29119-1 Systems and software 
engineering—Software testing—Part 1: Concepts and definitions (2013) 

[10] Open Web Application Security Project: Top 10 2013 (2013). [ONLINE] Available at: 
https://www.owasp.org/index.php/Top_10_2013 [Accessed 8 September 2013] 

[11] MITRE: Common Attack Pattern Enumeration and Classification (2013). [ONLINE] Available 
at: http://capec.mitre.org/ [Accessed 11 September 2013] 

[12] MITRE: Common Attack Pattern Enumeration and Classification – CAPEC-7: Blind SQL 
Injection (2013). [ONLINE] Availabe at: http://capec.mitre.org/data/definitions/7.html 
[Accessed 11 September 2013] 

[13] MITRE: Common Attack Pattern Enumeration and Classification – CAPEC-66: SQL 
Injection (2013). [ONLINE] Available at: http://capec.mitre.org/data/definitions/66.html 
[Accessed 11 September 2013] 

[14] MITRE: Common Attack Pattern Enumeration and Classification – CAPEC-67: String 
Format Overflow in syslog() (2013). [ONLINE] Available at: 
http://capec.mitre.org/data/definitions/67.html [Accessed 11 September 2013] 

[15] MITRE: Common Attack Pattern Enumeration and Classification – CAPEC-90: Reflection 
Attack in Authentication Protocol (2013). [ONLINE] Available at: 
http://capec.mitre.org/data/definitions/90.html [Accessed 13 September 2013] 

[16] MITRE: Common Attack Pattern Enumeration and Classification – CAPEC-109: Object 
Relational Mapping Injection (2013). [ONLINE] Available at: 
http://capec.mitre.org/data/definitions/109.html [Accessed 13 September 2013] 

[17] MITRE: Common Attack Pattern Enumeration and Classification – CAPEC-135: Format 
String Injection (2013). [ONLINE] Available at: 
http://capec.mitre.org/data/definitions/135.html [Accessed 11 September 2013] 

[18] MITRE: Common Attack Pattern Enumeration and Classification–CAPEC-152: Injection 
(Injecting control plane content through the data plane) (2013). [ONLINE] Available at: 
http://capec.mitre.org/data/definitions/152.html [Accessed 11 September 2013] 

[19] MITRE: Common Weakness Enumeration (2013). [ONLINE] Available at: 
http://cwe.mitre.org/ [Accessed 8 September 2013] 

[20] MITRE: Common Weakness Enumeration – CWE-20: Improper Input Validation (2013). 
[ONLINE] Available at: http://cwe.mitre.org/data/definitions/20.html [Accessed 11 September 
2013] 

https://www.owasp.org/index.php/Top_10_2013


 
 

 
  

RASEN - 316853 Page 60 / 61 
 

[21] MITRE: Common Weakness Enumeration – CWE-89: Improper Neutralization of Special 
Elements used in an SQL Command ('SQL Injection') (2013). [ONLINE] Available at: 
http://cwe.mitre.org/data/definitions/89.html [Accessed 11 September 2013] 

[22] MITRE: Common Weakness Enumeration – CWE-100: Technology-Specific Input Validation 
Problems (2013). [ONLINE] Available at: http://cwe.mitre.org/data/definitions/100.html 
[Accessed 13 September 2013] 

[23] MITRE: Common Weakness Enumeration – CWE-134: Uncontrolled Format String (2013). 
[ONLINE] Available at: http://cwe.mitre.org/data/definitions/134.html [Accessed 11 
September 2013] 

[24] MITRE: Common Weakness Enumeration – CWE-294: Authentication Bypass by Capture-
replay (2014). [ONLINE] Available at: http://cwe.mitre.org/data/definitions/294.html 
[Accessed 11 September 2014] 

[25] MITRE: Common Weakness Enumeration – CWE-301: Reflection Attack in an 
Authentication Protocol (2013). [ONLINE] Available at: 
http://cwe.mitre.org/data/definitions/301.html [Accessed 13 September 2013] 

[26] MITRE: Common Weakness Enumeration – CWE-306: Missing Authentication for Critical 
Function (2013). [ONLINE] Available at: http://cwe.mitre.org/data/definitions/306.html 
[Accessed 13 September 2013] 

[27] MITRE: Common Weakness Enumeration – CWE-352: Cross-Site Request Forgery (CSRF) 
(2014). [ONLINE] Available at: http://cwe.mitre.org/data/definitions/352.html [Accessed 11 
September 2014] 

[28] MITRE: Common Weakness Enumeration – CWE-564: SQL Injection: Hibernate (2013). 
[ONLINE] Available at: http://cwe.mitre.org/data/definitions/564.html [Accessed 13 
September 2013] 

[29] Open Web Application Security Project: Automated audit using SQLMap (2013). [ONLINE] 
Available at: https://www.owasp.org/index.php/Automated_Audit_using_SQLMap [Accessed 
13 September 2013] 

[30] Open Web Application Security Project: Testing Guide Project (2013). [ONLINE] Available 
at: http://www.owasp.org/index.php/OWASP_Testing_Project [Accessed 11 September 
2013] 

[31] Open Web Application Security Project: Testing Guide Project Testing for ORM Injection 
(OWASP-DV-007) (2012). [ONLINE] Available at: 
https://www.owasp.org/index.php/Testing_for_ORM_Injection [Accessed 13 September 
2013] 

[32] Open Web Application Security Project: Testing Guide Project Testing for SQL Injection 
(OWASP-DV-005) (2013). [ONLINE] Available at: 
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-005%29 
[Accessed 11 September 2013] 

[33] Open Web Application Security Project: Testing Guide Project Testing for Format 
String(2009). [ONLINE] Available at: 
https://www.owasp.org/index.php/Testing_for_Format_String [Accessed 11 September 
2013] 

[34] Open Web Application Security Project: Top 10 2013 (2013). [ONLINE] Available at: 
https://www.owasp.org/index.php/Top_10_2013 [Accessed 8 September 2013] 

[35] Open Web Application Security Project: Top 10 2013-A1-Injection (2013). [ONLINE] 
Available at: https://www.owasp.org/index.php/Top_10_2013-A1-Injection [Accessed 11 
September 2013] 

[36] Open Web Application Security Project: Top 10 2013-A2-Broken Authentication and 
Session Management (2013). [ONLINE] Available at: 
https://www.owasp.org/index.php/Top_10_2013-A2-
Broken_Authentication_and_Session_Management [Accessed 13 September 2013] 

[37] Open Web Application Security Project: Top 10 2013-A7-Missing Function Level Access 
Control (2013). [ONLINE] Available at: https://www.owasp.org/index.php/Top_10_2013-A7-
Missing_Function_Level_Access_Control [Accessed 13 September 2013] 



 
 

 
  

RASEN - 316853 Page 61 / 61 
 

[38] Open Web Application Security Project: Top 10 2013-A8-Cross-Site Request Forgery 
(2013). [ONLINE] Available at: https://www.owasp.org/index.php/Top_10_2013-A8-Cross-
Site_Request_Forgery_%28CSRF%29 [Accessed 11 September 2014] 

[39] Open Web Application Security Project: Automated audit using SQLMap (2013). [ONLINE] 
Available at: https://www.owasp.org/index.php/Automated_Audit_using_SQLMap [Accessed 
13 September 2013] 

[40] DIAMONDS: Initial Security Test Patterns Catalogue. DIAMODS project deliverable 
D3.WP4.T1 (2012) 

[41] B. Calin (2012): The Email that Hacks You. [ONLINE] Available at: 
http://www.acunetix.com/blog/web-security-zone/the-email-that-hacks-you/ [Accessed 19 
September 2014] 

[42] T. Wilson: Hacker Steals Data on 18M Auction Customers in South Korea. [ONLINE] 
Available at: http://www.darkreading.com/attacks-breaches/hacker-steals-data-on-18m-
auction-customers-in-south-korea/d/d-id/1129325? [Accessed 19 September 2014] 

[43] Fraunhofer FOKUS: Fuzzing library Fuzzino on Github (2013). [ONLINE] Available at: 
https://github.com/fraunhoferfokus/Fuzzino[Accessed 19 September 2014] 

 
 

http://www.acunetix.com/blog/web-security-zone/the-email-that-hacks-you/
http://www.darkreading.com/attacks-breaches/hacker-steals-data-on-18m-auction-customers-in-south-korea/d/d-id/1129325
http://www.darkreading.com/attacks-breaches/hacker-steals-data-on-18m-auction-customers-in-south-korea/d/d-id/1129325
https://github.com/fraunhoferfokus/Fuzzino

	1 Introduction
	2 Using CAPEC for Risk-Based Testing
	2.1 Step I: From CAPEC to Generic CORAS Risk Models
	2.1.1 CORAS Risk Models
	2.1.2 Common Attack Pattern Enumeration and Classification (CAPEC)
	2.1.3 From CAPEC Instances to Generic CORAS Risk Models

	2.2 Step II: From Generic CORAS Risk Models to Target Specific Risk Models
	2.2.1 Refinement of Likelihood and Consequence Values
	2.2.2 Refinement by Element Splitting
	2.2.3 Refinement by Element Merging
	2.2.4 Refinement by Element Addition

	2.3 Step III: From Specific Risk Models to Test Procedures
	2.3.1 Risk Evaluation and Visualization
	2.3.2 Test Scenario Prioritization and Selection


	3 Security Test Patterns
	3.1 Security Test Strategies
	3.1.1 Stimulation Strategies
	3.1.2 Observation Strategies

	3.2 Test Coverage Items
	3.3 Revised Security Test Pattern Description
	3.4 Security Test Patterns
	3.4.1 Improper Input Validation
	3.4.2 SQL Injection
	3.4.3 SQL Injection through a Database Abstraction Layer
	3.4.4 Uncontrolled Format String
	3.4.5 Missing Authentication for Critical Function
	3.4.6 Authentication Bypass by Replay Attack
	3.4.7 Cross-Site Request Forgery

	3.5 Formalization of Test Patterns with Test Purpose Language
	3.5.1 Test Purpose Language
	3.5.2 Test Purpose Example
	3.5.3 Test Purpose Catalog
	3.5.4 DSL for Test Model Creation


	4 Instantiating Test Patterns for Test Case Generation
	4.1 Overview of the Test Generation Process
	4.2 Test Sequence Generation based on Security Test Purposes
	4.3 Test Case Execution

	5 Behavioral Fuzzing for Security Testing
	5.1 Broken Authentication and Session Management (OWASP Top 10 A2)
	5.2 Missing Function Level Access Control (OWASP Top 10 A7)
	5.3 Cross-Site Request Forgery (OWASP Top 10 A8)

	6 Security Testing Metrics
	6.1 RASEN Security Testing Metrics Format
	6.2 Application of Security Testing Metrics within the Combined Risk Assessment and Security Testing Process
	6.3 Categories of Metrics
	6.3.1 List Up Metrics
	6.3.2 Coverage Metrics
	6.3.3 Efficiency Metrics
	6.3.4 Technical impact metrics

	6.4 Exemplary Security Testing Metric and its Instantiation
	6.5 Conclusion

	7 Summary
	8 Appendix
	8.1 Test Pattern sample: SQL Injection
	8.2 DSL file sample for the Medipedia Use Case

	References

