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Abstract 

This deliverable reports on the main results of RASEN WP3 from the second year of the project. The 
tasks that have been addressed are: (T3.1) the development of techniques for compositional security 
risk assessment, (T3.2) the development of techniques for test-based security risk assessment, and 
(T3.3) the development of techniques for continuous risk assessment by means of test-based 
indicators. 
The RASEN approach to compositional security risk assessment has been further developed, and 
this deliverable introduces our notion of risk model encapsulation. We have developed modeling 
support for composing individual risk models, where the encapsulation allows the models to be 
combined without having to consider or assess the internal details of the respective models. The 
techniques and tools for test-based security risk assessment have been extended in several 
directions. The deliverable presents results covering (semi-) automated risk modeling, security 
testing, and security test result aggregation. The deliverable finally presents techniques for 
continuous security risk assessment by monitoring and aggregation of key indicator values, where the 
indicators provide information about the current risk picture at any point in time. 
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Executive Summary 
The overall objective of RASEN WP3 is to develop tools and techniques to facilitate compositional 
security risk assessment supported by security testing. This includes developing tools and techniques 
i) for compositional security risk assessment and security testing, ii) for identifying, estimating and 
verifying security risks based on security test results, and iii) for reuse of risk assessment and security 
test results, as well as dynamic updates of the security risk assessment based on test results. 

This deliverable reports on the WP3 results after the first year of the project. The results cover all of 
the WP3 research tasks, namely (T3.1) the development of techniques for compositional security risk 
assessment, (T3.2) the development of techniques for test-based risk identification and estimation in 
order to complement the risk picture based on test results, and (T3.3) the development of techniques 
for continuous risk assessment of large scale systems by the use of test-based indicators. In 
particular, the deliverable makes the following contributions. 

• A tool-supported approach to risk modeling and assessment of large-scale networked 
systems. The risk modeling involves the automated or manual assignment of vulnerabilities to 
components, where vulnerabilities can be imported from existing catalogues or databases. 
The approach is integrated into the RASEN methodology which allows the export of 
components to the security test execution. 

• Techniques for the systematic use of security test results to update the risk picture. In 
particular, we explain how we make use of test measures and test metrics to capture the 
results of the security testing. The low-level test measures and metrics are in turn aggregated 
into more high-level risk measures and metrics that serve as the input to the risk assessment. 

• A tool-supported method for the combination of test-based risk assessment and risk-based 
security testing. The tool is designed to support the RACOMAT (Risk Assessment COMbined 
with Automated Testing) method for risk assessment and modeling, test procedure 
identification, as well as test execution and incident simulation. 

• Techniques and modeling support for compositional security risk modeling and assessment. 
At the core of the approach is a notion of risk model encapsulation with modeling techniques 
for hiding the internal details of each individual risk assessment. The risk model encapsulation 
supports the composition of risk models by considering only the information that is visible on 
the defined interface of the encapsulated models. 

• An approach to continuous security risk assessment by means of risk monitoring. The risk 
monitoring is enabled by means of the monitoring of key indicators, where the indicators 
provide information about the current risk picture at any point in time. We explain how key 
indicator values can be aggregated to derive risk information. 

The WP3 results contribute to support and facilitate the overall RASEN methodology that is presented 
in the context of WP5. The WP3 tools are moreover being integrated into the RASEN tool-box and 
have therefore the potential to be used in combination with other RASEN tools and techniques. 
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1 Introduction 
A main objective of RASEN WP3 is to develop techniques and tools that facilitate security risk 
assessment of large-scale and complex software systems. To fulfill this objective we are conducting 
R&D activities in three directions. First, we are developing techniques and modeling support for 
compositional security risk modeling and assessment. Such techniques should allow large system to 
be decomposed into smaller sub-systems or components that can be analyzed separately. For this we 
need methods for deducing the combined results of the individual analyses. Second, we are 
developing techniques for test-based risk identification and estimation, so as to complement the risk 
picture based on the test results. Third, we are investigating techniques for continuous security risk 
assessment by leveraging the techniques for compositional security risk assessment, and by means of 
risk monitoring. 

The current WP3 status and the second year results of these R&D activities are presented in this 
deliverable. The activities correspond to research tasks T3.1 (compositional security risk assessment), 
T3.2 (test-based risk identification and estimation) and T3.3 (continuous risk assessment) respectively, 
of RASEN WP3. More specifically, the technical contents of this deliverable are as follows. 

Section 2 presents the ARIS tool-supported approach to risk modeling and assessment of large-scale 
networked systems. Using this approach, a software product is specified by decomposing it into 
components that in turn are further decomposed to form a tree structure of any depth. The risk 
modeling involves the automated or manual assignment of vulnerabilities to components, where 
vulnerabilities can be imported from existing catalogues or databases. The approach is integrated into 
the RASEN methodology which allows the export of components to the security test execution. 

Section 3 concerns the use of the security test results to update the risk picture. In particular, we 
explain how we make use of test measures and test metrics to capture the results of the security 
testing. The low-level test measures and metrics are in turn aggregated into more high-level risk 
measures and metrics that serve as the input to the risk assessment. 

Section 4 presents tool-support for the combination of test-based risk assessment and risk-based 
security testing. The tool is designed to support the RACOMAT (Risk Assessment COMbined with 
Automated Testing) method for risk assessment and modeling, test procedure identification, as well as 
test execution and incident simulation. The tool is being integrated into the RASEN toolbox, and the 
RACOMAT method can be used in combination with other RASEN methods and techniques to support 
the overall RASEN methodology. 

Section 5 presents an approach to compositional security risk modeling and assessment. The purpose 
of the approach is to allow large systems to be decomposed into smaller parts that are assessed and 
analyzed independently. The individual results can then later be composed to form the risk model and 
risk assessment results for the system as a whole. At the core of the approach is a notion of risk 
model encapsulation with modeling techniques for hiding the internal details of each individual risk 
assessment. The risk model encapsulation supports the composition of risk models by considering 
only the information that is visible on the defined interface of the encapsulated models. 

Section 6 presents an approach to continuous security risk assessment by means of risk monitoring. 
The risk monitoring is enabled by means of the monitoring of key indicators, where the indicators 
provide information about the current risk picture at any point in time. Such security risk monitoring is 
sometimes referred to as passive testing, whereas the security testing described in the previous 
sections and in RASEN WP4 are referred to as active testing. When conducting test-based security 
risk assessment, there is in both cases a need for aggregating the test results. In this section we 
explain how the aggregation can be done by the aggregation of key indicator values. 

The presented methods and techniques support various parts of the overall RASEN methodology as 
presented in the context of WP5. The WP3 tools are moreover being integrated into the RASEN tool-
box, which means that they can be used in combination with other RASEN tools. The current WP3 
tools are provided in prototype deliverable D3.3.2. 
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2 Risk Modeling of Large Networked Systems 
The following chapter discusses the design of a modeling framework on top of the RASEN 
methodology to support risk assessment and modeling of large scale networked software systems. In 
this sense, we present a component type representation which allows a high degree of freedom when 
modeling a software component, and an export/import mechanism to interface the RASEN testing 
framework.  

The existing risk template has been extended to be self-documented which greatly facilitates the 
modeling of security risks. In a second step, generic templates are generated that allow a convenient 
modeling by the end-user offering drag-and-drop techniques where available risk templates can be 
reused for the security risk assessment of new software products. With this implementation we 
accomplished an automated generation of this risk templates based on the most common security risk 
templates and industry standards like the Common Weakness Enumeration (CWE) database [10]. 

In the next step the existing model has been extended to express links between currently defined risks 
and weaknesses on the component level. The Common Weakness Scoring System (CWSS) [11] 
provides hereby a mechanism for scoring weaknesses in a consistent, flexible and open manner while 
accommodating context for various business domains. As it is part of the CWE project, it can be 
interlinked with information already available in the models to allow quantitative measures of available 
weaknesses present within a software component. 

 

Figure 1 – Model overview of the product, component and component types 

The current model capabilities are depicted in Figure 1. Starting from the top most component, each 
product is assigned a vignette which defines the application area in which the product is used. This 
could be for example an Internet-hosted system with a high degree of networking as it is found in 
cloud computing, but also as simple as a system deployment in a company’s infrastructure with 
maximum security and intrusion protection through multi-layer firewalls. 

2.1 Component Type Implementation and Assignment 
In the RASEN ARIS model each product consists of components which build the product hierarchy 
and can be interleaving in any thinkable form by forming sub-components of arbitrary depth. Each 
component is assigned component types specifying the core functionality and nature of the 
components' application like networking, Linux Operation System, Authentication, etc. These 
components have two different origins: On the one hand, they can be taken from a generated library of 
Generic Component Types, and on the other hand, they can be user-defined component types where 
users individually assess the type and the weaknesses which this component type exhibits. This 
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distinction is illustrated in Figure 2. The two different component types are described in detail in the 
following two sections. 

 

Figure 2 – Different natures of component type libraries 

2.1.1 Generic Component Type Generation 
The idea behind the generic component type generation is to support software developers and risk 
experts by providing generic modules for an improved and much faster risk assessment. In this sense, 
it is easier and less error-prone to choose from a list of best-known weaknesses as to choose the 
mode time in which the weaknesses for each individual component have to be assessed and derived 
from scratch. The concept is shown on the right side of Figure 2. 

The list of generic component types is generated according to best practice and follows the list of 
weaknesses derived from the Common Weakness Enumeration (CWE) schema. The CWE database 
is an array of CWE-IDs which either represent a weakness, a category, a view or a compound 
element. Views and compound elements are ignored as they are not important for the algorithm. A 
category contains one or more weaknesses and can also contain one or more child categories. A 
weakness can be a weakness class (this is also a kind of category), a base weakness or a weakness 
variant. Weaknesses can be in a “Can-also-be”-relationship with another weakness. So the CWE 
database can be thought of as a tree whose leafs can be connected with each other. The following 
graphic clearly visualizes the dependency from categories to multiple weaknesses derived from the 
CWE database. 

For most of the weaknesses the following data is available: Title and short description, applicable 
platforms (this can be an operating system, framework or a programming language), technical impact, 
affected resources, functional area and consequence scope. 

For each component type, the weaknesses (CWE-IDs) are assigned using one or more of the 
following methods following an automated generation process: 

1. Collecting all CWE-IDs of a CWE category: For the specified category, weaknesses are 
collected recursively following the tree structure. 

2. Searching for CWE-IDs using a search term: CWE weaknesses have a headline and a short 
summary description. All CWE weaknesses that contain the search term are added to the 
component type. 

3. Collecting all CWE-IDs which share a specified value. A shared value can, for example, be 
operating system, framework, programming language, etc. 

4. Adding CWE-IDs manually: Some CWE-IDs are added manually to component types. This is 
necessary because not all CWE-IDs can be assigned automatically using one of the methods 
described above. The most important reasons for that is incomplete and/or inconsistent data 
in the CWE database. 
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There is also a component type called “Generic” which contains all CWE weaknesses that are too 
generic to fit to one of the other component types. The component types listed in Table 1 are 
automatically generated and allow the security experts and software architects quick modeling of their 
software systems. 

Generic Component Type Name N° of CWEs assigned Generic Component Type Name N° of CWEs assigned 

Core 176 Transport Protocols HTTP 9 

Using APIs 16 Transport Protocols FTP 1 

Multithreading 31 Operating Systems Windows 10 

Database Access 10 Operating Systems Mac OS 2 

File System Access 52 Operating Systems UNIX/Linux 4 

Reading and Writing Files 10 Framework Struts 10 

Logging 5 Framework.NET 6 

Temp Files 3 Framework J2EE 9 

Configuration 20 Programming Language Java 70 

Authentication 28 Programming Language C 70 

Authorization 12 Programming Language C++ 70 

Using Cryptography 19 Programming Language Assembly 4 

Using Random Values 20 Programming Language Ruby 3 

Sensitive Data 9 Programming Language Python 3 

Networking 2 Programming Language C# 3 

Critical Resource Access 82 Programming Language ASP.NET 7 

Server 4 Programming Language PHP 13 

Web Application 143 Programming Language JavaScript 1 

Mobile Application 26 Programming Language XML 6 

Graphical User Interface 17 Generic 117 

User Controlled Input 22   

Table 1 – Generated generic component types 

2.1.2 User-Specific Component-Type Definitions 
As in some cases the automatically generated component type is not properly fitting in the component 
concept, there is an additional way of manually creating and defining component types as shown on 
the left side of Figure 2. 

In this step, the user can create individual component types and manually assign CWEs from the CWE 
database to this component. This type creation gives the security engineer full control over its 
component type definitions, and allows technically any possible component type declaration. 

2.2 Interfacing the Testing Framework 
The testing framework is interfaced using import and export facilities from the ARIS framework. From 
this point, the integration of the RASEN models is taking advantage of other tools developed within the 
project, e.g., the testing framework. Figure 3 shows how import and export interfaces are aligned with 
the Test Execution framework. 



 
 

 
  

RASEN - 316853 Page 10 / 44 
 

 

Figure 3 – Interfaces for import and export 

The import and export interface exchanging RASEN models with test and test generation are provided 
by export and import scripts that allow automated exchange of the relevant security assessment 
artifacts. This means in detail that the Security Tests are prepared for export by converting relevant 
RASEN artifacts from the ARIS model into an interchange format. From the security perspective, this 
export contains a list of possible and yet unconfirmed risks and weaknesses in the security risk model. 

As an example, Figure 4 shows the RASEN model of Software AG’s product called Command Central 
(CCE). In this figure, the top product is shown as CCE with the CCE Vignette describing the 
deployment scenario the list of component with the CWEs underneath. The related export of this 
model, acting as an interface to the test execution environment, is depicted in Figure 5. 
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Figure 4 – Model of the Command Central Component with its RASEN model in ARIS 
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#CCE Component 
Product Name: CCE { 
   "productName": "CCE", 
   "components": [{ 
      "componentName": "Client", 
      "subComponents": [], 
      "cweList": [12, 641, 638, 646 ]  
   }, { 
      "componentName": "SPM Plugin", 
      "subComponents": [], 
      "cweList": [598, 588, 591, 582, 587, 

113, 151, 149, 154, 116, 114, 113, 154, 
140, 115, 141, 155, 156, 146, 150, 144   ] 
   }, { 
      "componentName": "Host", 
      "subComponents": [], 
      "cweList": [533, 540, 534, 536, 537 ] 
   }, { 
      "componentName": "Events", 
      "subComponents": [], 
      "cweList": [598, 588, 591, 582, 587, 
113    ] 
   }, { 
      "componentName": "Core", 
      "subComponents": [], 
      "cweList": [12, 641, 638, 646, 151, 

149, 154, 116, 114, 113, 154, 140, 115, 
141, 155, 156, 146, 150, 144, 113, 524, 
523, 54, 534, 525   ] 
   }] 
} 

 

Figure 5 – The ARIS export definition related to the CCE model in JSON format 

   

As illustrated in the figure above, the model export is realized by providing a file in JSON (JavaScript 
Object Notation) format representing the hierarchical structure of the software components and the list 
of assigned CWE entries from the CWE database. 

After the Test Execution phase where weaknesses are tested on a life system, the found weaknesses 
are collected and grouped according to their components. Following up, the re-import of test results 
(that reveal the presence of weaknesses and risks) into the ARIS RASEN Database are provided and 
confirmed risks that are integrated into the risk picture.  

This allows Software AG and other industry partners to apply the RASEN solution on small subsets of 
their software systems and enable security risk assessment not only on small subsets, but on large 
scale software systems as well. 

2.3 Conclusion 
Considering the risk modelling of large scaled networked systems, a valid solution should provide a 
high level of automation; human interaction may be prohibitively expensive considering the potential 
size and complexity of the software under consideration. The above mentioned approach relies on 
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repositories like the CWE database, and provides a suitable means for modeling software systems 
while using already defined libraries to cluster functional aspects of the software into software 
components. It is further possible to group software components into functional clusters and reuse 
them in other software models to simplify the modeling process and enabling hierarchical models of 
technically any shape. 

Following the RASEN approach, the integration of the model with the test execution framework is 
based on standard exchange formats i.e., JSON, to enable the exchange of information and provide 
an import and export interface. What is currently missing in the present implementation is the import of 
test execution results back into the ARIS RASEN model in order to aggregate the risk levels on 
component and product level. As this is considered as future work, this integration will be 
accomplished in the future implementation of the RASEN framework. 

The presented techniques for software risk assessment are applied to the RASEN use case studies 
and evaluated against the requirements of the RASEN use case providers. This will eventually reveal 
the suitability of the presented approach in the area of industrial appliances and demonstrate the 
usability for each of the industrial RASEN partners. 
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3 Complement the Risk Picture Using Test Results 
In this section we describe the RASEN techniques and modeling support for test-based risk 
assessment. With this approach we make systematic use of security test results to complement the 
risk picture and update the risk estimates and risk evaluation that is conducted as part of a security 
risk assessment. The focus of this section is on the aggregation of the security test results to derive 
the values that can be used to calculate and update the security risk assessment results. 

The techniques build on the WP3 results presented in Section 6 and Section 7 of RASEN deliverable 
D3.2.1 [18] and is currently being applied and evaluated in the RASEN case studies. We refer to WP5 
[15] for the detailed presentation of the RASEN method for test-based security risk assessment and to 
WP2 [19] for a presentation of the case studies where the method and techniques are applied. 

3.1 Method Overview 
Figure 6 illustrates our approach, focusing on the security risk assessment part. The risk analysis part 
is depicted to the left and follows the process of the ISO 31000 risk management standard [3]. After 
the context establishment, the risk assessment is conducted, which consists of risk identification, 
estimation and evaluation. After the risk evaluation the unacceptable risks are analyzed further for 
possible treatment. 

The risk identification and estimation make use of expert judgments, historical data, statistics, 
catalogues of threats and vulnerabilities, etc. to document the risk picture and to estimate the 
likelihood of attacks and unwanted incidents. In many cases, however, such empirical data may be 
insufficient and thereby leave a certain degree of uncertainty of the risk assessment results. This 
uncertainty may, for example, be regarding the estimated likelihood of successful attacks, whether 
certain vulnerabilities exist, or how easy it is for attackers to exploit vulnerabilities. 

The testing process is depicted to the right in Figure 6. From the perspective of the security risk 
assessment, the security testing is treated as a black box. This process receives the risk model from 
the risk assessment as input. The risk model serves as the basis for the test identification and 
prioritization. The results from the security testing are then fed back to the risk assessment. In the 
following we describe the steps in more details and explain how test data is aggregated and used to 
reduce the uncertainty of the security risk assessment results. 

Establishing the context

Risk identification

Risk estimation

Risk evaluation

Risk treatment

Testing process

Risk analysis Testing

 

Figure 6 – Test-based risk assessment 
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3.2 Aggregating Test Results Using Risk Metrics 

3.2.1 Concepts 
In the RASEN approach we distinguish between measures and metrics. A measure is a specific piece 
of data, such as the known attack frequency on a specific vulnerability, whereas a metric is an 
aggregation or a set of measures. A metric is therefore more high-level than a measure, and is the 
value that is used as input by the security risk analyst or security tester. A metric is sometimes 
described as interpreted empirical data [6], such as the quantification of the degree of freedom from 
the possibility of an attack. A measurement, on the other hand, provides a single-point-in-time view of 
a specific discrete factor [6], where a security measurement is a particular value of an assessable 
security property of a system entity. 

The concepts of measurements and metrics and how they are related are shown in Figure 7. The 
diagram is based on the RASEN data model [14], but somewhat adapted to focus on the conceptual 
aspects and on the risk assessment part. The diagram shows that a metric is a set of measurements, 
and that we have specializations of these concepts for both the security risk assessment and the 
security testing. A metric may have a type, and it can be assigned a value on a defined scale. A risk 
metric that is used as input to a security risk assessment is related to a risk model, which in turn 
includes a set of risk model elements. This means that a risk metric gives information about one or 
more such elements. Also the test measurements may be related to a set of risk model elements, but 
it is the aggregated test metrics that are applied by the risk analysts. 

What is not explicitly shown in the diagram is the relation between test metrics and risk metrics. The 
test metrics aggregates test measurements, which are data that represent results from test 
procedures. The RASEN techniques for test-based security risk assessment make use of the test 
metrics to aggregate them into risk metrics. Such an aggregation is usually manual, but it can be 
conducted automatically for cases in which it is possible to specify and implement aggregation 
functions. In some cases we may also gather the test data and aggregate them on the level of 
measurements. The resulting risk measurements are then in turn aggregated into risk metrics. 

Metric MeasurementType

Risk metric Risk measurement

Risk model Risk element

Test metric Test measurement

1 *

*
0..1

1..*

*
*

0..1 *

 

Figure 7 – Measurements and metrics 

3.2.2 Process 
In the following we describe the details of the process for aggregating the test results and applying 
them to update the risk models. 

A risk model consists of elements and relations. Elements can, for example, be threats and unwanted 
incidents, whereas the relations are between the elements. Elements can have attributes, such as the 
likelihood and consequence of an unwanted incident. Relations can also have attributes, such as a 
vulnerability. We often assign likelihoods to relations, for example to specify the conditional probability 
that one incident may lead to another. These likelihoods can often be associated with the likelihood of 
existence of vulnerabilities, as well as the extent to which they can be exploited by an attacker. 
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In the presentation of the process we use a simple risk model notation that only shows threat 
scenarios (elements) and leads-to relations from one scenario to another. The relations are annotated 
with vulnerabilities. In Section 3.3 we give a concrete example extracted from a RASEN case study 
using the CORAS [7] notation. 

We assume that a security risk assessment has been conducted and that we have a risk model with 
risk estimates that serves as the basis for the security testing. The process and the created 
documentation artifacts are as follows. 

Risk model. The result of the risk assessment is a risk model with likelihood estimates as illustrated in 
Figure 8. The figure shows only a fragment of a model that consists of threat scenario A that may lead 
to threat scenario B, possibly due to the two vulnerabilities V1 and V2. The threat scenarios have been 
assigned the likelihoods LA and LB, respectively, whereas the likelihood L on the relation is the 
estimated conditional likelihood for A to lead to B. 

A
[LA]

B
[LB]

LV1 V2

 

Figure 8 – Risk model with estimates 

More often than not there is a degree of uncertainty of the likelihood estimates. The uncertainty should 
be explicitly specified, for example by assigning a degree of certainty to each estimate or by using 
likelihood intervals. In case we use intervals it is assumed that the correct likelihood is within the 
assigned interval. 

The risk models with the estimates and the degree of uncertainty is used as the basis for the test 
identification, prioritization and selection. For a description of this particular task the reader is referred 
to WP4 deliverable D4.2.2 [17]. 

Risk model and test procedure. Figure 9 illustrates a test procedure identified on the basis of the 
risk model. A test procedure contains a sequence of test cases in their execution order. In this case 
the test procedure targets the relation from threat scenario A to threat scenario B, including the 
vulnerabilities. The test procedures typically include test cases regarding the identified vulnerabilities, 
but could also help identifying other vulnerabilities. Consequently the test results may give additional 
information about the conditional likelihood L, and therefore also the likelihood LB. 

Note that in the RASEN method the test procedure is linked to the test patterns, but this is something 
that is hidden from the risk assessment part which only makes use of the test results. 

A
[LA]

B
[LB]

LV1 V2

Test procedure
 

Figure 9 – Risk-based test procedure 

 

Test procedure and test measures. The results of the testing can be represented by a set of test 
measurements as illustrated in Figure 10. These can in turn be aggregated into one or more test 
metrics, although this is not illustrated here. As for the test procedure, also this part is hidden from the 
risk assessment part. The reader is referred to D4.2.2 for details on the security testing. 
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A
[LA]

B
[LB]

LV1 V2

Test procedure

Test measure 2 Test measure nTest measure 1
 

Figure 10 – Test measures 

 

Test procedure and risk measures. Figure 11 illustrates the result of using the test measures (or 
metrics) to yield a set of risk measures (or metrics) that can be used as input to the risk assessment. 
Each set of risk measures is derived from a set of test measures, and therefore associated with a test 
procedure. This links the derived risk measures with the risk model elements that they provide 
information about. 

A
[LA]

B
[LB]

LV1 V2

Test procedure

Risk measure 2 Risk measure mRisk measure 1
 

Figure 11 – Test-based risk measures 

How to derive the risk measures from the test measures depends on the kind of measures. In some 
cases it would be possible to do an automated and tool-supported aggregation, but this depends on 
the type of measures and that we can specify and implement an aggregation function. For such tool 
support to be worth implementing, the specific testing and aggregation should be frequently 
reoccurring, otherwise it would be a one-off task each time. Alternatively the test results can be 
analyzed manually to derive the risk measures. Similar to a regular security risk assessment the test 
results are then used as part of the empirical data for the risk identification and estimation. 

In the RASEN case studies we have derived the risk measures by expert judgments by risk analysts 
and personnel with insight into the target systems. By focusing on the vulnerabilities annotated on the 
relations from one threat scenario to another, we have in particular used measures on exploitability 
and on likelihood of existence. Exploitability is a measure of the degree to which a given vulnerability 
is easy to exploit by an attacker. Likelihood of existence is a measure of the likelihood that the 
vulnerability in questions is present in a system. 

Revised risk model. In Figure 12 we illustrate the revised risk model after the aggregation of the risk 
measures. In this illustration there are two vulnerabilities, each of which typically yields a set of test 
cases. The test cases result in test measures that are aggregated to risk measures. Eventually the 
different sets of test measures must be aggregated to get a revised and hopefully improved estimate 
for the conditional likelihood L in Figure 8. 

For the sake of the example let us assume that we have the measures e and l for exploitability and 
likelihood of existence, respectively, for the two vulnerabilities V1 and V2. Using these measures we 
investigate whether we can reduce the uncertainty of the likelihood L. If the uncertainty is captured by 
using a likelihood interval, our aim is to reduce the size of the interval L. Using the original estimate as 
input, together with the metrics, we derive the revised interval L' by a function f such that L' = f(L,e,l). 
In some cases it may be possible to define the function formally, but in other cases we do the 
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estimation of L' by expert judgment. If L' ⊆ L we have reduced the uncertainty and can update the risk 
model. If the uncertainty is not reduced we need to keep the original estimate. 

A
[LA’]

B
[LB’]

L’V1 V2

 

Figure 12 – Revised risk model 

Because threat scenario A may lead to threat scenario B, the likelihood of the latter must be updated 
according to the change of L to L'. When the uncertainty of the conditional likelihood is reduced we get 

the updated estimate LB' ⊆ LB. The likelihood estimate of threat scenario A is not targeted by the 
illustrated security testing since it occurs before the tested relation and vulnerabilities. For illustration 
purposes, however, we have in Figure 12 replaced the likelihood estimate LA with LA'. This is because 
the figure only shows a fragment of the risk model and that there may be other test cases that have 
been conducted and that give a basis for revising also this estimate. The estimation of LB' makes use 
of LA' in addition to L'. 

3.3 Example 
In the following we give a concrete example of the approach. The example is based on the InfoWorld 
case study, but note that we do not show here any actual incidents or real risk estimates for InfoWorld 
as this kind of information cannot be presented in an open, public report. 

3.3.1 Context Establishment 
Target of analysis. The target of the analysis is the Medipedia service (www.medipedia.ro). The 
service is provided as an application that can be accessed by clients via a web-interface. The analysis 
is limited to the attacks that can be performed via the interface, including by those that have a valid 
Medipedia account. 

Assets. The assets that we consider in the presented example are confidentiality of data and integrity 
of data. The data is sensitive information such as personal data and medical data. The case study 
included also availability of service and compliance with regulations, but these are not shown in our 
example. 

Likelihood scale. The likelihood scale that we use for the risk estimation is shown in Table 2. We use 
a scale of five values that correspond to consecutive intervals of frequencies. 

 

Likelihood Definition Interval 

Seldom Less than 1 time per 10 years [0, 0.1>:1y 

Unlikely 1-10 times per 10 years [0.1, 1>:1y 

Possible 2-12 times per year [1, 13>:1y 

Probable 13-60 times per year [13, 60>:1y 

Certain Over 60 times per year [60, ∞>:1y 

Table 2 – Likelihood scale 

Consequence scale. The consequence scale for each asset is defined similar to the likelihood scale, 
namely in terms of intervals of quantitative values. We do not need the precise definitions for the 
purposes of this section. It therefore suffices to give the names of the values, which as insignificant, 
small, medium, high and critical. 

http://www.medipedia.ro/
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Risk evaluation criteria. We specified the risk evaluation criteria using the risk matrix. We divided the 
matrix into three parts, corresponding to the risk levels low, medium and high. The low risks are 
acceptable, whereas the high risk in principle are unacceptable and must be treated. The medium 
risks must be considered separately to decide whether they could be accepted or not. 

3.3.2 Security Risk Assessment 
In conducting the security risk identification and estimation we made systematic use of the Common 
Attack Pattern Enumeration and Classification (CAPEC) [12], as well as the Common Weakness 
Enumeration (CWE) [10]. We created risk models using the CORAS language by instantiating the 
relevant CAPEC attack patterns as CORAS threat diagrams. 

This is exemplified in Figure 13 for the CAPEC-66 attack pattern that concerns SQL injection attacks. 
From the CAPEC attack pattern we get a description of how attackers can conduct the attack, a 
reference to relevant vulnerabilities from the CWE, the common likelihoods of such attack, the typical 
consequences and severity, and so forth. Note that in the example diagram we have not included the 
full CAPEC pattern for this attack. 

Hacker

Read application data
[0.05, 10]

Confidentiality
of data

SQL injection 
successful
[0.5, 100]

Modify application data
[0.05, 10]

Execute unauthorized 
code or commands
[0.2, 40]

Gain privileges /
assume identity
[0.1, 20]

Integrity
of data

CWE-89:
Improper Neutralization of Special Elements 

used in an SQL Command ('SQL Injection')

CWE-20:
Improper Input Validation

CAPEC-66:
SQL injection
[500, 1000]

[0.001, 0.1]

0.1

0.2

0.1

0.4

High

High

Medium

Critical

 

Figure 13 – Threat diagram for the CAPEC-66 attack pattern 

The likelihood estimates shown in Figure 13 are only examples, and not the real estimates from the 
InfoWorld case study. In the real setting the estimates will be based on empirical data gathered from 
the client, such as InfoWorld, as well as expert judgments and the data provided by CAPEC. In the 
diagram we have used frequencies for the scenarios and incidents in terms of number of occurrences 
per year. For example, CAPEC-66: SQL injection is estimated to occur between 500 and 1000 times 
per year. We have used probabilities on the relations to specify conditional likelihoods. For example, 
the estimated probability that CAPEC-66: SQL injection will lead to SQL injection successful when the 
former occurs is in the interval between 0.001 and 0.1. 

To do the risk evaluation we compare the identified risks and their risk levels with the risk evaluation 
criteria by plotting them into the risk matrix as shown in Figure 14. The widths of the likelihood 
intervals of the risk estimation reflect the uncertainty of the estimation. We see, for example, that the 
risk Execute unauthorized code or command span the three likelihood values of unlikely, possible and 
probable. 

In some cases the uncertainty is not significant. This is in particular the case when the estimated risk 
level is within one risk level only. This is the case for the risk Gain privileges / assume identity, which is 
unacceptable no matter whether the likelihood is unlikely, possible or probable. However, when the 
uncertainty is such that we cannot determine whether the risk is acceptable or not, we may need to 
gather more evidence. In our case we do it by security testing. 
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Seldom Unlikely Possible Probable Certain

Insignificant

Small

Medium

High

Critical

Read / Modify

Execute

Gain
 

Figure 14 – Risk evaluation 

3.3.3 Test Procedures and Test Measures 
As the risk-based test identification and the security testing is not the concern of WP3, we refer to 
WP4 deliverables D4.2.1 [16] and D4.2.2 [17] for the details on that part of the RASEN process. From 
the viewpoint of the risk assessments we need as input the test measures resulting from the executed 
test procedures. As explained in D4.2.2 the test procedure derived from the example diagram in 
Figure 13 results in the following test procedure. 

Check that CAPEC-66: SQL injection leads to SQL injection successful with conditional 
likelihood [0.001, 0.1] due to CWE-20: Improper Input Validation and CWE-89: Improper 
Neutralization of Special Elements used in an SQL Command ('SQL Injection'). 

For the sake of the example we assume here that the result of the conducted test cases based on the 
given test procedure provided two sets of test measures, one for each of the vulnerabilities. Each set 
consists of one measure for likelihood of existence (l) and one measure for exploitability (e). The 
likelihood of existence is given as a probability, whereas the exploitability is given as a number 
between 0 (cannot be exploited) and 1 (fully exploitable). The concrete measures are shown in Table 
3. 

Vulnerability Likelihood of existence Exploitability 

CWE-20 [0, 0.02] 0.3 

CWE-89 [0, 0.01] 0.4 

Table 3 – Test measures 

3.3.4 Aggregating Test Measures 
For the risk analysts the objective is to use the test results to reduce the uncertainty of the risk 
estimates. In our particular example, the objective is to reduce the probability interval [0.001, 0.1] of 
the leads-to relation between the two threat scenarios in Figure 13. This means that we aim to use the 
test measures as input for the estimation of this interval. 

As mentioned above, this kind of aggregation from test measures to likelihood estimates, possibly via 
risk measures, may often have to be conducted manually and by expert judgments. In the example we 
illustrate the aggregation by a function that simply multiplies the test measures for each vulnerability 
and then adds up the results to deduce the eventual probability interval. Referring to the test measure 
values in Table 3 we get the following. 

([0, 0.02] · 0.3) + ([0, 0.01] · 0.4) = [0, 0.006] + [0, 0.004] = [0, 0.01]. 

As explained in Section 3.2.2 we need to use also the likelihood estimate from the risk assessment as 
input when making any updates to the risk model. As shown in Figure 13 the original estimate was the 
interval [0.001, 0.1]. Combining the results we get the updated interval [0.001, 0.01]. The updated 
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threat diagram, where we have also recalculated the likelihood estimates that follow the tested leads-
to relation, is depicted in Figure 15. 

Hacker

Read application data
[0.05, 1]
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of data
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0.4
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Critical

 

Figure 15 – Threat diagram updated after testing 

The resulting and updated risk evaluation is shown in Figure 16. We see that the uncertainty of the 
estimates has been reduced to the extent that none of the identified risks span over all three risk 
levels. The risks Execute unauthorized code or commands, Read application data and Modify 
application data are not unacceptable, but low or medium. 

Seldom Unlikely Possible Probable Certain

Insignificant

Small

Medium

High

Critical

Read / Modify

Execute

Gain
 

Figure 16 – Updated risk evaluation 

If the updated estimates and the updated evaluation provides sufficient basis for the decision makers 
to determine for each risk whether it needs treatment, the risk assessment process can proceed to the 
treatment phase. Otherwise the analysts need to gather more empirical data, for example by more 
extensive security testing. 

3.4 Conclusion 
Test-based security risk assessment involves the systematic use of security testing for gathering data 
to support the risk estimation. Following the RASEN method, the test procedures are identified based 
on the risk models, and the security test results are in turn fed back to the risk model. This process 
requires that the test procedures are linked to the elements of the risk model under test and that we 
have data formats that can support the information exchange between the risk assessment and the 
testing. 

In the RASEN method we use measures and metrics for representing security test results and 
information that is underlying the risk models and risk estimates. In this section we have explained and 
illustrated how the test measures and metrics are derived from the test procedures that in turn are 
derived from the security risk models. We have moreover explained how the risk analysts make use of 
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the test measures and metrics to aggregate them and derive risk measures and metrics that can be 
used for the security risk assessment. 

The RASEN techniques for test-based security risk assessment are being applied in the RASEN case 
studies, where we make use of test and risk measures. Currently the aggregation of test measures is 
not automated in the case studies, but rather conducted as expert judgments. The project aim to 
develop some automated support, but for this to be viable we need some formats for aggregation that 
can be easily reused in different risk assessments. Otherwise the specification and implementation of 
aggregation functions would be costly one-off tasks in each new security risk assessment. 
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4 Automated Risk Assessment with Testing 
Especially for large scale systems, security risk assessment and security testing might be both difficult 
and expensive. Reusing already created artefacts in combination with automation might help to 
minimize costs. It also might help to reduce the dependency on the expertise, skills and accuracy of 
the analysts. Hence, it might help to reduce human errors in the entire assessment and testing 
process. 

We consider security testing itself to be one possible way to make risk assessment more objective and 
more precise. There are other concepts and technologies which could be applied for the same 
purpose, including but not limited to formal verification and simulation. While formal verification might 
be hard or infeasible for complex large scale systems and while testing these systems might be 
expensive, simulations can help to deal with exactly those large systems and to overcome scaling 
problems. 

It makes eventually sense to combine simulation and testing technologies in order to refine the risk 
assessment of systems which cannot be entirely tested. Combining simulation and security testing 
might lead to new concepts for their seamless integration into the risk assessment process. These are 
the basic ideas that inspired the development of the RACOMAT method. 

4.1 The General RACOMAT Method 
RACOMAT is an acronym for Risk Assessment COMbined with Automated Testing. The RACOMAT 
method integrates security testing tightly into incident simulations of a low level compositional security 
risk assessment. The method tries to automatically test exactly the most critical parts with reasonable 
effort and to improve the risk picture with objective test results. Figure 17 shows the entire process of 
the RACOMAT method. 

 

Figure 17 – The general RACOMAT method 

In spite of relying upon a specific risk assessment method, the general RACOMAT method can use 
different kinds of risk assessment methods, including fault tree analysis (FTA)[1], event tree analysis 
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(ETA) [2] and the CORAS method [7]. However, it requires risk assessment to support component 
based risk analysis and compositionality as described, for example, for the FTA extension in [9] or for 
the CORAS extension in [24]. Especially it must be possible to model dependencies between events 
(faults, incidents) precisely. 

For automation, the risk assessment must be made on a low level. RACOMAT allows analysts to 
model close relations to parts and components of the systems that are analyzed. Therefore, 
RACOMAT introduces the concept of interfaces and ports which can be used to model the relations 
between risk analysis artefacts and the system. 

Since low level risk assessment traditionally means a lot of effort, reusability of existing artefacts is a 
vital part of the RACOMAT method. The component based approach with risk composition in 
combination with libraries of existing risk analysis artefacts like attack patterns and catalogues of 
security test patterns should help to limit the effort. For some common types of components, the 
RACOMAT method suggests using predefined complete modules as defined in [5], for example. 

The initial assessment has to be performed until it results in an event graph with dependencies 
between the events and likelihood notations for the occurrence of independent incidents. 

Such a graph can be used to simulate the behavior of the system. Running Monte Carlo simulations 
as described in [25], likelihoods for dependent events can be calculated. The modeled dependencies 
and the likelihood estimates thereby simulate the actual system. 

The idea to improve the risk picture is now to replace some parts of the simulation with testing the real 
system components. That is, instead of simulating whether some event occurred based upon random 
values and likelihood functions, the RACOMAT method tries to actually trigger the incident. Automated 
or at least semi-automated testing is done with the help of test patterns as described in RASEN 
deliverable D4.2.2 [17]. Eventually, it might be necessary to generate some base incidents during the 
tests. Therefore, the RACOMAT method uses the concept of testing stubs. These stubs are small 
programs that create the required incidents juts for testing. 

As test results the RACOMAT method yields which incidents have occurred. Hence, it is possible to 
directly overtake the occurrence states of those incidents that are already modeled in the event graph 
into the incident simulation. 

If likelihoods are expressed as functions like it is suggested in [25], it is possible to use the test results 
to interpolate a likelihood function that accurately replaces the tested component in future simulations. 
That is exactly how to update the event graph. Since there is now a new test-based interpolated 
likelihood function, it is possible to use this function within following simulation runs to emulate the 
behavior of the already tested part accurately. 

The RACOMAT method continues by replacing the likelihood estimates for the next most uncertain 
asserted component with testing the corresponding real component in the next updated incident 
simulation. 

If all components have been tested or if the testing budget is used up, then the latest risk picture 
becomes the final test-based risk assessment result. Further risk management might continue with 
additional evaluation of the results and with risk treatment. However, this is beyond the scope of the 
RACOMAT methodology. 

4.2 Specific Techniques Introduced with the RACOMAT Tool 
Implementing one specific instance of the general RACOMAT method, the RACOMAT tool combines 
the general method with advanced techniques for a high level of automation. The RACOMAT tool uses 
fault tree analysis or CORAS with extensions for compositional risk assessment. 

In order to reduce the manual effort of low level risk assessment, the RACOMAT tool integrates 
techniques for analyzing components automatically. Given (X)HTML pages, source code or compiled 
programs, it tries to identify the public interfaces of any components and especially the functions as 
well as ports that could be used for interaction with other components or users. An initial system model 
is generated without requiring manual actions. 

The RACOMAT tool assists the risk analysts by suggesting all relevant faults or vulnerabilities, attack 
patterns and unwanted incidents for the identified system elements. The assistants shown in Figure 18 
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and Figure 19 take advantage of existing risk related libraries (e.g. MITRE CAPEC [12] and CWE [10] 
or BSI IT-Grundschutz [5]). The task of the analysts is not to find the relevant risk artefacts. It is rather 
to exclude the non-relevant artefacts. This assisted “negative”, excluding risk assessment technique 
shown in Figure 18 is somehow similar to check lists, limiting the chance that relevant aspects are 
simply overlooked. Risk artefacts are added with simple drag and drop. Thereby, they can be 
immediately linked with the elements of the automatically generated system models. 

 

Figure 18 – RACOMAT assistant suggesting relevant vulnerabilities for string input field in 
website 

 

Dependencies between faults or incidents can be modeled in detail using directed weighted relations 
and gates like shown in Figure 19. As required by the general RACOMAT method, the RACOMAT tool 
supports compositional risk analysis and it calculates likelihoods for dependent incidents using Monte 
Carlo simulations. 
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Figure 19 – RACOMAT assistant suggesting threat scenarios related to some vulnerability 

Security test patterns are automatically associated with risk analysis artefacts as well as system model 
components (e.g. input and output ports) and their priority is calculated. If no appropriate test patterns 
exist in the library, the tool allows its users to create new test patterns within the tool and to upload 
them to the library for sharing. Given an appropriate test pattern, the test generation, execution and 
result aggregation are at least semi-automated. Support for creating and integrating test stubs that can 
generate base incidents for testing purpose is currently under development. 

Test results can be integrated seamlessly into Monte Carlo simulations for calculating likelihood 
values. It is possible to update the risk graphs automatically with more precise likelihood estimates 
interpolated from test results or with new faults based on unexpected test results. Additional security 
testing metrics can be created and applied manually. 

The RACOMAT tool and a tutorial video showing the tool in action are included in RASEN deliverable 
D3.3.2. 

4.3 Interaction with Other Tools 
The RACOMAT tool can be used as a stand-alone tool. It covers the entire process of combined test-
based risk assessment (TBRA) and risk-based security testing (RBST) shown in Figure 17. 
Nevertheless, it is also possible to use other possibly more specialized tools for some steps in that 
process. In particular, the RACOMAT tool can be used in conjunction with the other tools developed 
and used within the RASEN project. Since the RACOMAT tool supports the entire process, it makes 
sense to use the RACOMAT tool as the central platform for the data exchange and for any other 
interaction between the tools. Figure 20 illustrates how such a risk assessment and security testing 
process using different tools and RACOMAT tool as central platform could work. 
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Figure 20 – The process with various tools 

For instance, the RACOMAT tool already supports the JSON (JavaScript Object Notation) format of 
the ARIS tool for data exchange. Figure 21 shows results of import from ARIS to RACOMAT. Support 
for data exchange with the CORAS tool is currently being developed and integrated into the 
RACOMAT tool. The RACOMAT tool is also going to provide tracing features to keep track of 
elements that are exported and later imported again, eventually altered by some external tool. 
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Figure 21 – Initial threat interfaces imported from ARIS 

4.4 Conclusion 
Using security testing to improve fault and security risk incident simulations, the RACOMAT method 
introduces an intuitive way for how risk assessment and security testing can interact with one another. 
The RACOMAT tool shows how this method can be implemented and how the entire process can be 
automated to a great extent. However, automation requires adequate security test patterns and testing 
metrics. Currently there are only few existing, but with the help of the RACOMAT tool it is now possible 
to quickly develop new ones. 

Bearing in mind the ongoing work to provide interoperability with other tools which are more 
specialized on certain steps, the RACOMAT tool might in the future become a central platform capable 
to manage entire combined risk assessment and security testing processes using multiple 
heterogeneous tools. 
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5 Risk Model Encapsulation and Composition 
The criticality of risk management is evident when considering the information society of today. 
Information systems become ever more complex, heterogeneous, dynamic and interoperable. 
Businesses, enterprises, governments and many other stakeholders rely more and more on the 
availability of services and information over the Internet, with Cloud services as a prominent example. 
Managing risks in such a setting is extremely challenging, and established methods and techniques 
are often inadequate. The main problems are that the overall risk picture becomes too complex to 
understand, and that the risk picture quickly and continuously changes and evolves. 

The challenge we address in this section is how to facilitate a compositional [21] approach to risk 
assessment by applying the principle of encapsulation. Following a divide-and-conquer strategy we 
aim for an approach to risk assessment where separate parts of a system can be analyzed 
individually. Compositional techniques should then enable a systematic and methodic composition of 
the individual risk models in order to derive the overall combined result without having to reconsider 
the details of the individual models. 

While compositionality is an established technique in system development, there is very little support 
for this within risk management and assessment [20]. The method and techniques presented in this 
section builds on the formal foundation for compositional risk assessment presented in RASEN 
deliverable D3.2.1. For further details and a more elaborate presentation of the application of the 
techniques, the reader is referred to the publication on which this section is based [20]. 

5.1 Risk Model Encapsulation 
The objective of introducing the notion of risk model encapsulation is to allow different risk models to 
be composed without having to know or understand all the interior details of the individual models. For 
this purpose we need a notion of risk model interface that contains all and only the information that is 
needed for the risk model composition. A further challenge that needs to be tackled is how to take into 
account possible dependencies between the individual risk models. Each sub-target is analyzed 
separately, but the other sub-targets belong to the environment of the sub-target being analyzed. This 
means that the other sub-targets can serve as environmental causes of risks that must be taken into 
account, and that the sub-target being analyzed can be the cause of risks for the sub-targets in its 
environment. 

In the UML [13] class diagram of Figure 22, the term target denotes the target of analysis. The goal of 
the risk assessment is to build the risk model for the target. The target may be decomposed onto a 
number of smaller parts (that we often refer to as sub-targets). There are two crucial features of our 
approach to risk model encapsulation. First, for each target we need to understand how it relates to its 
environment. Second, we need a precise notion of an interface which consists of the risk information 
that is needed in order to compose the risk model in question with other risk models. 

Target

Risk model

Environment

Interface

Threat relation from environment

Impact relation on target asset

Threat relation to environment

*
* *

1

*
1

*

*

*

 

Figure 22 – Risk model interface 

The interface consists of three sets of ingredients. The threat relation from the environment represents 
ways in which the environment may influence the risk model of the target. The impact relation on 
target asset represents potential harm on something of value inside the target. The threat relation to 
environment represents ways in which the target may influence the risk model of the environment. 



 
 

 
  

RASEN - 316853 Page 30 / 44 
 

5.2 Target Decomposition 
Our method for compositional risk assessment follows the principles and guidelines defined by 
established standards such as ISO 31000 [3] and ISO/IEC 27005 [4]. For the details on our method, 
the reader is referred to [20]. In the rest of the section we demonstrate it by showing an example. 

As a first step the overall target of analysis must be specified along with the assets to be protected. 
Our example is from the petroleum industry. Accidents on oil and gas rigs can have large 
consequences in terms of loss of life, damage to the environment and economic loss. Non-routine 
work that takes place on a rig, such as welding or replacement of defect gas detectors, may increase 
the risk. All such work therefore requires a work permit (WP). Every 12th hour a WP meeting is held to 
decide which work permits to release for the next shift. 

In the following we assume that a petroleum operator has initiated a project in collaboration with a 
software tool and service provider to update their ICT system for WP management. In addition to 
functionality for registering, releasing and rejecting WP applications, the system will provide decision 
support in the form of an automated smart agent that collects relevant information for each WP 
application and provides advice to the human decision makers. 

The collaboration diagram to the left of Figure 23 gives an overall view of the system. The class 
RigSystem represents all ICT infrastructure related to WPs that are installed on the rig itself. 
WPAgent represents the automated agent, which will be developed and maintained by the software 
provider represented by the WPAgent maintainer. WeatherService is an internet-based 
meteorological service offering weather forecasts. 
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Figure 23 – Structure of the WP system 

The internal details of RigSystem are shown to the right in Figure 23. Each of the internal components 
is available to the WP agent via the wa port. WPManager handles WP applications and release/reject 
decisions. DeviationsDB is a database where deviations related to the state, maintenance, testing, 
etc. of equipment on the rig are recorded. WPDB is a database that stores all WPs and related 
information. For further details about the target of analysis, including detailed sequence diagrams 
specifying the application process, the reader is referred to [20]. 

The next step is the identification of the assets for the overall target of analysis. There are of course a 
number of critical information and service assets in the WP scenario. For the purpose of the example 
we select only a few that we focus on. Considering the rig system it is obvious that availability of the 
WP data and availability of the WP advice are essential for both WP manager and for the decision 
maker. The availability of WP data is also essential for the WP agent that needs data for creating the 
advice. Considering the WP system as a whole, it is also critical to ensure the dependability of the WP 
agent. Because the WP agent is a software for automated decision support, the integrity of the 
software—including the implemented algorithms—needs to be protected. In the WP system analysis 
we are concerned about information security risks with respect to these assets. 
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The target decomposition is guided by both the identified assets and the system architecture. In Figure 
24 we have specified the assets and placed them on the part of the target to which they belong. 
Availability of WP data concerns the information that is stored by the WPDB, whereas availability of 
WP advice concerns the result that is presented to the decision maker by the WP manager. The 
dependability of WPAgent and the integrity of WPAgent software belong to the WP agent. 

Based on the identified assets we have decomposed the target into two components as indicated in 
Figure 24. Two of the assets are associated with the rig system and two of them with the WP agent 
and its communication line to the rig system. In the remainder of the section we refer to the former as 
Component A and to the latter as Component B. Note that in this analysis the Internet weather service 
is part of the environment of the overall target of analysis. 
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Figure 24 – Target decomposition 

5.3 Sub-Target Risk Modeling 
In the following we give a stepwise introduction to how we do the risk assessment for individual sub-
targets by describing three different cases. First, the simple situation where all threats and assets are 
internal, i.e. risk identification with respect to threats and assets only within the sub-target. Second, we 
consider also external threats, i.e. causes that may stem from other sub-targets or from the 
environment of the overall target of analysis. Third, we address the general situation where we 
consider also environment assets, namely the assets of other sub-targets for which the sub-target in 
question can act as a source of risk. Note that this stepwise introduction is for presentation purposes 
and does not indicate a specific methodic order. 

5.3.1 Internal Threats and Assets 
Figure 25 shows our format for compositional risk modeling. Note that although we have used CORAS 
[7] for the risk modeling, our principles and modeling format for risk model encapsulation and 
composition can be applied using also other notations for risk modeling. The format consists of three 
compartments, where the middle compartment includes all the threats, vulnerabilities, assets, etc. that 
are internal to the sub-target in question. The diagram in Figure 25 is for sub-target A as the naming at 
the top indicates. In the compartment to the left we model environment threats and in the compartment 
to the right we model environment assets. Neither of these is relevant when considering internal 
threats and assets only. 
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One of the identified risks for sub-target A is that WP advice cannot be accessed from WPManager, 
which could be due to a software error that leads to malfunctioning of the WP manager. After such risk 
identification and modeling, the risk assessment proceeds with the risk estimation. In the example we 
have used frequencies for likelihood estimation and a scale of the three levels high (H), medium (M) 
and low (L) for the consequences. In the example we have estimated that WP data cannot be 
accessed from WPManager occurs 16 times per year. The reader is referred to existing literature on 
CORAS [7][23] for the techniques and rules for risk estimation. The likelihood of the other incident, 
however, is not estimated at this point. This is because the analysts know that the availability of the 
WP advice depends also on the WP agent. We therefore need to take into account also environment 
threats. 
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Figure 25 – Internal threats and assets 

5.3.2 Environment Threats 
Figure 26 exemplifies an environment threat with respect to sub-target A, namely that WPAgent fails to 
deliver advice. Importantly, because the threat occurs outside of A the estimation of its likelihood is not 
part of the risk assessment of A. Instead the variable x1 is used such that we get a parameterized 
specification of the likelihoods of the scenarios and incidents that this threat may cause. For example, 
using the CORAS rules for risk calculation, the estimated frequency of the incident WP advice cannot 
be accessed from WPManager is x1 + 6 occurrences per year. 
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Figure 26 – Environment threats 



 
 

 
  

RASEN - 316853 Page 33 / 44 
 

As we will show below the estimation of x1 is done as part of the risk assessment of sub-target B, and 
this input is used when composing the threat diagrams to generate the risk picture for the overall 
target. 

5.3.3 Environment Assets 
In order to understand and analyze how one sub-target can act as an environment threat for another 
sub-target we need a systematic way to systematically consider all other sub-targets. Our approach to 
do this is to take into account all assets of the overall target in each individual risk assessment, while 
still distinguishing between the internal assets and the environment assets. 

This is illustrated for sub-target A in the upper diagram of Figure 27. One of the assets that do not 
belong to A is Dependability of WPAgent. In the diagram this asset is placed in the compartment to the 
right. As part of the risk assessment of sub-target A we identify all incidents that may have an impact 
on any of the environment assets. In the example, one such incident is Loss of WPDB. Note 
importantly that the consequence estimation for the environment assets is not done as part of the risk 
assessment for the sub-target in question; exactly how incidents of the sub-target may impact assets 
of other sub-targets need to be analyzed as part of the risk assessment for each of the impacted sub-
targets. 
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Figure 27 – Environment assets 

The lower diagram of Figure 27 exemplifies a completed threat diagram for sub-target B. We see here 
that the incident WPAgent fails to deliver advice may impact the environment asset Availability of WP 
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advice. This asset belongs to A, which is why this incident occurs as an external threat in the threat 
diagram for sub-target A shown in the upper part of Figure 27. From the diagram for sub-target B we 
also see that incidents of one sub-target may impact its own assets as well as environment assets. We 
also see two environment threats, namely Cyber threat and Loss of WPDB. The latter stems from A, 
whereas the former stems from the environment of the overall target. 

Whereas the likelihood estimation of external threats from sub-target A is done as part of the 
assessment of A, we may do a separate likelihood estimation for the threats from the environment of 
the overall target. This is exemplified for the cyber threat where the frequency is 4:1 year. 

5.4 Risk Composition 
The threat diagrams introduced above give the white-box view of the risk model for each sub-target; 
their purpose is to support the full risk assessment of the sub-targets, including all the internal threats, 
vulnerabilities and threat scenarios. To facilitate their composition, however, we create their 
corresponding interface diagrams. 

The interface diagrams for A and B are depicted in Figure 28. The interface diagrams contain the 
information that is needed to compose the different diagrams to yield the overall risk picture, and to 
document all of the risks with their risk levels. When composing the threat interface diagrams the 
variable x2 in Figure 27 is instantiated with the value 6 from the incident Loss of WPDB for sub-target 
A. The likelihood of the unwanted incident WPAgent fails to deliver advice is then calculated by x2 + 6, 
which gives 12:1 year. 
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Figure 28 – Interface diagrams 

The resulting threat interface diagram for A and B composed, and hence for the overall target of 
analysis, is depicted in Figure 29. Since the diagram covers the whole target the set of environment 
assets is empty. Moreover, the only environment threat is the one that belongs to the environment of 
the overall target. 

The interface diagram for the full target shows all unwanted incidents with respect to the assets we 
identified during the context establishment. It also shows the likelihood and consequence estimates for 
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each of the incidents. Because a risk is defined as an unwanted incident with its likelihood and 
consequence, we have in our example identified five risks. The risk levels are calculated by using a 
risk function such as a risk matrix. 
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Figure 29 – Interface diagram for the composed risk models 

5.5 Conclusion 
In this section we have presented our first steps towards a method for compositional risk assessment. 
At the core of the approach is a novel notion of risk model encapsulation, where only the elements that 
are essential for composition are exposed through an explicitly defined risk model interface, while 
internal details are hidden. All one needs to know in order to compose risk models is the contents of 
their interfaces. By hiding the internal details we make it easier for practitioners to compose risk 
models, while at the same time reducing the size and complexity of the resulting model. An added 
benefit is that a risk model interface contains the information that would typically be of interest for 
managers and decision makers who often have little time and have not themselves taken part in the 
risk assessment. 

Encapsulation is a key reason for the success of object-oriented programming. We believe that 
significant benefits can be achieved by introducing this concept into risk management and analysis. 
We are not aware of any other work where this has been attempted. For a presentation and discussion 
of related work we refer to [20]. Unlike our approach, none of the referred works provides a notion of 
encapsulation in the sense of exposing only the risk model elements needed for composition while 
hiding internal elements. Instead, they focus primarily on likelihood or risk level assessment in a 
component-based setting. While this is an important ingredient of component-based risk analysis, the 
lack of an encapsulation mechanism complicates composition; it means that composed models may 
become very large and complex, which in turn may lead to scalability problems. 
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6 Continuous Risk Assessment 
Managing risk of systems that rapidly evolve or have environments that evolve is challenging since 
also the security risks may be evolving. This motivates the development of risk assessment 
techniques that facilitate a continuous assessment of systems where the risk picture can be updated 
without having to conduct a full risk assessment from scratch every time. There are various ways of 
handling system or environment changes and keeping the risk picture up-to-date. One approach that 
we continue to investigate in the RASEN project is the use of compositional risk assessment as 
presented in Section 5 and in deliverable D3.2.1 [18]; compositional techniques have the potential to 
facilitate continuous risk assessment by allowing only the parts or aspects of the system that have 
changed to be reassessed. Another approach is the use of traceability links between the 
documentation of the system and the risk model [8][22]. This facilitates efficient and systematic 
updating of the risk picture by the tracing of changes from the system to the relevant risks. 
Investigating the latter techniques is outside the scope of the RASEN project, although related to our 
objectives of facilitating continuous risk assessment. The third approach, which we also address in this 
project, is the use of key indicators that can be monitored. While monitoring the indicators the values 
can be used to update the existing risk picture at desired time intervals. This requires means for 
aggregating key indicator values to derive the values that can be fed to the risk models. As discussed 
in deliverable D3.2.1 this kind of indicator aggregation is similar to the aggregation of test measures 
presented in Section 3. The means for gathering the indicator values are of course different from the 
testing. The objective is also different since the security testing can be used to complement the 
assessment results, whereas the indicator monitoring is used to enable risk monitoring and continuous 
updates of the risk levels. 

In Section 6.1 we give a brief overview of our approach to continuous risk assessment by indicator 
monitoring. In Section 6.2 through Section 6.4 we describe each step and the produced artefacts in 
more details. Finally we conclude in Section 6.5. 

6.1 Method Overview 
For risk monitoring to be possible there must be a monitoring infrastructure in place offering a palette 
of continuously monitored key indicators that can be selected from. The development of such an 
infrastructure is outside the scope of the RASEN project. We are instead concerned with how such 
indicators can be aggregated to update the risk model. 

Before the risk monitoring can start we need to prepare by developing the risk model for the risks to be 
monitored, we need to identify the relevant key indicators, and we need to specify the functions for 
aggregating the indicator values. More specifically, the preparations consist of the following three 
steps. 

1. Initial risk assessment. The purpose of this step is to identify and document the current risk 
picture so as to understand what is to be monitored and how it can be monitored. The initial 
risk assessment also includes the estimation of likelihoods and consequences in order to 
prioritize what to monitor, and also to provide data that can be used to validate the indicators 
and aggregation functions. 

2. Key indicator identification. This is done based on the risk model and risk assessment 
results of the previous step. The indicators can be related to any of the risk model elements, 
such as threats, vulnerabilities, threat scenarios and unwanted incidents. 

3. Specify aggregation functions. The purpose of this step is to define the mapping from the 
values of the monitored key indicators to the estimates that are fed to the risk model. 

Note that while the aggregation of key indicator values in general can be used to derive any estimate 
for the risk model, including likelihoods, consequences and risk levels, the RASEN project focus on 
the aggregation of indicator values to likelihood values. 

In the next subsections we give an example-driven presentation of the method and the produced 
model artefacts. The example is of a web-application for which the end-users need to have a user 
account and a username and password to access. Note that the risks and the estimates are made up 
for the example and not the real values from a real case. 
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6.2 Initial Risk Assessment 
The initial risk assessment can be conducted using any available method and risk modeling language. 
In our example we have used the CORAS approach [7]. As the purpose here is not to present the risk 
assessment as such, we introduce only the results of the risk assessment that are used for the 
monitoring. 

The initial risk assessment typically includes several assets that must be identified and documented. In 
our example we show only one asset, namely integrity of data. The risk assessment also includes the 
specification of scales for likelihoods and consequences, as well as the definition of the risk evaluation 
criteria. For the purposes of this section we only need the likelihood scale. The scale is of the five 
levels seldom, unlikely, possible, probable and certain. For the precise definition of each value we 
refer to Table 2 in Section 3. 

The risk identification involves the identification and modeling of threats, vulnerabilities, threat 
scenarios and unwanted incidents. The result is exemplified with the CORAS threat diagram in Figure 
30. The diagram shows two kinds of attacks on the web-application. On the one hand, a hacker may 
conduct an SQL injection attack which may lead to the risk of unauthorized modification of application 
data. On the other hand, a hacker or other intruder may gain unauthorized access by taking over a 
user account, either by a brute force attack on the user credentials or by someone accessing an active 
session on a shared workstation. The latter may happen when a user fails to log off an active session 
before leaving the workstation. The diagram also shows the likelihood estimates. The estimates for the 
threat scenarios and unwanted incidents are in terms of frequencies as defined in Table 2, whereas 
the conditional likelihoods on the leads-to relations are in terms of probabilities. 
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Figure 30 – Risk model with likelihood estimates 

6.3 Key Indicator Identification 
In order to monitor risks based on aggregated key indicator values we need to identify the indicators 
that are relevant for the risks in question. This is done by a careful walkthrough of the risk models, for 
example by a team of personnel with different expert insight into the target system. 

Figure 31 shows a possible set of key indicators for the identified risks. In the following we explain 
each of them in turn. 

• K1 is an indicator derived from the CAPEC attack pattern classification [12]. The pattern 
includes information such as required attacker skills and resources, as well as likelihood of 
attack. We assume here that K1 is an aggregate of such values. 
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• K2 is the total number of user visits on the site for the web-application, which is also related to 
the SQL attack since a share of the visits is the conducted attacks. 

• K3 is related to the CWE [10] vulnerability of improper input validation. We assume here that 
the application owner conducts regular searches in their logs to keep track of the number of 
invalid user input. 

• K4 is related to the CWE vulnerability of improper neutralization of special elements used in an 
SQL command (SQL injection). We assume that the application owner conducts neutralization 
while keeping track of the number of inputs that should have been neutralized but failed to be 
so. 

• K5 is the number of detected data modifications that have not been accounted for by the staff 
of the application owner, and that therefore may include unauthorized modifications. 

• K6 is the number of user login fails, which includes any attempts of brute force attacks. 

• K7 is the number of weak passwords according to a classification that categorizes passwords 
as weak, medium strength or strong. We assume that the enforced password requirements 
are weak, although the users are encouraged to select strong passwords. 

• K8 is the number of passwords that have not been changed during the last 12 weeks. We 
assume that the end-users are encouraged to change their password every three months, 
although this is not enforced. 

• K9 is the time period of user inactivity until a session is automatically terminated. It is related 
to the vulnerability of lack of security awareness among end-users since this vulnerability may 
lead to unauthorized access to a user account due to active sessions. 

• K10 is the number of forced log-offs due to user inactivity, which is also related to the possible 
lack of security awareness of the end-users. 

• K11 is the number of user data modifications that the end-users report to the application 
owner as unrecognized by the end-users. This number is related to the incident of 
unauthorized user data modification. 
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Figure 31 – Risk model with key indicators 

Note that for risk monitoring by indicator monitoring to be valid and correct the identified key indicators 
must completely determine the risk estimates that they are aggregated to, possibly in combination with 
some given constants. The exemplified indicators are clearly not complete for the given risk model, but 
the purpose here is only to present the approach. However, indicators need not be identified for all risk 
model elements. For example, the threat scenario Unauthorized access on user account is not 
assigned any indicator. The likelihood estimate for this scenario must instead be calculated based on 
the likelihood estimates of the scenarios that may lead to it. 

The need for the set of identified key indicators to be complete is indicated by the aggregation 
functions annotated in the risk model of Figure 31. For example, the likelihood of the threat scenario 
SQL injection attempt is an aggregate of the key indicators K1 and K2. The next step is to define the 
functions for the aggregations. 

6.4 Specify Aggregation Functions 
The aggregation functions are mappings from key indicators to likelihoods, where the likelihoods are 
frequencies (for scenarios and incidents) or probabilities (for leads-to relations). In Table 4 we have 
listed the key indicators with their domain and their current value at the time of the initial risk 
assessment.
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Name Description Domain Value 

K1 CAPEC-66 score {1,...,10} 5 

K2 Number of visits last 12 months {0,...} 120,000 

K3 Percentage of invalid input detected last 12 months [0,1] 0.075 

K4 Percentage of failed neutralizations detected last 12 months [0,1] 0.19 

K5 
Number of unaccounted data modifications detected last 12 
months 

{0,...} 16 

K6 Number login fails last 12 months {0,...} 3,200 

K7 Number of weak passwords {0,...} 4,000 

K8 
Number of passwords that have not been changed during the last 
12 weeks 

{0,...} 6,500 

K9 Expiry time of inactive session {5,...,45} 15 

K10 Number of inactivity log-offs last 12 months {0,...} 1,500 

K11 
Number of user reported unaccounted data modifications last 12 
months 

{0,...} 25 

Table 4 – Key indicators with current values 

To show how the aggregation functions are specified we give only three examples. These are very 
simplified as the focus here is not on the functions themselves, but rather how they are used. 

In our example we define the function f1 as f1(K1,K2) = (K1 · K2)/1000. This means that the number 
of SQL injection attempts is assumed to be proportional to the product of the total number of visits and 
the CAPEC score for the attack. 

The function f2 is used to derive the conditional likelihood for an SQL injection attempt to lead to a 

successful SQL injection. The function is defined as f2(K3,K4) = (K3 + K4 – K3 · K4)/25. Generally a 
conditional likelihood is in the interval [0,1] but by this aggregation it is assumed that in reality it is 
never higher than 0.04 for this particular attack on the web-application in question. 

Finally the function f3 is for the example simply defined as f3(K5) = K5/20. This means that it is 
assumed that a constant share of 5% of the unaccounted modifications is the unauthorized ones. 

The identified key indicators and the aggregation functions should be validated. This can be done in 
several ways. In the following we describe two validation techniques that make use of likelihood 
calculation. First, we can calculate the aggregated likelihood values from the current indicator values 
and compare the results with the estimates from the initial risk assessment. Assuming that both are 
correct, they should be identical. Second, we can do a consistency check of the aggregated 
likelihoods; if the aggregated likelihoods are correct, they must also be mutually consistent. The first 
validation check can only be done when a separate risk assessment is at hand, whereas the second 
can be done whenever the risk picture is updated. 

Considering the three specified aggregation functions and the current indicator values, we get the 

following results. The likelihood of the threat scenario SQL injection attempt is given by f1 as (5 · 
120000/1000) = 600. This is within the likelihood interval of certain in Table 2 and matches the 
estimate of the initial risk assessment shown in Figure 30. The conditional likelihood of the following 

leads-to relation is given by f2 as (0.075 + 0.19 – 0.075 · 0.19)/25 = 0.01003. This is slightly higher 
than the estimate of the initial assessment which is the interval [0.004, 0.01] and may indicate that the 
set of identified indicators is incomplete or that the aggregation function is not correct. The likelihood of 
the threat scenario SQL injection successful is not given directly by any indicators. Instead it must be 
calculated using the CORAS calculus based on the monitored values that precede it. This gives the 
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estimate 600 · 0.01003 = 6.018, which is within the possible interval. Also this matches the estimate 
from the initial risk assessment. Finally, we use the function f3 to calculate the likelihood of the incident 
Unauthorized application data modification as 16/20 = 0.8. This is within the interval unlikely, and 
again in line with the initial risk assessment. 

The mutual consistency checking is to compare the monitored likelihoods against each other. For 
example, the current monitored likelihood of the threat scenario SQL injection successful is 6.018. 
Using the estimate of the conditional likelihood of the following leads-to relation we get the estimate 
6.018 x [0.05, 0.15] = [0.3009, 0.9027] for the frequency of the unwanted incident Unauthorized 
application data modification. This is consistent with the frequency derived from the indicator K5 for 
this incident, namely 0.8. 

The identification of the key indicators and the specification of the aggregation functions must 
obviously be done with much care to ensure that the result is complete and correct. The task is, 
however, error-prone. This means that systematic techniques for validation of the indicators and 
functions are important and valuable. 

6.5 Conclusion 
In this section we have presented an approach to continuous security risk assessment by means of 
risk monitoring. The method and techniques make use of identified key indicators that can be 
monitored and the values of which can be aggregated into likelihood estimates or other values that 
can be fed to the risk model. 

The approach is similar to test-based risk assessment as presented in Section 3 and Section 4 since 
both approaches involves the aggregation of low-level security measures to high-level risk measures. 
The key indicator monitoring approach is sometimes referred to as passive testing whereas the 
security testing described in Section 3 is referred to as active testing. Although active and passive 
testing serve different purposes they are similar in the sense of using low-level measurements as input 
and aggregating these into useful data for the risk assessment. 
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7 Conclusion 
In this deliverable we have reported on the main results of the RASEN WP3 tasks during the second 
year of the project. The results show progress within all of the R&D tasks of WP3 of compositional risk 
assessment techniques, techniques for test-based security risk assessment and techniques for 
continuous security risk assessment. 

The developed techniques come with relevant modeling support, and they are moreover supported by 
the prototype tools of deliverable D3.3.2 that are integrated into the RASEN tool-box. Both WP3 and 
the RASEN project furthermore make strong use of available databases and repositories of known 
security risks and vulnerabilities, which facilitates automation as well as the development of patterns 
for risk identification and assessment. 
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