

RASEN - 316853

Deliverable D3.2.2

Techniques for Compositional Test-Based

Security Risk Assessment v.2

RASEN - 316853 Page 2 / 44

Project title: RASEN

Project number: 316853

Call identifier: FP7-ICT-2011-8

Objective: ICT-8-1.4 Trustworthy ICT

Funding scheme: STREP – Small or medium scale focused research project

Work package: WP3

Deliverable number: D3.2.2

Nature of deliverable: Report

Dissemination level: PU

Internal version number: 1.0

Contractual delivery date: 2014-09-30

Actual delivery date: 2014-09-30

Responsible partner: Software AG

RASEN - 316853 Page 3 / 44

Contributors

Editor(s) Bjørnar Solhaug (SINTEF)

Contributor(s) Bjørnar Solhaug (SINTEF), Ketil Stølen (SINTEF), Johannes Viehmann
(Fraunhofer), Frank Werner (Software AG)

Quality assuror(s) Erlend Eilertsen (Evry), Samson Esayas (UiO)

Version history

Version Date Description

0.1 14-07-08 Table of contents and document outline

0.2 14-08-14 First draft of all sections

0.3 14-09-08 Finalized for internal review

0.4 14-09-26 Revision after internal review

1.0 14-09-30 Quality checked and finalized

Abstract

This deliverable reports on the main results of RASEN WP3 from the second year of the project. The
tasks that have been addressed are: (T3.1) the development of techniques for compositional security
risk assessment, (T3.2) the development of techniques for test-based security risk assessment, and
(T3.3) the development of techniques for continuous risk assessment by means of test-based
indicators.
The RASEN approach to compositional security risk assessment has been further developed, and
this deliverable introduces our notion of risk model encapsulation. We have developed modeling
support for composing individual risk models, where the encapsulation allows the models to be
combined without having to consider or assess the internal details of the respective models. The
techniques and tools for test-based security risk assessment have been extended in several
directions. The deliverable presents results covering (semi-) automated risk modeling, security
testing, and security test result aggregation. The deliverable finally presents techniques for
continuous security risk assessment by monitoring and aggregation of key indicator values, where the
indicators provide information about the current risk picture at any point in time.

Keywords

Security, security risk assessment, test-based security risk assessment, compositional security risk
assessment, risk monitoring, risk modeling, risk assessment tools.

RASEN - 316853 Page 4 / 44

Executive Summary
The overall objective of RASEN WP3 is to develop tools and techniques to facilitate compositional
security risk assessment supported by security testing. This includes developing tools and techniques
i) for compositional security risk assessment and security testing, ii) for identifying, estimating and
verifying security risks based on security test results, and iii) for reuse of risk assessment and security
test results, as well as dynamic updates of the security risk assessment based on test results.

This deliverable reports on the WP3 results after the first year of the project. The results cover all of
the WP3 research tasks, namely (T3.1) the development of techniques for compositional security risk
assessment, (T3.2) the development of techniques for test-based risk identification and estimation in
order to complement the risk picture based on test results, and (T3.3) the development of techniques
for continuous risk assessment of large scale systems by the use of test-based indicators. In
particular, the deliverable makes the following contributions.

• A tool-supported approach to risk modeling and assessment of large-scale networked
systems. The risk modeling involves the automated or manual assignment of vulnerabilities to
components, where vulnerabilities can be imported from existing catalogues or databases.
The approach is integrated into the RASEN methodology which allows the export of
components to the security test execution.

• Techniques for the systematic use of security test results to update the risk picture. In
particular, we explain how we make use of test measures and test metrics to capture the
results of the security testing. The low-level test measures and metrics are in turn aggregated
into more high-level risk measures and metrics that serve as the input to the risk assessment.

• A tool-supported method for the combination of test-based risk assessment and risk-based
security testing. The tool is designed to support the RACOMAT (Risk Assessment COMbined
with Automated Testing) method for risk assessment and modeling, test procedure
identification, as well as test execution and incident simulation.

• Techniques and modeling support for compositional security risk modeling and assessment.
At the core of the approach is a notion of risk model encapsulation with modeling techniques
for hiding the internal details of each individual risk assessment. The risk model encapsulation
supports the composition of risk models by considering only the information that is visible on
the defined interface of the encapsulated models.

• An approach to continuous security risk assessment by means of risk monitoring. The risk
monitoring is enabled by means of the monitoring of key indicators, where the indicators
provide information about the current risk picture at any point in time. We explain how key
indicator values can be aggregated to derive risk information.

The WP3 results contribute to support and facilitate the overall RASEN methodology that is presented
in the context of WP5. The WP3 tools are moreover being integrated into the RASEN tool-box and
have therefore the potential to be used in combination with other RASEN tools and techniques.

RASEN - 316853 Page 5 / 44

Table of contents
TABLE OF CONTENTS .. 5

1 INTRODUCTION ... 6
2 RISK MODELING OF LARGE NETWORKED SYSTEMS ... 7

2.1 COMPONENT TYPE IMPLEMENTATION AND ASSIGNMENT .. 7
2.1.1 Generic Component Type Generation ... 8
2.1.2 User-Specific Component-Type Definitions ... 9

2.2 INTERFACING THE TESTING FRAMEWORK ... 9
2.3 CONCLUSION ... 12

3 COMPLEMENT THE RISK PICTURE USING TEST RESULTS ... 14
3.1 METHOD OVERVIEW .. 14
3.2 AGGREGATING TEST RESULTS USING RISK METRICS .. 15

3.2.1 Concepts .. 15
3.2.2 Process .. 15

3.3 EXAMPLE ... 18
3.3.1 Context Establishment ... 18
3.3.2 Security Risk Assessment ... 19
3.3.3 Test Procedures and Test Measures .. 20
3.3.4 Aggregating Test Measures ... 20

3.4 CONCLUSION ... 21

4 AUTOMATED RISK ASSESSMENT WITH TESTING .. 23
4.1 THE GENERAL RACOMAT METHOD .. 23
4.2 SPECIFIC TECHNIQUES INTRODUCED WITH THE RACOMAT TOOL ... 24
4.3 INTERACTION WITH OTHER TOOLS .. 26
4.4 CONCLUSION ... 28

5 RISK MODEL ENCAPSULATION AND COMPOSITION .. 29
5.1 RISK MODEL ENCAPSULATION .. 29
5.2 TARGET DECOMPOSITION .. 30
5.3 SUB-TARGET RISK MODELING .. 31

5.3.1 Internal Threats and Assets ... 31
5.3.2 Environment Threats ... 32
5.3.3 Environment Assets... 33

5.4 RISK COMPOSITION ... 34
5.5 CONCLUSION ... 35

6 CONTINUOUS RISK ASSESSMENT .. 36
6.1 METHOD OVERVIEW .. 36
6.2 INITIAL RISK ASSESSMENT .. 37
6.3 KEY INDICATOR IDENTIFICATION .. 37
6.4 SPECIFY AGGREGATION FUNCTIONS ... 39
6.5 CONCLUSION ... 41

7 CONCLUSION .. 42

REFERENCES .. 43

RASEN - 316853 Page 6 / 44

1 Introduction
A main objective of RASEN WP3 is to develop techniques and tools that facilitate security risk
assessment of large-scale and complex software systems. To fulfill this objective we are conducting
R&D activities in three directions. First, we are developing techniques and modeling support for
compositional security risk modeling and assessment. Such techniques should allow large system to
be decomposed into smaller sub-systems or components that can be analyzed separately. For this we
need methods for deducing the combined results of the individual analyses. Second, we are
developing techniques for test-based risk identification and estimation, so as to complement the risk
picture based on the test results. Third, we are investigating techniques for continuous security risk
assessment by leveraging the techniques for compositional security risk assessment, and by means of
risk monitoring.

The current WP3 status and the second year results of these R&D activities are presented in this
deliverable. The activities correspond to research tasks T3.1 (compositional security risk assessment),
T3.2 (test-based risk identification and estimation) and T3.3 (continuous risk assessment) respectively,
of RASEN WP3. More specifically, the technical contents of this deliverable are as follows.

Section 2 presents the ARIS tool-supported approach to risk modeling and assessment of large-scale
networked systems. Using this approach, a software product is specified by decomposing it into
components that in turn are further decomposed to form a tree structure of any depth. The risk
modeling involves the automated or manual assignment of vulnerabilities to components, where
vulnerabilities can be imported from existing catalogues or databases. The approach is integrated into
the RASEN methodology which allows the export of components to the security test execution.

Section 3 concerns the use of the security test results to update the risk picture. In particular, we
explain how we make use of test measures and test metrics to capture the results of the security
testing. The low-level test measures and metrics are in turn aggregated into more high-level risk
measures and metrics that serve as the input to the risk assessment.

Section 4 presents tool-support for the combination of test-based risk assessment and risk-based
security testing. The tool is designed to support the RACOMAT (Risk Assessment COMbined with
Automated Testing) method for risk assessment and modeling, test procedure identification, as well as
test execution and incident simulation. The tool is being integrated into the RASEN toolbox, and the
RACOMAT method can be used in combination with other RASEN methods and techniques to support
the overall RASEN methodology.

Section 5 presents an approach to compositional security risk modeling and assessment. The purpose
of the approach is to allow large systems to be decomposed into smaller parts that are assessed and
analyzed independently. The individual results can then later be composed to form the risk model and
risk assessment results for the system as a whole. At the core of the approach is a notion of risk
model encapsulation with modeling techniques for hiding the internal details of each individual risk
assessment. The risk model encapsulation supports the composition of risk models by considering
only the information that is visible on the defined interface of the encapsulated models.

Section 6 presents an approach to continuous security risk assessment by means of risk monitoring.
The risk monitoring is enabled by means of the monitoring of key indicators, where the indicators
provide information about the current risk picture at any point in time. Such security risk monitoring is
sometimes referred to as passive testing, whereas the security testing described in the previous
sections and in RASEN WP4 are referred to as active testing. When conducting test-based security
risk assessment, there is in both cases a need for aggregating the test results. In this section we
explain how the aggregation can be done by the aggregation of key indicator values.

The presented methods and techniques support various parts of the overall RASEN methodology as
presented in the context of WP5. The WP3 tools are moreover being integrated into the RASEN tool-
box, which means that they can be used in combination with other RASEN tools. The current WP3
tools are provided in prototype deliverable D3.3.2.

RASEN - 316853 Page 7 / 44

2 Risk Modeling of Large Networked Systems
The following chapter discusses the design of a modeling framework on top of the RASEN
methodology to support risk assessment and modeling of large scale networked software systems. In
this sense, we present a component type representation which allows a high degree of freedom when
modeling a software component, and an export/import mechanism to interface the RASEN testing
framework.

The existing risk template has been extended to be self-documented which greatly facilitates the
modeling of security risks. In a second step, generic templates are generated that allow a convenient
modeling by the end-user offering drag-and-drop techniques where available risk templates can be
reused for the security risk assessment of new software products. With this implementation we
accomplished an automated generation of this risk templates based on the most common security risk
templates and industry standards like the Common Weakness Enumeration (CWE) database [10].

In the next step the existing model has been extended to express links between currently defined risks
and weaknesses on the component level. The Common Weakness Scoring System (CWSS) [11]
provides hereby a mechanism for scoring weaknesses in a consistent, flexible and open manner while
accommodating context for various business domains. As it is part of the CWE project, it can be
interlinked with information already available in the models to allow quantitative measures of available
weaknesses present within a software component.

Figure 1 – Model overview of the product, component and component types

The current model capabilities are depicted in Figure 1. Starting from the top most component, each
product is assigned a vignette which defines the application area in which the product is used. This
could be for example an Internet-hosted system with a high degree of networking as it is found in
cloud computing, but also as simple as a system deployment in a company’s infrastructure with
maximum security and intrusion protection through multi-layer firewalls.

2.1 Component Type Implementation and Assignment
In the RASEN ARIS model each product consists of components which build the product hierarchy
and can be interleaving in any thinkable form by forming sub-components of arbitrary depth. Each
component is assigned component types specifying the core functionality and nature of the
components' application like networking, Linux Operation System, Authentication, etc. These
components have two different origins: On the one hand, they can be taken from a generated library of
Generic Component Types, and on the other hand, they can be user-defined component types where
users individually assess the type and the weaknesses which this component type exhibits. This

RASEN - 316853 Page 8 / 44

distinction is illustrated in Figure 2. The two different component types are described in detail in the
following two sections.

Figure 2 – Different natures of component type libraries

2.1.1 Generic Component Type Generation
The idea behind the generic component type generation is to support software developers and risk
experts by providing generic modules for an improved and much faster risk assessment. In this sense,
it is easier and less error-prone to choose from a list of best-known weaknesses as to choose the
mode time in which the weaknesses for each individual component have to be assessed and derived
from scratch. The concept is shown on the right side of Figure 2.

The list of generic component types is generated according to best practice and follows the list of
weaknesses derived from the Common Weakness Enumeration (CWE) schema. The CWE database
is an array of CWE-IDs which either represent a weakness, a category, a view or a compound
element. Views and compound elements are ignored as they are not important for the algorithm. A
category contains one or more weaknesses and can also contain one or more child categories. A
weakness can be a weakness class (this is also a kind of category), a base weakness or a weakness
variant. Weaknesses can be in a “Can-also-be”-relationship with another weakness. So the CWE
database can be thought of as a tree whose leafs can be connected with each other. The following
graphic clearly visualizes the dependency from categories to multiple weaknesses derived from the
CWE database.

For most of the weaknesses the following data is available: Title and short description, applicable
platforms (this can be an operating system, framework or a programming language), technical impact,
affected resources, functional area and consequence scope.

For each component type, the weaknesses (CWE-IDs) are assigned using one or more of the
following methods following an automated generation process:

1. Collecting all CWE-IDs of a CWE category: For the specified category, weaknesses are
collected recursively following the tree structure.

2. Searching for CWE-IDs using a search term: CWE weaknesses have a headline and a short
summary description. All CWE weaknesses that contain the search term are added to the
component type.

3. Collecting all CWE-IDs which share a specified value. A shared value can, for example, be
operating system, framework, programming language, etc.

4. Adding CWE-IDs manually: Some CWE-IDs are added manually to component types. This is
necessary because not all CWE-IDs can be assigned automatically using one of the methods
described above. The most important reasons for that is incomplete and/or inconsistent data
in the CWE database.

RASEN - 316853 Page 9 / 44

There is also a component type called “Generic” which contains all CWE weaknesses that are too
generic to fit to one of the other component types. The component types listed in Table 1 are
automatically generated and allow the security experts and software architects quick modeling of their
software systems.

Generic Component Type Name N° of CWEs assigned Generic Component Type Name N° of CWEs assigned

Core 176 Transport Protocols HTTP 9

Using APIs 16 Transport Protocols FTP 1

Multithreading 31 Operating Systems Windows 10

Database Access 10 Operating Systems Mac OS 2

File System Access 52 Operating Systems UNIX/Linux 4

Reading and Writing Files 10 Framework Struts 10

Logging 5 Framework.NET 6

Temp Files 3 Framework J2EE 9

Configuration 20 Programming Language Java 70

Authentication 28 Programming Language C 70

Authorization 12 Programming Language C++ 70

Using Cryptography 19 Programming Language Assembly 4

Using Random Values 20 Programming Language Ruby 3

Sensitive Data 9 Programming Language Python 3

Networking 2 Programming Language C# 3

Critical Resource Access 82 Programming Language ASP.NET 7

Server 4 Programming Language PHP 13

Web Application 143 Programming Language JavaScript 1

Mobile Application 26 Programming Language XML 6

Graphical User Interface 17 Generic 117

User Controlled Input 22

Table 1 – Generated generic component types

2.1.2 User-Specific Component-Type Definitions
As in some cases the automatically generated component type is not properly fitting in the component
concept, there is an additional way of manually creating and defining component types as shown on
the left side of Figure 2.

In this step, the user can create individual component types and manually assign CWEs from the CWE
database to this component. This type creation gives the security engineer full control over its
component type definitions, and allows technically any possible component type declaration.

2.2 Interfacing the Testing Framework
The testing framework is interfaced using import and export facilities from the ARIS framework. From
this point, the integration of the RASEN models is taking advantage of other tools developed within the
project, e.g., the testing framework. Figure 3 shows how import and export interfaces are aligned with
the Test Execution framework.

RASEN - 316853 Page 10 / 44

Figure 3 – Interfaces for import and export

The import and export interface exchanging RASEN models with test and test generation are provided
by export and import scripts that allow automated exchange of the relevant security assessment
artifacts. This means in detail that the Security Tests are prepared for export by converting relevant
RASEN artifacts from the ARIS model into an interchange format. From the security perspective, this
export contains a list of possible and yet unconfirmed risks and weaknesses in the security risk model.

As an example, Figure 4 shows the RASEN model of Software AG’s product called Command Central
(CCE). In this figure, the top product is shown as CCE with the CCE Vignette describing the
deployment scenario the list of component with the CWEs underneath. The related export of this
model, acting as an interface to the test execution environment, is depicted in Figure 5.

RASEN - 316853 Page 11 / 44

Figure 4 – Model of the Command Central Component with its RASEN model in ARIS

RASEN - 316853 Page 12 / 44

#CCE Component
Product Name: CCE {
 "productName": "CCE",
 "components": [{
 "componentName": "Client",
 "subComponents": [],
 "cweList": [12, 641, 638, 646]
 }, {
 "componentName": "SPM Plugin",
 "subComponents": [],
 "cweList": [598, 588, 591, 582, 587,

113, 151, 149, 154, 116, 114, 113, 154,
140, 115, 141, 155, 156, 146, 150, 144]
 }, {
 "componentName": "Host",
 "subComponents": [],
 "cweList": [533, 540, 534, 536, 537]
 }, {
 "componentName": "Events",
 "subComponents": [],
 "cweList": [598, 588, 591, 582, 587,
113]
 }, {
 "componentName": "Core",
 "subComponents": [],
 "cweList": [12, 641, 638, 646, 151,

149, 154, 116, 114, 113, 154, 140, 115,
141, 155, 156, 146, 150, 144, 113, 524,
523, 54, 534, 525]
 }]
}

Figure 5 – The ARIS export definition related to the CCE model in JSON format

As illustrated in the figure above, the model export is realized by providing a file in JSON (JavaScript
Object Notation) format representing the hierarchical structure of the software components and the list
of assigned CWE entries from the CWE database.

After the Test Execution phase where weaknesses are tested on a life system, the found weaknesses
are collected and grouped according to their components. Following up, the re-import of test results
(that reveal the presence of weaknesses and risks) into the ARIS RASEN Database are provided and
confirmed risks that are integrated into the risk picture.

This allows Software AG and other industry partners to apply the RASEN solution on small subsets of
their software systems and enable security risk assessment not only on small subsets, but on large
scale software systems as well.

2.3 Conclusion
Considering the risk modelling of large scaled networked systems, a valid solution should provide a
high level of automation; human interaction may be prohibitively expensive considering the potential
size and complexity of the software under consideration. The above mentioned approach relies on

RASEN - 316853 Page 13 / 44

repositories like the CWE database, and provides a suitable means for modeling software systems
while using already defined libraries to cluster functional aspects of the software into software
components. It is further possible to group software components into functional clusters and reuse
them in other software models to simplify the modeling process and enabling hierarchical models of
technically any shape.

Following the RASEN approach, the integration of the model with the test execution framework is
based on standard exchange formats i.e., JSON, to enable the exchange of information and provide
an import and export interface. What is currently missing in the present implementation is the import of
test execution results back into the ARIS RASEN model in order to aggregate the risk levels on
component and product level. As this is considered as future work, this integration will be
accomplished in the future implementation of the RASEN framework.

The presented techniques for software risk assessment are applied to the RASEN use case studies
and evaluated against the requirements of the RASEN use case providers. This will eventually reveal
the suitability of the presented approach in the area of industrial appliances and demonstrate the
usability for each of the industrial RASEN partners.

RASEN - 316853 Page 14 / 44

3 Complement the Risk Picture Using Test Results
In this section we describe the RASEN techniques and modeling support for test-based risk
assessment. With this approach we make systematic use of security test results to complement the
risk picture and update the risk estimates and risk evaluation that is conducted as part of a security
risk assessment. The focus of this section is on the aggregation of the security test results to derive
the values that can be used to calculate and update the security risk assessment results.

The techniques build on the WP3 results presented in Section 6 and Section 7 of RASEN deliverable
D3.2.1 [18] and is currently being applied and evaluated in the RASEN case studies. We refer to WP5
[15] for the detailed presentation of the RASEN method for test-based security risk assessment and to
WP2 [19] for a presentation of the case studies where the method and techniques are applied.

3.1 Method Overview
Figure 6 illustrates our approach, focusing on the security risk assessment part. The risk analysis part
is depicted to the left and follows the process of the ISO 31000 risk management standard [3]. After
the context establishment, the risk assessment is conducted, which consists of risk identification,
estimation and evaluation. After the risk evaluation the unacceptable risks are analyzed further for
possible treatment.

The risk identification and estimation make use of expert judgments, historical data, statistics,
catalogues of threats and vulnerabilities, etc. to document the risk picture and to estimate the
likelihood of attacks and unwanted incidents. In many cases, however, such empirical data may be
insufficient and thereby leave a certain degree of uncertainty of the risk assessment results. This
uncertainty may, for example, be regarding the estimated likelihood of successful attacks, whether
certain vulnerabilities exist, or how easy it is for attackers to exploit vulnerabilities.

The testing process is depicted to the right in Figure 6. From the perspective of the security risk
assessment, the security testing is treated as a black box. This process receives the risk model from
the risk assessment as input. The risk model serves as the basis for the test identification and
prioritization. The results from the security testing are then fed back to the risk assessment. In the
following we describe the steps in more details and explain how test data is aggregated and used to
reduce the uncertainty of the security risk assessment results.

Establishing the context

Risk identification

Risk estimation

Risk evaluation

Risk treatment

Testing process

Risk analysis Testing

Figure 6 – Test-based risk assessment

RASEN - 316853 Page 15 / 44

3.2 Aggregating Test Results Using Risk Metrics

3.2.1 Concepts
In the RASEN approach we distinguish between measures and metrics. A measure is a specific piece
of data, such as the known attack frequency on a specific vulnerability, whereas a metric is an
aggregation or a set of measures. A metric is therefore more high-level than a measure, and is the
value that is used as input by the security risk analyst or security tester. A metric is sometimes
described as interpreted empirical data [6], such as the quantification of the degree of freedom from
the possibility of an attack. A measurement, on the other hand, provides a single-point-in-time view of
a specific discrete factor [6], where a security measurement is a particular value of an assessable
security property of a system entity.

The concepts of measurements and metrics and how they are related are shown in Figure 7. The
diagram is based on the RASEN data model [14], but somewhat adapted to focus on the conceptual
aspects and on the risk assessment part. The diagram shows that a metric is a set of measurements,
and that we have specializations of these concepts for both the security risk assessment and the
security testing. A metric may have a type, and it can be assigned a value on a defined scale. A risk
metric that is used as input to a security risk assessment is related to a risk model, which in turn
includes a set of risk model elements. This means that a risk metric gives information about one or
more such elements. Also the test measurements may be related to a set of risk model elements, but
it is the aggregated test metrics that are applied by the risk analysts.

What is not explicitly shown in the diagram is the relation between test metrics and risk metrics. The
test metrics aggregates test measurements, which are data that represent results from test
procedures. The RASEN techniques for test-based security risk assessment make use of the test
metrics to aggregate them into risk metrics. Such an aggregation is usually manual, but it can be
conducted automatically for cases in which it is possible to specify and implement aggregation
functions. In some cases we may also gather the test data and aggregate them on the level of
measurements. The resulting risk measurements are then in turn aggregated into risk metrics.

Metric MeasurementType

Risk metric Risk measurement

Risk model Risk element

Test metric Test measurement

1 *

*
0..1

1..*

*
*

0..1 *

Figure 7 – Measurements and metrics

3.2.2 Process
In the following we describe the details of the process for aggregating the test results and applying
them to update the risk models.

A risk model consists of elements and relations. Elements can, for example, be threats and unwanted
incidents, whereas the relations are between the elements. Elements can have attributes, such as the
likelihood and consequence of an unwanted incident. Relations can also have attributes, such as a
vulnerability. We often assign likelihoods to relations, for example to specify the conditional probability
that one incident may lead to another. These likelihoods can often be associated with the likelihood of
existence of vulnerabilities, as well as the extent to which they can be exploited by an attacker.

RASEN - 316853 Page 16 / 44

In the presentation of the process we use a simple risk model notation that only shows threat
scenarios (elements) and leads-to relations from one scenario to another. The relations are annotated
with vulnerabilities. In Section 3.3 we give a concrete example extracted from a RASEN case study
using the CORAS [7] notation.

We assume that a security risk assessment has been conducted and that we have a risk model with
risk estimates that serves as the basis for the security testing. The process and the created
documentation artifacts are as follows.

Risk model. The result of the risk assessment is a risk model with likelihood estimates as illustrated in
Figure 8. The figure shows only a fragment of a model that consists of threat scenario A that may lead
to threat scenario B, possibly due to the two vulnerabilities V1 and V2. The threat scenarios have been
assigned the likelihoods LA and LB, respectively, whereas the likelihood L on the relation is the
estimated conditional likelihood for A to lead to B.

A
[LA]

B
[LB]

LV1 V2

Figure 8 – Risk model with estimates

More often than not there is a degree of uncertainty of the likelihood estimates. The uncertainty should
be explicitly specified, for example by assigning a degree of certainty to each estimate or by using
likelihood intervals. In case we use intervals it is assumed that the correct likelihood is within the
assigned interval.

The risk models with the estimates and the degree of uncertainty is used as the basis for the test
identification, prioritization and selection. For a description of this particular task the reader is referred
to WP4 deliverable D4.2.2 [17].

Risk model and test procedure. Figure 9 illustrates a test procedure identified on the basis of the
risk model. A test procedure contains a sequence of test cases in their execution order. In this case
the test procedure targets the relation from threat scenario A to threat scenario B, including the
vulnerabilities. The test procedures typically include test cases regarding the identified vulnerabilities,
but could also help identifying other vulnerabilities. Consequently the test results may give additional
information about the conditional likelihood L, and therefore also the likelihood LB.

Note that in the RASEN method the test procedure is linked to the test patterns, but this is something
that is hidden from the risk assessment part which only makes use of the test results.

A
[LA]

B
[LB]

LV1 V2

Test procedure

Figure 9 – Risk-based test procedure

Test procedure and test measures. The results of the testing can be represented by a set of test
measurements as illustrated in Figure 10. These can in turn be aggregated into one or more test
metrics, although this is not illustrated here. As for the test procedure, also this part is hidden from the
risk assessment part. The reader is referred to D4.2.2 for details on the security testing.

RASEN - 316853 Page 17 / 44

A
[LA]

B
[LB]

LV1 V2

Test procedure

Test measure 2 Test measure nTest measure 1

Figure 10 – Test measures

Test procedure and risk measures. Figure 11 illustrates the result of using the test measures (or
metrics) to yield a set of risk measures (or metrics) that can be used as input to the risk assessment.
Each set of risk measures is derived from a set of test measures, and therefore associated with a test
procedure. This links the derived risk measures with the risk model elements that they provide
information about.

A
[LA]

B
[LB]

LV1 V2

Test procedure

Risk measure 2 Risk measure mRisk measure 1

Figure 11 – Test-based risk measures

How to derive the risk measures from the test measures depends on the kind of measures. In some
cases it would be possible to do an automated and tool-supported aggregation, but this depends on
the type of measures and that we can specify and implement an aggregation function. For such tool
support to be worth implementing, the specific testing and aggregation should be frequently
reoccurring, otherwise it would be a one-off task each time. Alternatively the test results can be
analyzed manually to derive the risk measures. Similar to a regular security risk assessment the test
results are then used as part of the empirical data for the risk identification and estimation.

In the RASEN case studies we have derived the risk measures by expert judgments by risk analysts
and personnel with insight into the target systems. By focusing on the vulnerabilities annotated on the
relations from one threat scenario to another, we have in particular used measures on exploitability
and on likelihood of existence. Exploitability is a measure of the degree to which a given vulnerability
is easy to exploit by an attacker. Likelihood of existence is a measure of the likelihood that the
vulnerability in questions is present in a system.

Revised risk model. In Figure 12 we illustrate the revised risk model after the aggregation of the risk
measures. In this illustration there are two vulnerabilities, each of which typically yields a set of test
cases. The test cases result in test measures that are aggregated to risk measures. Eventually the
different sets of test measures must be aggregated to get a revised and hopefully improved estimate
for the conditional likelihood L in Figure 8.

For the sake of the example let us assume that we have the measures e and l for exploitability and
likelihood of existence, respectively, for the two vulnerabilities V1 and V2. Using these measures we
investigate whether we can reduce the uncertainty of the likelihood L. If the uncertainty is captured by
using a likelihood interval, our aim is to reduce the size of the interval L. Using the original estimate as
input, together with the metrics, we derive the revised interval L' by a function f such that L' = f(L,e,l).
In some cases it may be possible to define the function formally, but in other cases we do the

RASEN - 316853 Page 18 / 44

estimation of L' by expert judgment. If L' ⊆ L we have reduced the uncertainty and can update the risk
model. If the uncertainty is not reduced we need to keep the original estimate.

A
[LA’]

B
[LB’]

L’V1 V2

Figure 12 – Revised risk model

Because threat scenario A may lead to threat scenario B, the likelihood of the latter must be updated
according to the change of L to L'. When the uncertainty of the conditional likelihood is reduced we get

the updated estimate LB' ⊆ LB. The likelihood estimate of threat scenario A is not targeted by the
illustrated security testing since it occurs before the tested relation and vulnerabilities. For illustration
purposes, however, we have in Figure 12 replaced the likelihood estimate LA with LA'. This is because
the figure only shows a fragment of the risk model and that there may be other test cases that have
been conducted and that give a basis for revising also this estimate. The estimation of LB' makes use
of LA' in addition to L'.

3.3 Example
In the following we give a concrete example of the approach. The example is based on the InfoWorld
case study, but note that we do not show here any actual incidents or real risk estimates for InfoWorld
as this kind of information cannot be presented in an open, public report.

3.3.1 Context Establishment
Target of analysis. The target of the analysis is the Medipedia service (www.medipedia.ro). The
service is provided as an application that can be accessed by clients via a web-interface. The analysis
is limited to the attacks that can be performed via the interface, including by those that have a valid
Medipedia account.

Assets. The assets that we consider in the presented example are confidentiality of data and integrity
of data. The data is sensitive information such as personal data and medical data. The case study
included also availability of service and compliance with regulations, but these are not shown in our
example.

Likelihood scale. The likelihood scale that we use for the risk estimation is shown in Table 2. We use
a scale of five values that correspond to consecutive intervals of frequencies.

Likelihood Definition Interval

Seldom Less than 1 time per 10 years [0, 0.1>:1y

Unlikely 1-10 times per 10 years [0.1, 1>:1y

Possible 2-12 times per year [1, 13>:1y

Probable 13-60 times per year [13, 60>:1y

Certain Over 60 times per year [60, ∞>:1y

Table 2 – Likelihood scale

Consequence scale. The consequence scale for each asset is defined similar to the likelihood scale,
namely in terms of intervals of quantitative values. We do not need the precise definitions for the
purposes of this section. It therefore suffices to give the names of the values, which as insignificant,
small, medium, high and critical.

http://www.medipedia.ro/

RASEN - 316853 Page 19 / 44

Risk evaluation criteria. We specified the risk evaluation criteria using the risk matrix. We divided the
matrix into three parts, corresponding to the risk levels low, medium and high. The low risks are
acceptable, whereas the high risk in principle are unacceptable and must be treated. The medium
risks must be considered separately to decide whether they could be accepted or not.

3.3.2 Security Risk Assessment
In conducting the security risk identification and estimation we made systematic use of the Common
Attack Pattern Enumeration and Classification (CAPEC) [12], as well as the Common Weakness
Enumeration (CWE) [10]. We created risk models using the CORAS language by instantiating the
relevant CAPEC attack patterns as CORAS threat diagrams.

This is exemplified in Figure 13 for the CAPEC-66 attack pattern that concerns SQL injection attacks.
From the CAPEC attack pattern we get a description of how attackers can conduct the attack, a
reference to relevant vulnerabilities from the CWE, the common likelihoods of such attack, the typical
consequences and severity, and so forth. Note that in the example diagram we have not included the
full CAPEC pattern for this attack.

Hacker

Read application data
[0.05, 10]

Confidentiality
of data

SQL injection
successful
[0.5, 100]

Modify application data
[0.05, 10]

Execute unauthorized
code or commands
[0.2, 40]

Gain privileges /
assume identity
[0.1, 20]

Integrity
of data

CWE-89:
Improper Neutralization of Special Elements

used in an SQL Command ('SQL Injection')

CWE-20:
Improper Input Validation

CAPEC-66:
SQL injection
[500, 1000]

[0.001, 0.1]

0.1

0.2

0.1

0.4

High

High

Medium

Critical

Figure 13 – Threat diagram for the CAPEC-66 attack pattern

The likelihood estimates shown in Figure 13 are only examples, and not the real estimates from the
InfoWorld case study. In the real setting the estimates will be based on empirical data gathered from
the client, such as InfoWorld, as well as expert judgments and the data provided by CAPEC. In the
diagram we have used frequencies for the scenarios and incidents in terms of number of occurrences
per year. For example, CAPEC-66: SQL injection is estimated to occur between 500 and 1000 times
per year. We have used probabilities on the relations to specify conditional likelihoods. For example,
the estimated probability that CAPEC-66: SQL injection will lead to SQL injection successful when the
former occurs is in the interval between 0.001 and 0.1.

To do the risk evaluation we compare the identified risks and their risk levels with the risk evaluation
criteria by plotting them into the risk matrix as shown in Figure 14. The widths of the likelihood
intervals of the risk estimation reflect the uncertainty of the estimation. We see, for example, that the
risk Execute unauthorized code or command span the three likelihood values of unlikely, possible and
probable.

In some cases the uncertainty is not significant. This is in particular the case when the estimated risk
level is within one risk level only. This is the case for the risk Gain privileges / assume identity, which is
unacceptable no matter whether the likelihood is unlikely, possible or probable. However, when the
uncertainty is such that we cannot determine whether the risk is acceptable or not, we may need to
gather more evidence. In our case we do it by security testing.

RASEN - 316853 Page 20 / 44

Seldom Unlikely Possible Probable Certain

Insignificant

Small

Medium

High

Critical

Read / Modify

Execute

Gain

Figure 14 – Risk evaluation

3.3.3 Test Procedures and Test Measures
As the risk-based test identification and the security testing is not the concern of WP3, we refer to
WP4 deliverables D4.2.1 [16] and D4.2.2 [17] for the details on that part of the RASEN process. From
the viewpoint of the risk assessments we need as input the test measures resulting from the executed
test procedures. As explained in D4.2.2 the test procedure derived from the example diagram in
Figure 13 results in the following test procedure.

Check that CAPEC-66: SQL injection leads to SQL injection successful with conditional
likelihood [0.001, 0.1] due to CWE-20: Improper Input Validation and CWE-89: Improper
Neutralization of Special Elements used in an SQL Command ('SQL Injection').

For the sake of the example we assume here that the result of the conducted test cases based on the
given test procedure provided two sets of test measures, one for each of the vulnerabilities. Each set
consists of one measure for likelihood of existence (l) and one measure for exploitability (e). The
likelihood of existence is given as a probability, whereas the exploitability is given as a number
between 0 (cannot be exploited) and 1 (fully exploitable). The concrete measures are shown in Table
3.

Vulnerability Likelihood of existence Exploitability

CWE-20 [0, 0.02] 0.3

CWE-89 [0, 0.01] 0.4

Table 3 – Test measures

3.3.4 Aggregating Test Measures
For the risk analysts the objective is to use the test results to reduce the uncertainty of the risk
estimates. In our particular example, the objective is to reduce the probability interval [0.001, 0.1] of
the leads-to relation between the two threat scenarios in Figure 13. This means that we aim to use the
test measures as input for the estimation of this interval.

As mentioned above, this kind of aggregation from test measures to likelihood estimates, possibly via
risk measures, may often have to be conducted manually and by expert judgments. In the example we
illustrate the aggregation by a function that simply multiplies the test measures for each vulnerability
and then adds up the results to deduce the eventual probability interval. Referring to the test measure
values in Table 3 we get the following.

([0, 0.02] · 0.3) + ([0, 0.01] · 0.4) = [0, 0.006] + [0, 0.004] = [0, 0.01].

As explained in Section 3.2.2 we need to use also the likelihood estimate from the risk assessment as
input when making any updates to the risk model. As shown in Figure 13 the original estimate was the
interval [0.001, 0.1]. Combining the results we get the updated interval [0.001, 0.01]. The updated

RASEN - 316853 Page 21 / 44

threat diagram, where we have also recalculated the likelihood estimates that follow the tested leads-
to relation, is depicted in Figure 15.

Hacker

Read application data
[0.05, 1]

Confidentiality
of data

SQL injection
successful
[0.5, 10]

Modify application data
[0.05, 1]

Execute unauthorized
code or commands
[0.2, 4]

Gain privileges /
assume identity
[0.1, 2]

Integrity
of data

CWE-89:
Improper Neutralization of Special Elements

used in an SQL Command ('SQL Injection')

CWE-20:
Improper Input Validation

CAPEC-66:
SQL injection
[500, 1000]

[0.001, 0.01]

0.1

0.2

0.1

0.4

High

High

Medium

Critical

Figure 15 – Threat diagram updated after testing

The resulting and updated risk evaluation is shown in Figure 16. We see that the uncertainty of the
estimates has been reduced to the extent that none of the identified risks span over all three risk
levels. The risks Execute unauthorized code or commands, Read application data and Modify
application data are not unacceptable, but low or medium.

Seldom Unlikely Possible Probable Certain

Insignificant

Small

Medium

High

Critical

Read / Modify

Execute

Gain

Figure 16 – Updated risk evaluation

If the updated estimates and the updated evaluation provides sufficient basis for the decision makers
to determine for each risk whether it needs treatment, the risk assessment process can proceed to the
treatment phase. Otherwise the analysts need to gather more empirical data, for example by more
extensive security testing.

3.4 Conclusion
Test-based security risk assessment involves the systematic use of security testing for gathering data
to support the risk estimation. Following the RASEN method, the test procedures are identified based
on the risk models, and the security test results are in turn fed back to the risk model. This process
requires that the test procedures are linked to the elements of the risk model under test and that we
have data formats that can support the information exchange between the risk assessment and the
testing.

In the RASEN method we use measures and metrics for representing security test results and
information that is underlying the risk models and risk estimates. In this section we have explained and
illustrated how the test measures and metrics are derived from the test procedures that in turn are
derived from the security risk models. We have moreover explained how the risk analysts make use of

RASEN - 316853 Page 22 / 44

the test measures and metrics to aggregate them and derive risk measures and metrics that can be
used for the security risk assessment.

The RASEN techniques for test-based security risk assessment are being applied in the RASEN case
studies, where we make use of test and risk measures. Currently the aggregation of test measures is
not automated in the case studies, but rather conducted as expert judgments. The project aim to
develop some automated support, but for this to be viable we need some formats for aggregation that
can be easily reused in different risk assessments. Otherwise the specification and implementation of
aggregation functions would be costly one-off tasks in each new security risk assessment.

RASEN - 316853 Page 23 / 44

4 Automated Risk Assessment with Testing
Especially for large scale systems, security risk assessment and security testing might be both difficult
and expensive. Reusing already created artefacts in combination with automation might help to
minimize costs. It also might help to reduce the dependency on the expertise, skills and accuracy of
the analysts. Hence, it might help to reduce human errors in the entire assessment and testing
process.

We consider security testing itself to be one possible way to make risk assessment more objective and
more precise. There are other concepts and technologies which could be applied for the same
purpose, including but not limited to formal verification and simulation. While formal verification might
be hard or infeasible for complex large scale systems and while testing these systems might be
expensive, simulations can help to deal with exactly those large systems and to overcome scaling
problems.

It makes eventually sense to combine simulation and testing technologies in order to refine the risk
assessment of systems which cannot be entirely tested. Combining simulation and security testing
might lead to new concepts for their seamless integration into the risk assessment process. These are
the basic ideas that inspired the development of the RACOMAT method.

4.1 The General RACOMAT Method
RACOMAT is an acronym for Risk Assessment COMbined with Automated Testing. The RACOMAT
method integrates security testing tightly into incident simulations of a low level compositional security
risk assessment. The method tries to automatically test exactly the most critical parts with reasonable
effort and to improve the risk picture with objective test results. Figure 17 shows the entire process of
the RACOMAT method.

Figure 17 – The general RACOMAT method

In spite of relying upon a specific risk assessment method, the general RACOMAT method can use
different kinds of risk assessment methods, including fault tree analysis (FTA)[1], event tree analysis

RASEN - 316853 Page 24 / 44

(ETA) [2] and the CORAS method [7]. However, it requires risk assessment to support component
based risk analysis and compositionality as described, for example, for the FTA extension in [9] or for
the CORAS extension in [24]. Especially it must be possible to model dependencies between events
(faults, incidents) precisely.

For automation, the risk assessment must be made on a low level. RACOMAT allows analysts to
model close relations to parts and components of the systems that are analyzed. Therefore,
RACOMAT introduces the concept of interfaces and ports which can be used to model the relations
between risk analysis artefacts and the system.

Since low level risk assessment traditionally means a lot of effort, reusability of existing artefacts is a
vital part of the RACOMAT method. The component based approach with risk composition in
combination with libraries of existing risk analysis artefacts like attack patterns and catalogues of
security test patterns should help to limit the effort. For some common types of components, the
RACOMAT method suggests using predefined complete modules as defined in [5], for example.

The initial assessment has to be performed until it results in an event graph with dependencies
between the events and likelihood notations for the occurrence of independent incidents.

Such a graph can be used to simulate the behavior of the system. Running Monte Carlo simulations
as described in [25], likelihoods for dependent events can be calculated. The modeled dependencies
and the likelihood estimates thereby simulate the actual system.

The idea to improve the risk picture is now to replace some parts of the simulation with testing the real
system components. That is, instead of simulating whether some event occurred based upon random
values and likelihood functions, the RACOMAT method tries to actually trigger the incident. Automated
or at least semi-automated testing is done with the help of test patterns as described in RASEN
deliverable D4.2.2 [17]. Eventually, it might be necessary to generate some base incidents during the
tests. Therefore, the RACOMAT method uses the concept of testing stubs. These stubs are small
programs that create the required incidents juts for testing.

As test results the RACOMAT method yields which incidents have occurred. Hence, it is possible to
directly overtake the occurrence states of those incidents that are already modeled in the event graph
into the incident simulation.

If likelihoods are expressed as functions like it is suggested in [25], it is possible to use the test results
to interpolate a likelihood function that accurately replaces the tested component in future simulations.
That is exactly how to update the event graph. Since there is now a new test-based interpolated
likelihood function, it is possible to use this function within following simulation runs to emulate the
behavior of the already tested part accurately.

The RACOMAT method continues by replacing the likelihood estimates for the next most uncertain
asserted component with testing the corresponding real component in the next updated incident
simulation.

If all components have been tested or if the testing budget is used up, then the latest risk picture
becomes the final test-based risk assessment result. Further risk management might continue with
additional evaluation of the results and with risk treatment. However, this is beyond the scope of the
RACOMAT methodology.

4.2 Specific Techniques Introduced with the RACOMAT Tool
Implementing one specific instance of the general RACOMAT method, the RACOMAT tool combines
the general method with advanced techniques for a high level of automation. The RACOMAT tool uses
fault tree analysis or CORAS with extensions for compositional risk assessment.

In order to reduce the manual effort of low level risk assessment, the RACOMAT tool integrates
techniques for analyzing components automatically. Given (X)HTML pages, source code or compiled
programs, it tries to identify the public interfaces of any components and especially the functions as
well as ports that could be used for interaction with other components or users. An initial system model
is generated without requiring manual actions.

The RACOMAT tool assists the risk analysts by suggesting all relevant faults or vulnerabilities, attack
patterns and unwanted incidents for the identified system elements. The assistants shown in Figure 18

RASEN - 316853 Page 25 / 44

and Figure 19 take advantage of existing risk related libraries (e.g. MITRE CAPEC [12] and CWE [10]
or BSI IT-Grundschutz [5]). The task of the analysts is not to find the relevant risk artefacts. It is rather
to exclude the non-relevant artefacts. This assisted “negative”, excluding risk assessment technique
shown in Figure 18 is somehow similar to check lists, limiting the chance that relevant aspects are
simply overlooked. Risk artefacts are added with simple drag and drop. Thereby, they can be
immediately linked with the elements of the automatically generated system models.

Figure 18 – RACOMAT assistant suggesting relevant vulnerabilities for string input field in
website

Dependencies between faults or incidents can be modeled in detail using directed weighted relations
and gates like shown in Figure 19. As required by the general RACOMAT method, the RACOMAT tool
supports compositional risk analysis and it calculates likelihoods for dependent incidents using Monte
Carlo simulations.

RASEN - 316853 Page 26 / 44

Figure 19 – RACOMAT assistant suggesting threat scenarios related to some vulnerability

Security test patterns are automatically associated with risk analysis artefacts as well as system model
components (e.g. input and output ports) and their priority is calculated. If no appropriate test patterns
exist in the library, the tool allows its users to create new test patterns within the tool and to upload
them to the library for sharing. Given an appropriate test pattern, the test generation, execution and
result aggregation are at least semi-automated. Support for creating and integrating test stubs that can
generate base incidents for testing purpose is currently under development.

Test results can be integrated seamlessly into Monte Carlo simulations for calculating likelihood
values. It is possible to update the risk graphs automatically with more precise likelihood estimates
interpolated from test results or with new faults based on unexpected test results. Additional security
testing metrics can be created and applied manually.

The RACOMAT tool and a tutorial video showing the tool in action are included in RASEN deliverable
D3.3.2.

4.3 Interaction with Other Tools
The RACOMAT tool can be used as a stand-alone tool. It covers the entire process of combined test-
based risk assessment (TBRA) and risk-based security testing (RBST) shown in Figure 17.
Nevertheless, it is also possible to use other possibly more specialized tools for some steps in that
process. In particular, the RACOMAT tool can be used in conjunction with the other tools developed
and used within the RASEN project. Since the RACOMAT tool supports the entire process, it makes
sense to use the RACOMAT tool as the central platform for the data exchange and for any other
interaction between the tools. Figure 20 illustrates how such a risk assessment and security testing
process using different tools and RACOMAT tool as central platform could work.

RASEN - 316853 Page 27 / 44

Figure 20 – The process with various tools

For instance, the RACOMAT tool already supports the JSON (JavaScript Object Notation) format of
the ARIS tool for data exchange. Figure 21 shows results of import from ARIS to RACOMAT. Support
for data exchange with the CORAS tool is currently being developed and integrated into the
RACOMAT tool. The RACOMAT tool is also going to provide tracing features to keep track of
elements that are exported and later imported again, eventually altered by some external tool.

RASEN - 316853 Page 28 / 44

Figure 21 – Initial threat interfaces imported from ARIS

4.4 Conclusion
Using security testing to improve fault and security risk incident simulations, the RACOMAT method
introduces an intuitive way for how risk assessment and security testing can interact with one another.
The RACOMAT tool shows how this method can be implemented and how the entire process can be
automated to a great extent. However, automation requires adequate security test patterns and testing
metrics. Currently there are only few existing, but with the help of the RACOMAT tool it is now possible
to quickly develop new ones.

Bearing in mind the ongoing work to provide interoperability with other tools which are more
specialized on certain steps, the RACOMAT tool might in the future become a central platform capable
to manage entire combined risk assessment and security testing processes using multiple
heterogeneous tools.

RASEN - 316853 Page 29 / 44

5 Risk Model Encapsulation and Composition
The criticality of risk management is evident when considering the information society of today.
Information systems become ever more complex, heterogeneous, dynamic and interoperable.
Businesses, enterprises, governments and many other stakeholders rely more and more on the
availability of services and information over the Internet, with Cloud services as a prominent example.
Managing risks in such a setting is extremely challenging, and established methods and techniques
are often inadequate. The main problems are that the overall risk picture becomes too complex to
understand, and that the risk picture quickly and continuously changes and evolves.

The challenge we address in this section is how to facilitate a compositional [21] approach to risk
assessment by applying the principle of encapsulation. Following a divide-and-conquer strategy we
aim for an approach to risk assessment where separate parts of a system can be analyzed
individually. Compositional techniques should then enable a systematic and methodic composition of
the individual risk models in order to derive the overall combined result without having to reconsider
the details of the individual models.

While compositionality is an established technique in system development, there is very little support
for this within risk management and assessment [20]. The method and techniques presented in this
section builds on the formal foundation for compositional risk assessment presented in RASEN
deliverable D3.2.1. For further details and a more elaborate presentation of the application of the
techniques, the reader is referred to the publication on which this section is based [20].

5.1 Risk Model Encapsulation
The objective of introducing the notion of risk model encapsulation is to allow different risk models to
be composed without having to know or understand all the interior details of the individual models. For
this purpose we need a notion of risk model interface that contains all and only the information that is
needed for the risk model composition. A further challenge that needs to be tackled is how to take into
account possible dependencies between the individual risk models. Each sub-target is analyzed
separately, but the other sub-targets belong to the environment of the sub-target being analyzed. This
means that the other sub-targets can serve as environmental causes of risks that must be taken into
account, and that the sub-target being analyzed can be the cause of risks for the sub-targets in its
environment.

In the UML [13] class diagram of Figure 22, the term target denotes the target of analysis. The goal of
the risk assessment is to build the risk model for the target. The target may be decomposed onto a
number of smaller parts (that we often refer to as sub-targets). There are two crucial features of our
approach to risk model encapsulation. First, for each target we need to understand how it relates to its
environment. Second, we need a precise notion of an interface which consists of the risk information
that is needed in order to compose the risk model in question with other risk models.

Target

Risk model

Environment

Interface

Threat relation from environment

Impact relation on target asset

Threat relation to environment

*
* *

1

*
1

*

*

*

Figure 22 – Risk model interface

The interface consists of three sets of ingredients. The threat relation from the environment represents
ways in which the environment may influence the risk model of the target. The impact relation on
target asset represents potential harm on something of value inside the target. The threat relation to
environment represents ways in which the target may influence the risk model of the environment.

RASEN - 316853 Page 30 / 44

5.2 Target Decomposition
Our method for compositional risk assessment follows the principles and guidelines defined by
established standards such as ISO 31000 [3] and ISO/IEC 27005 [4]. For the details on our method,
the reader is referred to [20]. In the rest of the section we demonstrate it by showing an example.

As a first step the overall target of analysis must be specified along with the assets to be protected.
Our example is from the petroleum industry. Accidents on oil and gas rigs can have large
consequences in terms of loss of life, damage to the environment and economic loss. Non-routine
work that takes place on a rig, such as welding or replacement of defect gas detectors, may increase
the risk. All such work therefore requires a work permit (WP). Every 12th hour a WP meeting is held to
decide which work permits to release for the next shift.

In the following we assume that a petroleum operator has initiated a project in collaboration with a
software tool and service provider to update their ICT system for WP management. In addition to
functionality for registering, releasing and rejecting WP applications, the system will provide decision
support in the form of an automated smart agent that collects relevant information for each WP
application and provides advice to the human decision makers.

The collaboration diagram to the left of Figure 23 gives an overall view of the system. The class
RigSystem represents all ICT infrastructure related to WPs that are installed on the rig itself.
WPAgent represents the automated agent, which will be developed and maintained by the software
provider represented by the WPAgent maintainer. WeatherService is an internet-based
meteorological service offering weather forecasts.

WPSystem

Applicant

DecisionMaker

:Weather
Service

wa

WPAgent
maintainer

rs

:RigSystem

wa

ws ui

:WPAgent maws
rs en

cr
yp

te
d

open

open

:RigSystem

:WPManager

:DeviationsDB

:WPDB

wa

ws ui

Figure 23 – Structure of the WP system

The internal details of RigSystem are shown to the right in Figure 23. Each of the internal components
is available to the WP agent via the wa port. WPManager handles WP applications and release/reject
decisions. DeviationsDB is a database where deviations related to the state, maintenance, testing,
etc. of equipment on the rig are recorded. WPDB is a database that stores all WPs and related
information. For further details about the target of analysis, including detailed sequence diagrams
specifying the application process, the reader is referred to [20].

The next step is the identification of the assets for the overall target of analysis. There are of course a
number of critical information and service assets in the WP scenario. For the purpose of the example
we select only a few that we focus on. Considering the rig system it is obvious that availability of the
WP data and availability of the WP advice are essential for both WP manager and for the decision
maker. The availability of WP data is also essential for the WP agent that needs data for creating the
advice. Considering the WP system as a whole, it is also critical to ensure the dependability of the WP
agent. Because the WP agent is a software for automated decision support, the integrity of the
software—including the implemented algorithms—needs to be protected. In the WP system analysis
we are concerned about information security risks with respect to these assets.

RASEN - 316853 Page 31 / 44

The target decomposition is guided by both the identified assets and the system architecture. In Figure
24 we have specified the assets and placed them on the part of the target to which they belong.
Availability of WP data concerns the information that is stored by the WPDB, whereas availability of
WP advice concerns the result that is presented to the decision maker by the WP manager. The
dependability of WPAgent and the integrity of WPAgent software belong to the WP agent.

Based on the identified assets we have decomposed the target into two components as indicated in
Figure 24. Two of the assets are associated with the rig system and two of them with the WP agent
and its communication line to the rig system. In the remainder of the section we refer to the former as
Component A and to the latter as Component B. Note that in this analysis the Internet weather service
is part of the environment of the overall target of analysis.

WPSystem

Applicant

DecisionMaker

:Weather
Service

wa

WPAgent
maintainer

rs

:RigSystem

wa

ws ui

:WPAgent maws
rs en

cr
yp

te
d

open

open

Integrity of
WPAgent
software

Availability
of WP data

Dependability
of WPAgent

Availability
of WP advice

A

B

Figure 24 – Target decomposition

5.3 Sub-Target Risk Modeling
In the following we give a stepwise introduction to how we do the risk assessment for individual sub-
targets by describing three different cases. First, the simple situation where all threats and assets are
internal, i.e. risk identification with respect to threats and assets only within the sub-target. Second, we
consider also external threats, i.e. causes that may stem from other sub-targets or from the
environment of the overall target of analysis. Third, we address the general situation where we
consider also environment assets, namely the assets of other sub-targets for which the sub-target in
question can act as a source of risk. Note that this stepwise introduction is for presentation purposes
and does not indicate a specific methodic order.

5.3.1 Internal Threats and Assets
Figure 25 shows our format for compositional risk modeling. Note that although we have used CORAS
[7] for the risk modeling, our principles and modeling format for risk model encapsulation and
composition can be applied using also other notations for risk modeling. The format consists of three
compartments, where the middle compartment includes all the threats, vulnerabilities, assets, etc. that
are internal to the sub-target in question. The diagram in Figure 25 is for sub-target A as the naming at
the top indicates. In the compartment to the left we model environment threats and in the compartment
to the right we model environment assets. Neither of these is relevant when considering internal
threats and assets only.

RASEN - 316853 Page 32 / 44

One of the identified risks for sub-target A is that WP advice cannot be accessed from WPManager,
which could be due to a software error that leads to malfunctioning of the WP manager. After such risk
identification and modeling, the risk assessment proceeds with the risk estimation. In the example we
have used frequencies for likelihood estimation and a scale of the three levels high (H), medium (M)
and low (L) for the consequences. In the example we have estimated that WP data cannot be
accessed from WPManager occurs 16 times per year. The reader is referred to existing literature on
CORAS [7][23] for the techniques and rules for risk estimation. The likelihood of the other incident,
however, is not estimated at this point. This is because the analysts know that the availability of the
WP advice depends also on the WP agent. We therefore need to take into account also environment
threats.

Availability
of WP data

Employee

Employee
accidentally tampers

with WPDB
[5:1year]Insufficient

routines

Software
error

Lack of
qualified ICT

support on rig

WPManager
malfunction

[6:1year]

WPDB fails
[10:1year]

WP data cannot
be accessed from
WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot
be accessed from
WPManager
[]

H

Threat diagram for A

Figure 25 – Internal threats and assets

5.3.2 Environment Threats
Figure 26 exemplifies an environment threat with respect to sub-target A, namely that WPAgent fails to
deliver advice. Importantly, because the threat occurs outside of A the estimation of its likelihood is not
part of the risk assessment of A. Instead the variable x1 is used such that we get a parameterized
specification of the likelihoods of the scenarios and incidents that this threat may cause. For example,
using the CORAS rules for risk calculation, the estimated frequency of the incident WP advice cannot
be accessed from WPManager is x1 + 6 occurrences per year.

Availability
of WP data

Employee

Employee
accidentally tampers

with WPDB
[5:1year]Insufficient

routines

Software
error

Lack of
qualified ICT

support on rig

WPManager
malfunction

[6:1year]

WPDB fails
[10:1year]

WP data cannot
be accessed from
WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot
be accessed from
WPManager
[x1+6:1year]

H

WPAgent
fails to
deliver
advice

WPManagers receives
no advice from WPAgent

[x1:1year]

x1:1year

Threat diagram for A

Figure 26 – Environment threats

RASEN - 316853 Page 33 / 44

As we will show below the estimation of x1 is done as part of the risk assessment of sub-target B, and
this input is used when composing the threat diagrams to generate the risk picture for the overall
target.

5.3.3 Environment Assets
In order to understand and analyze how one sub-target can act as an environment threat for another
sub-target we need a systematic way to systematically consider all other sub-targets. Our approach to
do this is to take into account all assets of the overall target in each individual risk assessment, while
still distinguishing between the internal assets and the environment assets.

This is illustrated for sub-target A in the upper diagram of Figure 27. One of the assets that do not
belong to A is Dependability of WPAgent. In the diagram this asset is placed in the compartment to the
right. As part of the risk assessment of sub-target A we identify all incidents that may have an impact
on any of the environment assets. In the example, one such incident is Loss of WPDB. Note
importantly that the consequence estimation for the environment assets is not done as part of the risk
assessment for the sub-target in question; exactly how incidents of the sub-target may impact assets
of other sub-targets need to be analyzed as part of the risk assessment for each of the impacted sub-
targets.

Availability
of WP data

Employee

Employee
accidentally tampers

with WPDB
[5:1year]Insufficient

routines

Software
error

Lack of
qualified ICT

support on rig

WPManager
malfunction

[6:1year]

WPDB fails
[10:1year]

WP data cannot
be accessed from
WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot
be accessed from
WPManager
[x1+6:1year]

H

WPManagers receives
no advice from WPAgent

[x1:1year]

Loss of WPDB
[6:1year]

Dependability
of WPAgent

Threat diagram for A

WPAgent
fails to
deliver
advice

x1:1year

Integrity of
WPAgent
software

Mistake
during update of

WPAgent
[4:1year]WPAgent

maintainer

Flaw introduced
to WPAgent
algorithm
[2:1year]

High
workload WPAgent

malfunction
[5:1year]

Availability
of WP advice

Cyber
threat

Dependence
on external

service

Loss of
weather service

[4:1year]

4:1year

WPAgent fails
to deliver advice
[x2+6:1year]

Loss of
WPDB

WPAgent cannot
retrieve WP data

[x2:1year]

Dependability
of WPAgent

H

M

M

Threat diagram for B

x2:1year

Figure 27 – Environment assets

The lower diagram of Figure 27 exemplifies a completed threat diagram for sub-target B. We see here
that the incident WPAgent fails to deliver advice may impact the environment asset Availability of WP

RASEN - 316853 Page 34 / 44

advice. This asset belongs to A, which is why this incident occurs as an external threat in the threat
diagram for sub-target A shown in the upper part of Figure 27. From the diagram for sub-target B we
also see that incidents of one sub-target may impact its own assets as well as environment assets. We
also see two environment threats, namely Cyber threat and Loss of WPDB. The latter stems from A,
whereas the former stems from the environment of the overall target.

Whereas the likelihood estimation of external threats from sub-target A is done as part of the
assessment of A, we may do a separate likelihood estimation for the threats from the environment of
the overall target. This is exemplified for the cyber threat where the frequency is 4:1 year.

5.4 Risk Composition
The threat diagrams introduced above give the white-box view of the risk model for each sub-target;
their purpose is to support the full risk assessment of the sub-targets, including all the internal threats,
vulnerabilities and threat scenarios. To facilitate their composition, however, we create their
corresponding interface diagrams.

The interface diagrams for A and B are depicted in Figure 28. The interface diagrams contain the
information that is needed to compose the different diagrams to yield the overall risk picture, and to
document all of the risks with their risk levels. When composing the threat interface diagrams the
variable x2 in Figure 27 is instantiated with the value 6 from the incident Loss of WPDB for sub-target
A. The likelihood of the unwanted incident WPAgent fails to deliver advice is then calculated by x2 + 6,
which gives 12:1 year.

Availability
of WP data

WP data cannot be
accessed from WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot be
accessed from WPManager
[x1+6:1year]

H

WPAgent
fails to
deliver
advice

Loss of WPDB
[6:1year]

Dependability
of WPAgent

Interface diagram for A

x1:1year

Integrity of
WPAgent
software

Flaw introduced to
WPAgent algorithm
[2:1year]

WPAgent malfunction
[5:1year]

Cyber
threat

WPAgent fails
to deliver advice
[x2+6:1year]

Loss of
WPDB

M

Interface diagram for B

Availability
of WP advice

Dependability
of WPAgent

H

M

4:1year

x2:1year

Figure 28 – Interface diagrams

The resulting threat interface diagram for A and B composed, and hence for the overall target of
analysis, is depicted in Figure 29. Since the diagram covers the whole target the set of environment
assets is empty. Moreover, the only environment threat is the one that belongs to the environment of
the overall target.

The interface diagram for the full target shows all unwanted incidents with respect to the assets we
identified during the context establishment. It also shows the likelihood and consequence estimates for

RASEN - 316853 Page 35 / 44

each of the incidents. Because a risk is defined as an unwanted incident with its likelihood and
consequence, we have in our example identified five risks. The risk levels are calculated by using a
risk function such as a risk matrix.

Integrity of
WPAgent
software

Flaw introduced to
WPAgent algorithm
[2:1year]

WPAgent malfunction
[5:1year]

Cyber
threat

Availability
of WP data

WP data cannot be
accessed from WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot be
accessed from WPManager
[18:1year]

H

WPAgent fails to deliver
advice
[12:1year]

Dependability
of WPAgent

H

M

M

Interface diagram for A+B

4:1year

Figure 29 – Interface diagram for the composed risk models

5.5 Conclusion
In this section we have presented our first steps towards a method for compositional risk assessment.
At the core of the approach is a novel notion of risk model encapsulation, where only the elements that
are essential for composition are exposed through an explicitly defined risk model interface, while
internal details are hidden. All one needs to know in order to compose risk models is the contents of
their interfaces. By hiding the internal details we make it easier for practitioners to compose risk
models, while at the same time reducing the size and complexity of the resulting model. An added
benefit is that a risk model interface contains the information that would typically be of interest for
managers and decision makers who often have little time and have not themselves taken part in the
risk assessment.

Encapsulation is a key reason for the success of object-oriented programming. We believe that
significant benefits can be achieved by introducing this concept into risk management and analysis.
We are not aware of any other work where this has been attempted. For a presentation and discussion
of related work we refer to [20]. Unlike our approach, none of the referred works provides a notion of
encapsulation in the sense of exposing only the risk model elements needed for composition while
hiding internal elements. Instead, they focus primarily on likelihood or risk level assessment in a
component-based setting. While this is an important ingredient of component-based risk analysis, the
lack of an encapsulation mechanism complicates composition; it means that composed models may
become very large and complex, which in turn may lead to scalability problems.

RASEN - 316853 Page 36 / 44

6 Continuous Risk Assessment
Managing risk of systems that rapidly evolve or have environments that evolve is challenging since
also the security risks may be evolving. This motivates the development of risk assessment
techniques that facilitate a continuous assessment of systems where the risk picture can be updated
without having to conduct a full risk assessment from scratch every time. There are various ways of
handling system or environment changes and keeping the risk picture up-to-date. One approach that
we continue to investigate in the RASEN project is the use of compositional risk assessment as
presented in Section 5 and in deliverable D3.2.1 [18]; compositional techniques have the potential to
facilitate continuous risk assessment by allowing only the parts or aspects of the system that have
changed to be reassessed. Another approach is the use of traceability links between the
documentation of the system and the risk model [8][22]. This facilitates efficient and systematic
updating of the risk picture by the tracing of changes from the system to the relevant risks.
Investigating the latter techniques is outside the scope of the RASEN project, although related to our
objectives of facilitating continuous risk assessment. The third approach, which we also address in this
project, is the use of key indicators that can be monitored. While monitoring the indicators the values
can be used to update the existing risk picture at desired time intervals. This requires means for
aggregating key indicator values to derive the values that can be fed to the risk models. As discussed
in deliverable D3.2.1 this kind of indicator aggregation is similar to the aggregation of test measures
presented in Section 3. The means for gathering the indicator values are of course different from the
testing. The objective is also different since the security testing can be used to complement the
assessment results, whereas the indicator monitoring is used to enable risk monitoring and continuous
updates of the risk levels.

In Section 6.1 we give a brief overview of our approach to continuous risk assessment by indicator
monitoring. In Section 6.2 through Section 6.4 we describe each step and the produced artefacts in
more details. Finally we conclude in Section 6.5.

6.1 Method Overview
For risk monitoring to be possible there must be a monitoring infrastructure in place offering a palette
of continuously monitored key indicators that can be selected from. The development of such an
infrastructure is outside the scope of the RASEN project. We are instead concerned with how such
indicators can be aggregated to update the risk model.

Before the risk monitoring can start we need to prepare by developing the risk model for the risks to be
monitored, we need to identify the relevant key indicators, and we need to specify the functions for
aggregating the indicator values. More specifically, the preparations consist of the following three
steps.

1. Initial risk assessment. The purpose of this step is to identify and document the current risk
picture so as to understand what is to be monitored and how it can be monitored. The initial
risk assessment also includes the estimation of likelihoods and consequences in order to
prioritize what to monitor, and also to provide data that can be used to validate the indicators
and aggregation functions.

2. Key indicator identification. This is done based on the risk model and risk assessment
results of the previous step. The indicators can be related to any of the risk model elements,
such as threats, vulnerabilities, threat scenarios and unwanted incidents.

3. Specify aggregation functions. The purpose of this step is to define the mapping from the
values of the monitored key indicators to the estimates that are fed to the risk model.

Note that while the aggregation of key indicator values in general can be used to derive any estimate
for the risk model, including likelihoods, consequences and risk levels, the RASEN project focus on
the aggregation of indicator values to likelihood values.

In the next subsections we give an example-driven presentation of the method and the produced
model artefacts. The example is of a web-application for which the end-users need to have a user
account and a username and password to access. Note that the risks and the estimates are made up
for the example and not the real values from a real case.

RASEN - 316853 Page 37 / 44

6.2 Initial Risk Assessment
The initial risk assessment can be conducted using any available method and risk modeling language.
In our example we have used the CORAS approach [7]. As the purpose here is not to present the risk
assessment as such, we introduce only the results of the risk assessment that are used for the
monitoring.

The initial risk assessment typically includes several assets that must be identified and documented. In
our example we show only one asset, namely integrity of data. The risk assessment also includes the
specification of scales for likelihoods and consequences, as well as the definition of the risk evaluation
criteria. For the purposes of this section we only need the likelihood scale. The scale is of the five
levels seldom, unlikely, possible, probable and certain. For the precise definition of each value we
refer to Table 2 in Section 3.

The risk identification involves the identification and modeling of threats, vulnerabilities, threat
scenarios and unwanted incidents. The result is exemplified with the CORAS threat diagram in Figure
30. The diagram shows two kinds of attacks on the web-application. On the one hand, a hacker may
conduct an SQL injection attack which may lead to the risk of unauthorized modification of application
data. On the other hand, a hacker or other intruder may gain unauthorized access by taking over a
user account, either by a brute force attack on the user credentials or by someone accessing an active
session on a shared workstation. The latter may happen when a user fails to log off an active session
before leaving the workstation. The diagram also shows the likelihood estimates. The estimates for the
threat scenarios and unwanted incidents are in terms of frequencies as defined in Table 2, whereas
the conditional likelihoods on the leads-to relations are in terms of probabilities.

Hacker

Intruder

SQL injection attempt
[certain]

SQL injection
successful
[possible]

Brute force attack
on user credential

[certain]

Intuder accesses
active session on

public PC
[possible]

Unauthorized
access on user account

[probable]

Unauthorized user
data modification
[possible]

Unauthorized
application data
modification
[unlikely]

Lack of
security

awareness

Improper
neutralization

Improper
input

validation

Integrity

Weak
passwords

[0.004, 0.01]

[0.01, 0.05]

1

[0.2, 0.3]

[0.05, 0.15]

Figure 30 – Risk model with likelihood estimates

6.3 Key Indicator Identification
In order to monitor risks based on aggregated key indicator values we need to identify the indicators
that are relevant for the risks in question. This is done by a careful walkthrough of the risk models, for
example by a team of personnel with different expert insight into the target system.

Figure 31 shows a possible set of key indicators for the identified risks. In the following we explain
each of them in turn.

• K1 is an indicator derived from the CAPEC attack pattern classification [12]. The pattern
includes information such as required attacker skills and resources, as well as likelihood of
attack. We assume here that K1 is an aggregate of such values.

RASEN - 316853 Page 38 / 44

• K2 is the total number of user visits on the site for the web-application, which is also related to
the SQL attack since a share of the visits is the conducted attacks.

• K3 is related to the CWE [10] vulnerability of improper input validation. We assume here that
the application owner conducts regular searches in their logs to keep track of the number of
invalid user input.

• K4 is related to the CWE vulnerability of improper neutralization of special elements used in an
SQL command (SQL injection). We assume that the application owner conducts neutralization
while keeping track of the number of inputs that should have been neutralized but failed to be
so.

• K5 is the number of detected data modifications that have not been accounted for by the staff
of the application owner, and that therefore may include unauthorized modifications.

• K6 is the number of user login fails, which includes any attempts of brute force attacks.

• K7 is the number of weak passwords according to a classification that categorizes passwords
as weak, medium strength or strong. We assume that the enforced password requirements
are weak, although the users are encouraged to select strong passwords.

• K8 is the number of passwords that have not been changed during the last 12 weeks. We
assume that the end-users are encouraged to change their password every three months,
although this is not enforced.

• K9 is the time period of user inactivity until a session is automatically terminated. It is related
to the vulnerability of lack of security awareness among end-users since this vulnerability may
lead to unauthorized access to a user account due to active sessions.

• K10 is the number of forced log-offs due to user inactivity, which is also related to the possible
lack of security awareness of the end-users.

• K11 is the number of user data modifications that the end-users report to the application
owner as unrecognized by the end-users. This number is related to the incident of
unauthorized user data modification.

RASEN - 316853 Page 39 / 44

Hacker

Intruder

SQL injection attempt
[f1(K1,K2)]

SQL injection
successful
[possible]

Brute force attack
on user credential

[f4(K6)]

Intuder accesses
active session on

public PC
[f6(K9,K10)]

Unauthorized
access on user account

[probable]

Unauthorized user
data modification
[f7(K11)]

Unauthorized
application data
modification
[f3(K5)]

Lack of
security

awareness

Improper
neutralization

Improper
input

validation

Integrity

Weak
passwords

f2(K3,K4)

f5(K7,K8)

1

K1: CAPEC-66 score

K2: Number of visits
last 12 months

K3: Percentage
of invalid input
detected last
12 months

K4: Percentage of
failed neutrali-
zations detected
last 12 months

K5: Number of
unaccounted data
modifications detected
last 12 months

K7: Number of weak passwords

K8: Number of passwords that have not
been changed during the last 12 weeks

K9: Expiry time of inactive session

K10: Number of inactivity log-offs
last 12 months

K11: Number of user
reported
unaccounted data
modifications last 12
months

K6: Number
login fails last
12 months

[0.2, 0.3]

[0.05, 0.15]

Figure 31 – Risk model with key indicators

Note that for risk monitoring by indicator monitoring to be valid and correct the identified key indicators
must completely determine the risk estimates that they are aggregated to, possibly in combination with
some given constants. The exemplified indicators are clearly not complete for the given risk model, but
the purpose here is only to present the approach. However, indicators need not be identified for all risk
model elements. For example, the threat scenario Unauthorized access on user account is not
assigned any indicator. The likelihood estimate for this scenario must instead be calculated based on
the likelihood estimates of the scenarios that may lead to it.

The need for the set of identified key indicators to be complete is indicated by the aggregation
functions annotated in the risk model of Figure 31. For example, the likelihood of the threat scenario
SQL injection attempt is an aggregate of the key indicators K1 and K2. The next step is to define the
functions for the aggregations.

6.4 Specify Aggregation Functions
The aggregation functions are mappings from key indicators to likelihoods, where the likelihoods are
frequencies (for scenarios and incidents) or probabilities (for leads-to relations). In Table 4 we have
listed the key indicators with their domain and their current value at the time of the initial risk
assessment.

RASEN - 316853 Page 40 / 44

Name Description Domain Value

K1 CAPEC-66 score {1,...,10} 5

K2 Number of visits last 12 months {0,...} 120,000

K3 Percentage of invalid input detected last 12 months [0,1] 0.075

K4 Percentage of failed neutralizations detected last 12 months [0,1] 0.19

K5
Number of unaccounted data modifications detected last 12
months

{0,...} 16

K6 Number login fails last 12 months {0,...} 3,200

K7 Number of weak passwords {0,...} 4,000

K8
Number of passwords that have not been changed during the last
12 weeks

{0,...} 6,500

K9 Expiry time of inactive session {5,...,45} 15

K10 Number of inactivity log-offs last 12 months {0,...} 1,500

K11
Number of user reported unaccounted data modifications last 12
months

{0,...} 25

Table 4 – Key indicators with current values

To show how the aggregation functions are specified we give only three examples. These are very
simplified as the focus here is not on the functions themselves, but rather how they are used.

In our example we define the function f1 as f1(K1,K2) = (K1 · K2)/1000. This means that the number
of SQL injection attempts is assumed to be proportional to the product of the total number of visits and
the CAPEC score for the attack.

The function f2 is used to derive the conditional likelihood for an SQL injection attempt to lead to a

successful SQL injection. The function is defined as f2(K3,K4) = (K3 + K4 – K3 · K4)/25. Generally a
conditional likelihood is in the interval [0,1] but by this aggregation it is assumed that in reality it is
never higher than 0.04 for this particular attack on the web-application in question.

Finally the function f3 is for the example simply defined as f3(K5) = K5/20. This means that it is
assumed that a constant share of 5% of the unaccounted modifications is the unauthorized ones.

The identified key indicators and the aggregation functions should be validated. This can be done in
several ways. In the following we describe two validation techniques that make use of likelihood
calculation. First, we can calculate the aggregated likelihood values from the current indicator values
and compare the results with the estimates from the initial risk assessment. Assuming that both are
correct, they should be identical. Second, we can do a consistency check of the aggregated
likelihoods; if the aggregated likelihoods are correct, they must also be mutually consistent. The first
validation check can only be done when a separate risk assessment is at hand, whereas the second
can be done whenever the risk picture is updated.

Considering the three specified aggregation functions and the current indicator values, we get the

following results. The likelihood of the threat scenario SQL injection attempt is given by f1 as (5 ·
120000/1000) = 600. This is within the likelihood interval of certain in Table 2 and matches the
estimate of the initial risk assessment shown in Figure 30. The conditional likelihood of the following

leads-to relation is given by f2 as (0.075 + 0.19 – 0.075 · 0.19)/25 = 0.01003. This is slightly higher
than the estimate of the initial assessment which is the interval [0.004, 0.01] and may indicate that the
set of identified indicators is incomplete or that the aggregation function is not correct. The likelihood of
the threat scenario SQL injection successful is not given directly by any indicators. Instead it must be
calculated using the CORAS calculus based on the monitored values that precede it. This gives the

RASEN - 316853 Page 41 / 44

estimate 600 · 0.01003 = 6.018, which is within the possible interval. Also this matches the estimate
from the initial risk assessment. Finally, we use the function f3 to calculate the likelihood of the incident
Unauthorized application data modification as 16/20 = 0.8. This is within the interval unlikely, and
again in line with the initial risk assessment.

The mutual consistency checking is to compare the monitored likelihoods against each other. For
example, the current monitored likelihood of the threat scenario SQL injection successful is 6.018.
Using the estimate of the conditional likelihood of the following leads-to relation we get the estimate
6.018 x [0.05, 0.15] = [0.3009, 0.9027] for the frequency of the unwanted incident Unauthorized
application data modification. This is consistent with the frequency derived from the indicator K5 for
this incident, namely 0.8.

The identification of the key indicators and the specification of the aggregation functions must
obviously be done with much care to ensure that the result is complete and correct. The task is,
however, error-prone. This means that systematic techniques for validation of the indicators and
functions are important and valuable.

6.5 Conclusion
In this section we have presented an approach to continuous security risk assessment by means of
risk monitoring. The method and techniques make use of identified key indicators that can be
monitored and the values of which can be aggregated into likelihood estimates or other values that
can be fed to the risk model.

The approach is similar to test-based risk assessment as presented in Section 3 and Section 4 since
both approaches involves the aggregation of low-level security measures to high-level risk measures.
The key indicator monitoring approach is sometimes referred to as passive testing whereas the
security testing described in Section 3 is referred to as active testing. Although active and passive
testing serve different purposes they are similar in the sense of using low-level measurements as input
and aggregating these into useful data for the risk assessment.

RASEN - 316853 Page 42 / 44

7 Conclusion
In this deliverable we have reported on the main results of the RASEN WP3 tasks during the second
year of the project. The results show progress within all of the R&D tasks of WP3 of compositional risk
assessment techniques, techniques for test-based security risk assessment and techniques for
continuous security risk assessment.

The developed techniques come with relevant modeling support, and they are moreover supported by
the prototype tools of deliverable D3.3.2 that are integrated into the RASEN tool-box. Both WP3 and
the RASEN project furthermore make strong use of available databases and repositories of known
security risks and vulnerabilities, which facilitates automation as well as the development of patterns
for risk identification and assessment.

RASEN - 316853 Page 43 / 44

References
[1] International Electrotechnical Commission: IEC 61025 Fault Tree Analysis (FTA) (1990)
[2] International Electrotechnical Commission: IEC 60300-3-9 Dependability management – Part

3: Application guide – Section 9: Risk analysis of technological systems – Event Tree
Analysis (ETA) (1995)

[3] International Organization for Standardization: ISO 31000 Risk management – Principles and
guidelines (2009)

[4] International Organization for Standardization/International Electrotechnical Commission:
ISO/IEC 27005 – Information technology – Security techniques – Information security risk
management (2007)

[5] BSI: IT-Grundschutz-Kataloge, Bundesamt für Sicherheit in der Informationstechnik 2005-
2014, English version: IT-Grundschutz Catalogues, Federal Office for Information Security,
Bonn Germany (2013)

[6] W. Jansen: Directions in security metrics research. NISTIR 7564, National Institute of
Standards and Technology (2009)

[7] M. S. Lund, B. Solhaug, K. Stølen: Model-Driven Risk Analysis – The CORAS Approach.
Springer (2011)

[8] M. S. Lund, B. Solhaug, K. Stølen. Risk analysis of changing and evolving systems using
CORAS. In Foundations of Security Analysis and Design VI (FOSAD VI), volume 6858 of
LNCS, pages 231–274, Springer (2011)

[9] B. Kaiser, P. Liggesmeyer, O. Mäckel: A new component concept for fault trees. In: 8th
Australian workshop on Safety critical systems and software (SCS'03), pp. 37–46. Australian
Computer Society (2003)

[10] MITRE Corporation: CWE – Common Weakness Enumeration [ONLINE] Available at:
http://cwe.mitre.org [Accessed 5 September 2014]

[11] MITRE Corporation: CWSS – Common Weakness Scoring System [ONLINE] Available at:
http://cwe.mitre.org/cwss/ [Accessed 5 September 2014]

[12] MITRE Corporation: CAPEC – Common Attack Pattern Enumeration and Classification.
[ONLINE] Available at: https://capec.mitre.org [Accessed 5 September 2014]

[13] Object Management Group. OMG Unified Modeling Language (OMG UML), Superstructure.
Version 2.2. OMG Document: formal/2009-02-02 (2009)

[14] RASEN: A toolbox for risk assessment and security testing v.2. RASEN project deliverable
D5.4.2 (2014)

[15] RASEN: Methodologies for legal, compositional and continuous risk assessment and security
testing v.2. RASEN project deliverable D5.3.2 (2014)

[16] RASEN: Techniques for compositional risk-based security testing v.1. RASEN project
deliverable D4.2.1 (2013)

[17] RASEN: Techniques for compositional risk-based security testing v.2. RASEN project
deliverable D4.2.2 (2014)

[18] RASEN: Techniques for compositional test-based security assessment v.1. RASEN project
deliverable D.3.2.1 (2013)

[19] RASEN: Use case evaluation v.1. RASEN project deliverable D2.3.1 (2014)
[20] A. Refsdal, Ø. Rideng, B. Solhaug and K. Stølen. Divide and conquer - Towards a notion of

risk encapsulation. In Engineering Secure Future Internet Services and Systems. LNCS
8431, 345-365, Springer (2014)

[21] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, J. Zwiers:
Concurrency Verification: Introduction to Compositional and Noncompositional Methods.
Cambridge University Press (2001)

[22] B. Solhaug and F. Seehusen. Model-driven risk analysis of evolving critical infrastructures.
Journal of Ambient Intelligence and Humanized Computing, 5(2):187–204 (2014)

[23] L. M. S. Tran, B. Solhaug and K. Stølen: An approach to select cost-effective risk
countermeasures exemplified in CORAS. Technical Report A24343, SINTEF ICT (2013)

[24] J. Viehmann: Reusing risk analysis results - An extension for the CORAS risk analysis
method. In: 4th International Conference on Information Privacy, Security, Risk and Trust
(PASSAT’12), pp. 742-751. IEEE (2012)

http://cwe.mitre.org/
http://cwe.mitre.org/cwss/
https://capec.mitre.org/

RASEN - 316853 Page 44 / 44

[25] J. Viehmann: Towards Integration of Compositional Risk Analysis Using Monte Carlo
Simulation and Security Testing; in T. Bauer et al. (Eds.): RISK 2013, LNCS 8418 pp 109-
119, Springer (2014)

	Table of contents
	1 Introduction
	2 Risk Modeling of Large Networked Systems
	2.1 Component Type Implementation and Assignment
	2.1.1 Generic Component Type Generation
	2.1.2 User-Specific Component-Type Definitions

	2.2 Interfacing the Testing Framework
	2.3 Conclusion

	3 Complement the Risk Picture Using Test Results
	3.1 Method Overview
	3.2 Aggregating Test Results Using Risk Metrics
	3.2.1 Concepts
	3.2.2 Process

	3.3 Example
	3.3.1 Context Establishment
	3.3.2 Security Risk Assessment
	3.3.3 Test Procedures and Test Measures
	3.3.4 Aggregating Test Measures

	3.4 Conclusion

	4 Automated Risk Assessment with Testing
	4.1 The General RACOMAT Method
	4.2 Specific Techniques Introduced with the RACOMAT Tool
	4.3 Interaction with Other Tools
	4.4 Conclusion

	5 Risk Model Encapsulation and Composition
	5.1 Risk Model Encapsulation
	5.2 Target Decomposition
	5.3 Sub-Target Risk Modeling
	5.3.1 Internal Threats and Assets
	5.3.2 Environment Threats
	5.3.3 Environment Assets

	5.4 Risk Composition
	5.5 Conclusion

	6 Continuous Risk Assessment
	6.1 Method Overview
	6.2 Initial Risk Assessment
	6.3 Key Indicator Identification
	6.4 Specify Aggregation Functions
	6.5 Conclusion

	7 Conclusion
	References

