
Efficient Detection of Multi-step
Cross-Site Scripting Vulnerabilities

Alexandre Vernotte1, Frédéric Dadeau1,2, Franck Lebeau3,
Bruno Legeard1,4, Fabien Peureux1, and François Piat1

1 Institut FEMTO-ST, UMR CNRS 6174 – Route de Gray, 25030 Besançon, France
{avernott,fdadeau,blegeard,fpeureux,fpiat}@femto-st.fr

2 INRIA Nancy Grand Est – BP 239, 54506 Vandoeuvre-lès-Nancy, France
frederic.dadeau@inria.fr

3 Erdil – 9, Avenue des Montboucons, 25000 Besançon, France
franck.lebeau@erdil.com

4 Smartesting R&D Center – 2G, Avenue des Montboucons, 25000 Besançon, France,
bruno.legeard@smartesting.com

Abstract. Cross-Site Scripting (XSS) vulnerability is one of the most
critical breaches that may compromise the security of Web applications.
Reflected XSS is usually easy to detect as the attack vector is imme-
diately executed, and classical Web application scanners are commonly
efficient to detect it. However, they are less efficient to discover multi-step
XSS, which requires behavioral knowledge to be detected. In this paper,
we propose a Pattern-driven and Model-based Vulnerability Testing ap-
proach (PMVT) to improve the capability of multi-step XSS detection.
This approach relies on generic vulnerability test patterns, which are
applied on a behavioral model of the application under test, in order
to generate vulnerability test cases. A toolchain, adapted from an ex-
isting Model-Based Testing tool, has been developed to implement this
approach. This prototype has been experimented and validated on real-
life Web applications, showing a strong improvement of detection ability
w.r.t. Web application scanners for this kind of vulnerabilities.

Keywords: Vulnerability Testing, Model-Based Testing, Vulnerability Test Pat-
terns, Web Applications, Multi-step Cross-Site Scripting.

1 Introduction

Code injection security attacks, and more particularly cross-site scripting (XSS),
are part of the most prevalent and dangerous cyber-attacks against Web appli-
cations reported these last years; see, for example, OWASP Top Ten 2013 [29],
CWE/SANS 25 [20] and WhiteHat Website Security Statistic Report 2013 [28].
In this latter, XSS appears to represent 43% of all the serious vulnerabilities
discovered in a large panel of Web applications. As another example, Claudio
Criscione reports at GTAC 2013 that nearly 60% of security bugs detected in
Google software are XSS vulnerabilities5.
5 https://developers.google.com/google-test-automation-conference/2013/

presentations#Day2Presentation7 [Last visited: July 2014]

2

An XSS vulnerability occurs each time an application stores (with more or
less persistence) a user input and displays it into a Web browser without proper
sanitization (without removing or replacing any character that may contribute
to an unwanted behavior). Therefore, it is possible to inject a piece of code and
see this code executed by the Web browser, potentially causing severe damage to
visitors (often without them knowing). XSS attacks is easy to put into practice,
and presents a great number of variants. It is also an entry point for many
exploits (session hijacking, credentials stealing, etc.). The difficulty of handling
XSS issues is mainly due to the complexity of the application logics. Indeed,
developers need to think about a systematic protection of the displayed data,
what is an error-prone exercise, since a given user input may be subsequently
displayed in a large variety of places in the application. It is thus mandatory to
detect XSS-related issues at the earliest, by performing vulnerability testing at
the application level. XSS vulnerabilities can be classified into four categories6:

(i) DOM-based XSS when the injected data stay within the browser (and
modify the DOM “environment”),

(ii) Reflected XSS when the untrusted injected data are directly displayed/ex-
ecuted right after being injected,

(iii) Stored XSS when the injected data is stored by the application and re-
trieved later in another context (e.g., in a user’s profile),

(iv) Multi-step XSS (a special breed of stored XSS) when it requires that the
user performs several actions on the applications (mainly navigation steps)
to display/execute the attack vector.

While the first three categories are usually well-identified and easily detected
by automated penetration testing tools, such as Web application vulnerability
scanners [2], the last one remains a challenging issue [10]. On the one hand,
manual vulnerability testing is becoming more and more difficult as Websites
are growing in size and complexity: indeed, as the result of an attack cannot be
seen immediately, the penetration tester has to dig into the application logics to
understand where a given user input is supposed to be sent back to the client.
On the other hand, current automated vulnerability discovery techniques can
test for a large percentage of technical vulnerabilities, but are often limited in
accessing large parts of the Web application, because they lack any knowledge
about the functional behaviour and the business logics of the application.

Recently, vulnerability test patterns have been introduced to describe a test-
ing procedure for each class of vulnerabilities [25]. However, such a process re-
mains manual, and using vulnerability test patterns for testing automation is
still a challenge. In addition, the current automated vulnerability testing tools
(i.e. Web application scanners) often display false positive and false negative
results, raising alarms when there is no error or missing potential weaknesses,
respectively. Hence, it is the cause of a useless and costly waste of time.

6 https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting\
_(XSS)[Last visited: July 2014]

3

The approach presented in this paper aims to improve the accuracy and
precision of multi-step XSS testing, by proposing a testing approach driven by
automated vulnerability test patterns composed with a behavioral model of the
system under test. These patterns describe generic test scenarios that assess the
robustness of the Web application w.r.t. a given kind of vulnerability. To achieve
that, it relies on the information contained in the behavioral model, especially
the location of the possible user inputs and their associated resurgences, to check
that user inputs are correctly sanitized before being displayed on a Web page. As
a major result, this approach increases the efficiency of penetration testers for
detecting vulnerabilities such as multi-step XSS. The main contribution of this
paper relates to the proposal of a pattern-driven and model-based approach to
generate vulnerability tests for Web applications. More precisely, this concerns:

– The formalization of vulnerability test patterns using generic test purposes
to drive the test generation engine, including a combinatorial unfolding of
untrusted injected data taken from standard databases, such as the OWASP
collection of attack vectors7.

– The separation of the behavioral model for Web application vulnerability
testing between a generic part (whatever the application under test is) and
an ad-hoc part, which is specific to the targeted application under test.

– The full automation of the testing process, including test generation, test
execution and verdict assignment.

The paper is organized as follows. Section 2 introduces the principles of XSS-
based attacks, and illustrates them on a running example of a vulnerable Web
application named WackoPicko. Section 3 describes the contribution of the pa-
per, namely our pattern-driven and model-based vulnerability testing approach.
It especially defines the content of the behavioral model and the expressiveness
of the test pattern language, which are the key artefacts of the approach. Ex-
perience reports are provided and experimental results are discussed in Sect. 4.
Finally, the related work is presented in Sect. 5, while conclusion and future
works are given in Sect. 6.

2 Challenges of Detecting Multi-Step Cross-Site
Scripting Vulnerabilities

This section introduces the challenge of detecting multi-step XSS vulnerabilities,
and illustrates this issue on a running example of a vulnerable Web application.
More precisely, this section aims to explain and exemplify the difficulties faced by
mainstream automated penetration testing tools (i.e. commercial or open-source
Web scanners) for accurately detecting multi-step XSS vulnerabilities. Based on
these conclusions, we finally expose the research questions we are addressing to
efficiently detect such multi-step XSS vulnerabilities.
7 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet [Last vis-

ited: July 2014]

4

2.1 Running Example: the WackoPicko Web Application

First of all, in order to illustrate multi-step XSS vulnerability and to evaluate
the accuracy and precision of our approach, we use the Web application called
WackoPicko8, which is a deliberately-unsecured Web application developed by
Adam Doupé [10]. The objective of this test bed, developed using PHP/MySQL,
is to provide a realistic but vulnerable environment. Like education-oriented vul-
nerable Web applications such as DVWA (Damn Vulnerable Web Application9)
or WebGoat10, WackoPicko can aid security professionals to learn, improve or
test their skill in vulnerability discovery on a realistic Web application, with
nowadays features (e.g., posts, comments) and realistic workflows. It can also be
used to test Web security testing tools, like vulnerability scanners for instance.

Basically, WackoPicko allows users to authenticate themselves, share pic-
tures, comment pictures, and possibly buy pictures. WackoPicko presents realis-
tic features (authentication, shopping, ...) that can be found in many Websites,
along with more complex workflows (e.g., uploading a picture, commenting the
picture). It embeds several vulnerabilities, notably SQL Injection, Cross-Site
Scripting, Cross-Site Request Forgery and Local/Remote File Inclusion, which
are ranked by the OWASP project among the most frequently used attacks.

2.2 Multi-step XSS Principles and Illustration

The main characteristic of a multi-step vulnerability is that the attack vector is
injected in one page, saved (e.g., in a database), and then echoed later in an-
other page or another application. Hence, detecting such a vulnerability involves
being able to perform a sequence of actions starting from attack vector injection
until vulnerability checking. For instance, using the WackoPicko example, such a
sequence appears when a user adds a comment to a picture. The corresponding
workflow, depicted in Fig. 1, is now described.

(a) Comment setting (b) Comment preview (c) Comment display

Fig. 1. Nominal workflow of picture comment using WackoPicko
8 https://github.com/adamdoupe/WackoPicko [Last visited: July 2014]
9 http://www.dvwa.co.uk/ [Last visited: July 2014]

10 https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project [Last vis-
ited: July 2014]

5

0. Prerequisites. This preliminary step consists in logging the user on the
application, and browsing the application until viewing a particular picture.

1. Setting a comment. In this step (see Fig. 1(a)), the user sets his new com-
ment in the text area, and clicks the Preview button. By clicking the button,
the client (i.e. the browser) sends a POST request to the Web server.

2. Preview of the comment. This step (see Fig. 1(b)), consists of visualizing
the comment before validation by the user. When the server receives the
POST request, it stores the new comment in the comments preview table
of its database. Then, the server sends back to the browser a new page
that displays a preview of the comment. The user may accept or reject its
comment with the respecting Create and Cancel buttons. By clicking the
Create button, the browser sends a POST request to the server.

3. Displaying the comment. The final step (see Fig. 1(c)) consists in dis-
playing a validated comment. When the server receives the previous POST
request, it concretely relates the comment to the picture, making this com-
ment available every time the picture page is displayed.

A malicious attack can consist of injecting a piece of code (for instance the
vector <script>alert("XSS")</script>) in the text area, previewing, creating,
and visualizing the result. What makes this attack a multi-step XSS attack is
the fact that only the picture page is vulnerable to XSS: the injected vector is
properly sanitized on the comment preview page and it thus requires an extra
step from the user (validating the comment) to detect the vulnerability. The
corresponding workflow, depicted in Fig. 2, shows that the attack vector injected
as picture comment (see Fig. 2(a)) is next interpreted as Javascript code (and
not as a harmless string) and the alert window is displayed (see Fig. 2(c)).

(a) Comment setting (b) Comment preview (c) Comment display

Fig. 2. Multi-step XSS attack workflow of picture comment using WackoPicko

It should be noted that the comment preview page is not vulnerable to
XSS attack (see Fig. 2(b)): there is no alert message since the attack vector
is treated as a standard string in which special characters are encoded. Indeed,
the source code of the page embeds the harmless HTML-encoded attack vector
(<script>alert("XSS")</script>). This prevents the <script>
tag from being interpreted by the browser.

6

2.3 Research Questions

As illustrated in the previous section, whereas it is mostly easy to automatically
detect reflected XSS, multi-step XSS are far more difficult to discover. Indeed,
the untrusted data are not immediately displayed/executed after they are in-
jected, and several navigation steps to display/execute the attack vector are
required to record the breach. Current vulnerability detection techniques highly
struggle with this problem, mostly because it requires knowledge of the logic of
the application under test to navigate from an injection point to its output page.
Hence, within our work, we aim to address the following research questions:

RQ1 To what extend does the knowledge of the business logic of the application
help to increase the accuracy of the detection for multi-step XSS?

RQ2 To what extend is it possible to automatize generic test patterns dedicated
to such Web application vulnerabilities?

RQ3 To what extend test execution and verdict assignment can be fully auto-
mated?

RQ4 To what extend is it possible to improve the overall efficiency of the process
with respect to manual penetration testing activities and state of the practice
by means of automated penetration testing techniques and tools?

To achieve this goal, the proposed testing approach consists to combine for-
malized test patterns with a behavioral model focused on the business logic
for vulnerability testing of Web applications. Formalized test patterns provide
penetration testing scenarios, and the model provides the minimal but necessary
required information, namely: states/pages and transitions/navigation combined
with logical application data and dataflow information. The next section intro-
duces this testing approach, called Pattern-driven and Model-based Vulnerability
Testing (PMVT).

3 Pattern-driven and Model-based Vulnerability Testing
for Multi-step XSS

This section introduces a Pattern-driven and Model-based Vulnerability Testing
(PMVT) approach, which is a generic solution for Web application vulnerability
testing. We first describe the principles of the approach, before giving informa-
tion on the different artefacts that it involves, namely a behavioral model and
test purposes implementing a vulnerability test pattern.

3.1 Principles of the PMVT Approach

The PMVT process, depicted in Fig. 3, is composed of four activities:

¬ The Test Purposes design activity consists of formalizing a test procedure
from vulnerability test patterns that the generated test cases have to cover.
These Test Purposes can be generic to be applied for a category of appli-
cation. We show later that the Test Purpose for multi-step XSS is generic
whatever the Web application is.

7

Test

Purposes

Model

Vulnerability

Test

Patterns

Adaptation

Security Test Engineer

Test Execution

1

2

Automated

Test

Generation

3

4

Vulnerability

Tests

SUT

Functionnal

Specification

Legend :

Fig. 3. Pattern-driven and Model-based Vulnerability Test process

 The Modeling activity aims to design a test model that captures the be-
havioral aspects of the application under test to generate consistent (from a
functional point of view) sequences of stimuli.

® The Test Generation activity consists of automatically producing abstract
test cases, including expected results, from the artifacts defined during the
two previous activities.

¯ The Adaptation, Test Execution and Observation activity aims to (i) trans-
late the generated abstract test cases into executable scripts, (ii) to execute
these scripts on the application under test, (iii) to observe the responses and
to compare them to the expected results in order to assign the test verdict
and automate the detection of vulnerabilities.

All these activities are supported by a dedicated toolchain, based on an existing
Model-Based Testing (MBT) software named CertifyIt [18] provided by the com-
pany Smartesting11. CertifyIt is a test generator that takes as input a test model,
written with a subset of UML (called UML4MBT [3, 8]), capturing the behavior
of the application under test. A UML4MBT model consists of (i) UML class
diagrams to represent the static view of the system (with classes, associations,
enumerations, class attributes and operations), (ii) UML object diagrams to de-
fine the data and entities (used to compute test cases) that exist at the initial
state, and (iii) statechart diagrams (annotated with OCL constraints) to specify
the dynamic view of the application under test. Such UML4MBT models have a
precise and unambiguous meaning, so that those models can be understood and
computed by the CertifyIt technology. This precise meaning makes it possible to
simulate the execution of the models and to automatically generate test cases by
applying the strategies given by the test purposes. Each generated test case is
typically an abstract sequence of high-level actions from the UML4MBT mod-
els. These generated test cases contain the sequence of stimuli to be executed,
but also the expected results (to perform the observation activity and automate
the verdict assignment), obtained by resolving the associated OCL constraints.
The next sections describe each of the activities and illustrate them using the
WackoPicko running example.
11 http://www.smartesting.com [Last visited: July 2014]

8

3.2 Formalizing Vulnerability Test Patterns into Test Purposes

A Vulnerability Test Patterns (vTP) is a normalized textual document describ-
ing the testing objectives and procedures to detect a particular flaw in a Web
application. Hence, there are as much vTP as there are types of application-level
flaws. Our approach is based on the vTP provided during the ITEA2 research
project DIAMONDS12 [26]. For instance, Fig. 4 presents an excerpt of the vTP
defined for the multi-step XSS vulnerability. At this stage, Vulnerability Test
Patterns are still textual. The PMVT approach takes such textual vTP as start-
ing point by translating them into formal directives, called Test Purposes, in
order to be able to automate testing strategy implementation and execution.

Name multi-step XSS
Description This pattern can be used on an application that does not check user inputs.

An XSS attack can redirect users to a malicious site, or can steal user’s private
information (cookies, session, ...).

Objective(s) Detect if a user input can embed attack vector enabling an XSS attack.
Prerequisites N/A
Procedure Identify a sensible user input, inject the attack vector

<script>alert(xss)</script>.
Observation/ Go to a page echoing the user input, check if a message box ’xss’ appears.
Oracle
Variant(s) - attack vector variants: character encoding, Hex-transformation, comments in-

sertion
- procedure variants: attack can be applied at the HTTP level; the attack vector
is injected in the parameters of the HTTP messages sent to the server, and we
have to check if the attack vector is in the response message from the server

Known Issue(s) Web Application Firewalls (WAF) filter messages send to the server (black list,
clac regEx, ...); variants allows to overcome these filters

Affiliated vTP Stored XSS
Reference(s) CAPEC: http://capec.mitre.org/data/definitions/86.html

WASC: http://projects.Webappsec.org/w/page/13246920/CrossSiteScripting
OWASP: https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Fig. 4. Vulnerability Test Pattern of multi-step XSS attack

A test purpose is a high-level expression that formalizes a testing objective
to drive the automated test generation on the behavioral model. It has been
originally designed to drive model-based test generation for security components,
typically Smart card applications and cryptographic components [6]. Within
PMVT context, a test purpose formalizes a given vTP in order to drive the
vulnerability test generation on the behavioral model. Basically, such a test
purpose is a sequence of significant steps that has to be exercised by the test case
scenario in order to assess the robustness of the application under test w.r.t. the
related vulnerability. Each step takes the form of a set of operations/behaviors
to execute, or specific state to reach.

Figure 5 shows the WackoPicko test purpose formalizing the vTP presented
in Fig. 4. This automatically generated test purpose specifies that, for all sensible
pages echoing user inputs and for each user input of a given page, a test has to
perform the following actions: (i) use any operation to reach a page showing
12 http://www.itea2-diamonds.org [Last visited: July 2014]

9

Fig. 5. Test purpose formalizing the vTP of multi-step XSS attack (Figure 4)

the XSS-sensitive user input, (ii) inject an attack vector in this user input,
(iii) use any operation to reach a page echoing the user input, and (iv) check
if the attack succeeded. It should be underlined that the structure of this test
purpose, addressing multi-step XSS vulnerability, is fully generic. Moreover, since
pages and user inputs are automatically retrieved from OCL constraints from the
UML4MBT test model, this automated generation of test purpose can therefore
be applied for any Web application.

3.3 Test Model Specification

As for every Model-Based Testing (MBT) approach, the modeling activity con-
sists of designing a test model that will be used to automatically generate ab-
stract test cases. Our approach, based on Smartesting technology, requires a
model designed using the UML4MBT notation. To ease and accelerate this mod-
eling activity, which is known to be time consuming, we have developed a Domain
Specific Modeling Language (DSML), called DASTML, that allows to model the
global structure of a Web application: the available pages, the available actions
on each page, and the user inputs of each action potentially used to inject at-
tack vectors. It solely represents all the structural entities necessary to generate
vulnerability test cases. The transformation of a DASTML instantiation into
a valid UML4MBT model is automatically performed by a dedicated plug-in
integrated to the Smartesting modeling environment. The DASTML Domain
Specific Modeling Language is composed of four entities:

Page. Page entities represent the different pages that compose the Web ap-
plication under test. We follow the comparison technique proposed in [11],
meaning that we may consider two physical pages as the same if they ex-
actly provide the same action and navigation entities. On the contrary, we
may consider a single physical page as two distinct pages if there is at some
point a variation in the action and navigation entities. We also distinguish
the initial page from the others by using a boolean attribute is init.

10

Navigation. Navigation entity is typically a link or a button that takes the
user to another page, without altering the internal state of the application
nor triggering any function or service of the application.

Action. Action entities have pretty much the same form as navigation entities,
but there are two main differences. First, an action entity may carry data
(in case of a Web form for instance). Second, an action entity can alter the
internal state of the application (e.g., any user interaction that has modify
the database is considered as an action). In addition, the is auth attribute
allows to distinguish authentication actions from the others. This way, we
can easily refer to it when the attacker has to log on the Web application.

Data. Data entity, defining any user input, is composed of a key and a value.

The metamodel of DASTML is depicted in Fig. 6. Entities interact with each
other based on multiple relations. Navigate to and navigate from provide the
source page and the target page of a navigation entity. Identically, has action
and sends users to provide the source page and the target page of an action
entity. An action may be associated to one or more data (in case of a Web form
for instance), with relation has data. Data have a (reflects) relation to link them
to one or more output page (in this way, for each user input, the page where it
is rendered back is known, what is crucial for XSS vulnerability testing).

Fig. 6. Metamodel of the DASTML Domain Specific Modeling Language

The code fragment, introduced in Fig. 7, is an instantiation of DASTML to
model the WackoPicko running example. In this DASTML model, the entry point
is the “HOME” page, where users can navigate to the “LOGIN” page. There,
users can authenticate themselves (see the :auth suffix on the “LOGIN” action),
and if valid credentials are provided, they reach the “HOME LOGGED IN”
page. At some point, users may visit a picture page. This page has a “COM-
MENT PICTURE” action that requires a user input called “CP CONTENT”,
which abstract value is “CONTENT1”. This input is rendered back on two pages:
“PICTURE CONFIRM COMMENT” and “PICTURE”. Finally, the completion
of the action redirects users to the “PICTURE CONFIRM COMMENT”.

11

PAGES {
”HOME” : i n i t {

NAVIGATIONS {
”GO TO LOGIN” −> ”LOGIN”

}
}

”LOGIN” {
ACTIONS {

”LOGIN” : auth (”USERNAME” = ”USER1” ,
”PASSWORD” = ”PWD1”)

−> ”HOME LOGGED IN”
}

}

”HOME LOGGED IN” {
NAVIGATIONS {

”GOTO RECENT PICTURES”
−> ”RECENT PICTURES” ,

”GOTO GUESTBOOK”
−> ”GUESTBOOK”

}
}

”RECENT PICTURES” {
NAVIGATIONS {

”SHOW PICTURE” −> ”PICTURE”
}

}

”PICTURE” {
ACTIONS {

”COMMENT PICTURE” (”CP CONTENT” = ”
CONTENT1”

=> {”PICTURE CONFIRM COMMENT” , ”
PICTURE”})
−> ”PICTURE CONFIRM COMMENT” ,

}
}
”PICTURE CONFIRM COMMENT” {

ACTIONS {
”CONFIRM COMMENT” −> ”PICTURE”

}
}

}

Fig. 7. DASTML instantiation for the WackoPicko application

3.4 Test Generation

The test generation activity, which aims to produce test cases from both the
behavioral model and the test purpose, is composed of three phases.

The first phase aims to transform the model and the test purposes into ele-
ments computable by the test case generatorCertifyIt. Notably, test purposes are
transformed into test targets, which a sequence of intermediate objectives used by
the test generation engine [7]. The sequence of steps of a test purpose is mapped
to a sequence of intermediate objectives of a test target. Furthermore, this first
phase unfolds the combination of values between iterators of test purposes, such
that one test purpose produces as many test targets as possible combinations.

The second phase consists to automatically derive abstract test cases by com-
puting the test targets on the behavioral model. This phase is computed by the
test case generator CertifyIt. An abstract test case is a sequence of completely
valuated operation calls (i.e. all parameters are instantiated). An operation call
represents either a stimulation or an observation of the application under test.
Each test target automatically produces one test case verifying both the sequence
of intermediate objectives and the model constraints. Note that an intermediate
objective (i.e. a test purpose step) can be translated into several operation calls.

Finally, the third phase allows to export the abstract test cases into the exe-
cution environment. Within PMVT approach, this consists of (i) automatically
creating a JUnit test suite, in which each abstract test case is exported as a
JUnit test case, and (ii) automatically creating an interface, which defines the
prototype of each operation of the application under test. The implementation
of these operations, which aims at linking abstract keywords/operations to con-
crete actions, is in charge of the test automation engineer (see next subsection).

Figure 8 presents an abstract test case for the WackoPicko example, gener-
ated from the multi-step XSS attack test purpose introduced in Fig. 5, and the
test model derived from the DASTML instantiation presented in Fig. 7.

12

1 sut.goToLogin()
2 sut.login(LOGIN 1,PWD 1)
3 was.finalizeAction()
4 sut.checkPage() = HOME LOGGED IN
5 sut.goToRecentPictures()
6 sut.checkPage() = RECENT PICTURES
7 sut.goToPicture(PICTURE ID 1)
8 sut.checkPage() = PICTURE
9 sut.submitComment(P COMMENT CONTENT 1)
10 threat.injectXSS(PICTURE COMMENT)
11 was.finalizeAction()
12 sut.checkXSS()
13 sut.checkPage() = PICTURE COMMENT PREVIEW
14 sut.validateComment())
15 sut.checkXSS()
16 sut.checkPage(PICTURE)

Fig. 8. Abstract test case for the WackoPicko application

Basically, this test case consists to (i) log on the application using valid
credentials (steps #1, #2, #3 and #4), (ii) browse the application to a picture
(steps #5, #6, #7 and #8), (iii) submit a comment with an attack vector on
a given user input (steps #9, #10, #11, #12 and #13), (iv) browse to a page
echoing the injected data and check if there exists an application-level flaw (steps
#14, #15 and #16), using the checkXSS() observation that allows to assign a
verdict to the test case.

3.5 Adaptation and Test Execution

During the modeling activity, all data used by the application (pages, user input,
attack vector, etc.) are modeled at an abstract level. As a consequence, the test
cases are abstract and cannot thus be executed as they are. The gap between
stimuli (resp. keywords) of the abstract test cases and the concrete API (resp.
data) of the application under test must be bridged. To achieve that, the test case
generator CertifyIt generates a file containing the signature of each operation.
The test automation engineer is in charge of implementing each operation of
this interface. Since Web applications become richer and richer (notably due
to more and more complex client-side behaviors), actions and observations of
the application are executed on the client-side Web GUI by using the HtmlUnit
framework13. The different attack vector variants are extracted from the OWASP
XSS Filter evasion cheat sheet14, which provides about one hundred variants
for XSS detection. This way, our approach only focuses on producing abstract
vulnerability test cases, and each one is concretized and automatically executed
with each possible attack vector variant.

Finally, regarding the test verdict assignment, we introduce the following
terminology: Attack-pass when the complete execution of a test reveals that the
application contains a breach, Attack-fail when the failure of the execution of
the last step reveals that the application is robust to the attack.
13 http://htmlunit.sourceforge.net/ [Last visited: July 2014]
14 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet [Last vis-

ited: July 2014]

13

4 Experimental Results on Real-Life Applications

The execution of the hundred test cases generated for the vulnerable WackoPicko
example (derived from the abstract test case introduced in Fig. 8 and using
the hundred OWASP XSS attack vector variants), has shown that 80% of the
executed test cases are attack-pass. The remaining 20% have been run with
variants designed to unveil a particular XSS vulnerability, for which WackoPicko
example is not sensitive. Hence, these results fit the manual experiments we
conducted on WackoPicko and gave a first validation of our approach, i.e. our
approach is suitable for effective detection of multi-step XSS vulnerabilities on
early 2000’s simple Web applications. However, to complete and confirm these
first results, further experimentations have been conducted to do comparison
with other techniques like vulnerability scanners and penetration testing.

4.1 Overview of the stud-e Web Application

We notably applied the PMVT approach on a real-life Web application, named
stud-e, and conducted this industrial use case in partnership with the develop-
ment team. This case study is an e-learning Web-based application that is cur-
rently used by more than fifteen thousands users per year in France. It provides
three profiles: students, teachers, and administrators. Students can access and
download material of their courses, practice quizzes and exercises, participate to
their exams and review their scores, interact with their teachers through embed-
ded emails and forums. Teachers can grant course material, elaborate quiz and
exercises, manage their courses, group courses into modules, define exams, give
scores to exams, tutor their students. Administrators are in charge of student
registrations, teacher management, privilege definition and parameter settings.
This application uses infinite-urls, meaning that every page is accessed through a
unique timestamped identifier. It also uses a custom url-rewriting mechanism. A
lot of effort has been put into security-related matters: all non-user data are en-
crypted (e.g., session data, database keys, etc.), data retrieved from the database
are sanitized, and user input validation occurs both at client-side and server-side.
That is why Stud-e is representative of an important class regrouping sensitive
Web applications (e.g., banking area) that emphasizes security protection and
encryption, which is a struggle for current vulnerability detection techniques.

Because the application uses infinite-urls, exhaustive testing of the Website
based on its url is impossible. Hence, we applied a risk assessment approach to
identify potential threats, business assets, vulnerabilities, and attack scenarios.
These pieces of information were gathered while interviewing real users about the
attack scenarios they feared the most. As a result, two possible attack scenarios
arise. The first attack scenario focuses on a dishonest teacher who wants to
steel/suppress educational material, for its own needs or for revenge. In this
first case, the threat is a dishonest teacher, the targeted business assets are the
educational materials. The second scenario focuses on a dishonest student who
wants to cheat by influencing its scores. In this second case, the threat is a
dishonest student, the targeted business assets are the exams and related scores.

14

Both attack scenarios are particularly complex. For instance, the dishonest
teacher scenario involves browsing 9 pages and performing 38 user actions (clicks,
field filling, etc.), and features a great number of intermediate pages and actions.
In this scenario, the test engineer has to browse 6 pages and perform 8 user
actions between the injection page and the observation page. These features make
the detection of multi-step XSS vulnerabilities very hard for current techniques.

4.2 Experimental Results

We were able to successfully apply the PMVT approach to stud-e despite all
its security features. It took approximately 3 hours to produce the DASTML
instantiation of the Web application including pages, actions and data. The
test generator computed the 14 expected vulnerability test cases in 15 minutes.
Five (5) more hours were spent for adaptation activity to write the HtmlUnit
implementation of the operations corresponding to the abstract actions. Finally,
it took about 2 seconds to execute one test with a particular variant. Hence, it
requires approximately 50 minutes, to execute the entire set of tests (2s × 14
tests × 106 variants = 2968 s).

Two vulnerabilities has been discovered. The first one was introduced for
the sake of this study, whereas the second concerned a unintended multi-step
XSS vulnerability. Tests executions did not produce any false positive, thanks
to the short risk assessment phase and the precision of the test targets. They
did not produce any false negative either, even though 20% of executions were
marked as attack-fail: it means that stud-e is robust to the variants used in each
attack-failed test execution. It takes the entire variants list to assess the presence
of a certain vulnerability. Compared to the two identified attack scenarios, the
sequence embedding the second multi-step XSS vulnerability was both shorter
and simpler (only one profile was involved). This discovery led to a update of the
source code of the Web application. Notice that this discovery was due to the
systematic identification of user input fields and their respecting echoing page,
which produces test cases with many relevant checks all along the test case.

4.3 Comparison Studies

To do comparison with other approaches, we conducted two vulnerability de-
tection campaigns on the stud-e application: one using Web Application Scan-
ners (WAS), one following a penetration testing protocol. Experiments with five
WASs (IBM AppScan, NTOSpider, w3af, skipfish, and arachni) showed that
these tools are not suitable for this kind of Web application. Most of them
(w3af, skipfish, arachni and NTOSpider) were not able to authenticate to the
application.

The protection mechanism of stud-e, which we described earlier, constitutes
a solid barrier for scanners since their modus operandi relies on storing all found
URL to fuzz each of them without respect of logical workflow (aside from the
authentication process).

15

An additional protection mechanism, which makes stud-e almost impossible
to crawl, is the use of a frame set. If the request does not originate from the frame
that contains the link or the form responsible for the request, the server refuses
the request and the user gets thrown back to the authentication page. Hence,
only IBM AppScan was able to get past through the authentication page and
access the authenticated area. However, we had to define a “multi-step operation
sequence” in order to reach an injection page. No XSS vulnerability has been
found during the scan.

Experiments with penetration testing were not straightforward. The use of
tools (like intrusive proxies) demonstrates to be inefficient, mainly for two rea-
sons. Firstly, none of these tools are able to replay a full test sequence. Their
replay feature only allows to replay one HTTP request to the server, and this
is not relevant for the purpose of detecting multi-step XSS vulnerabilities. Sec-
ondly, they work at the HTTP level, which is not suited for stud-e. Indeed, this
application embeds a protection mechanism, which makes the crafting of rele-
vant HTTP requests very difficult. Each request to the server embeds control
parameters, dynamically generated on each page. Without the knowledge of the
Javascript code behavior and the knowledge of the control parameter, crafting
a correct HTTP request is merely impossible.

Hence, after failing at using intrusive proxies, we finally execute the tests
by hand. For the dishonest student attack scenario, it took approximatively 1
minute to execute the entire scenario. Knowing that this scenario has three tests,
and that each test must be executed 106 times (because of the 106 attack vector
variants), the total execution time required to test the scenario is approximately
5 hours (1 min × 3 tests × 106 variants = 318 min). For the dishonest teacher
attack scenario, it took approximatively one minute and a half to execute the
entire scenario. Knowing that this scenario has 11 tests, and that each test must
also be executed 106 times, the total execution time required to test the scenario
is approximatively 29 hours (1.5 min × 11 tests × 106 variants = 1749 min to
compute all the execution configurations).

4.4 Experimentation Summary

After a short risk assessment phase that lead to identify two threat scenarios, the
PMVT approach has been experimented with a focus on them. It successfully
detected 2 multi-step XSS vulnerabilities (now corrected by the development
team) on a large and real-life Web application. We spent 10 hours to deploy
the whole process. In comparison with a manual penetration testing approach,
we have shown the efficiently of PMVT, which makes it possible to save about
19 hours in regard to manual testing attempt. The experiments using 5 Web
Application Scanners have also shown that, due to specific characteristics of the
stud-e application (defensive programming), no scanner succeeded to find any of
the vulnerabilities. To conclude, these encouraging experimental results enable
to successfully validate the relevance and efficiency of our approach.

16

5 Related Work

Due to the prevalence of XSS vulnerabilities, many research directions are in-
vestigated to prevent XSS exploits or to detect XSS flaws.

Examples of prevention are defense mechanisms installed on the server (Web
application firewalls for instance) and/or on the client’s browser that examines
incoming data and sanitizes anything considered malicious. Lots of solutions
have been elaborated to protect against XSS, based on Web proxies [16], reversed
proxies [30], dynamic learning [4], data tainting [21], fast randomization tech-
nique [1], data/code separation [12], or pattern-based HTTP request/response
analysis [19]. XSS prevention is efficient against multi-step XSS vulnerabilities
because it is enough to scan user inputs to spot malicious vectors. But it comes
with another challenge, which is the capacity of identifying script code as be-
ing malicious. Again, it takes some knowledge of the application’s behavior to
separate harmless scripts sent by the server from malicious scripts injected by
miscreants. In addition, it does not solve the main problem of developers who are
unaware of the severity of XSS and good practices that help enforcing security.
Worse, it might invite them to solely rely on third party security tools like Web
Application Firewalls and foster poor-secured Web applications to proliferate.

Contrary to prevention approach, detection is an offensive strategy. It is a
testing activity consisting of impersonating a hacker and performing attack sce-
narios using manual, tool-based (intrusive proxies, ...) or automated techniques
(Web Application Vulnerability Scanners, ...), in a harmless way (without com-
promising the application or the server where it is hosted). Usually, XSS de-
tection is done post-development, by a third-party security organization. It can
also be done prior to the application’s deployment, and therefore may be seen
as an acceptance test criterion. Related work on XSS detection can be classified
into two categories: static analysis security testing (SAST), or dynamic analysis
security testing (DAST). The first category encompasses the use of code-based
techniques while the second category consists of executing and stimulating the
system in order to detect vulnerabilities.

A majority of the techniques found in the literature propose to deal with XSS
using SAST techniques. Kieyzun et al. [15] propose a vulnerability detection
technique addressing SQL injections (SQLi) and XSS-1 (reflected) as well as
XSS-2 (stored) vulnerabilities, based on dynamic taint analysis. Wassermann and
Su [27] use string-taint analysis for cross-site scripting vulnerabilities detection.
This technique combines the concepts of tainted information flow and string
analysis. Shar et al. [23] present an automated approach that not only detects
XSS vulnerabilities using a combination of the concepts of tainted information
flow and string analysis, but also statically removes them from program source
code. The same authors designed another approach [24] that aims to build SQLi
and XSS detectors by statically collecting predefined input sanitization code
attributes. All these approaches are SAST techniques, meaning that program
source code has to be disclosed one way or another. The underlying concept
behind each is taint analysis [22] which consists of keeping track of the values
derived from user inputs throughout the application internals.

17

Although code analysis appears quite effective for detecting multi-step XSS,
a major problem is that program source code is not always available. Moreover,
these techniques are bound to a specific programming language, while there
exists a tremendous number of languages to develop a Web application (PHP,
.NET, JSP, Ruby, J2E, and so on). Hence, several dynamic application secu-
rity testing (DAST) techniques have been proposed regarding the detection of
vulnerabilities such as XSS.

In [17], Korscheck proposes a workflow-based approach to deal with multi-
step XSS vulnerabilities, by using manually recorded traces to model a Web
application and then injecting malicious data by replaying the traces. User traces
reduce the test design cost while still carrying enough information to handles
logical barriers, but it hardly handles the Web application evolution.

In [14], the authors present a multi-agent black-box technique to detect
stored-XSS vulnerabilities in Web forms. It is composed of a Web page agent
parser (i.e. a crawler), a script injection agent to perform the attacks, and a
verification agent to assign a verdict. This approach solely relies on an auto-
matic Web crawler, which may miss consequent parts of the Web application,
and therefore miss potentially vulnerable injection points.

Blome et al. [5] propose a model-based vulnerability testing that relies on
attacker models, which can be seen as an extension of Mealy machines. The ap-
proach is based on a list of nominal and attack vectors, a configuration file that
contains system-specific information, and an XML file, describing the attacker
model. This approach addresses lots of vulnerabilities but multi-step XSS is not
addressed. It would imply to model a complex heuristic to inject and observe this
particular vulnerability type. Also, attacker models are specific to one Web ap-
plication, and it requires great effort from test engineers to design these artifacts
for every test campaign.

The approach presented in [13] consists of modeling the attacker behavior. It
also requires a state-aware model of the application under test, annotated using
input taint data-flow analysis, to spot possible reflections. Concrete application
inputs are generated with respect to an Attack Input Grammar, which produces
fuzzed values for reflected application input parameters. This technique tackles
multi-step XSS detection. However, it requires a great effort from test engineers
to deploy the approach: the model inference process needs to be rightly tuned.
Also, it cannot handle client-side oriented applications (using Ajax).

Buchler et al. [9] formalize the application under test using a secure ASLan++
model, where all traces fulfill the specified security properties. The goal is to
apply a fault injection operator to the model, and use a model checker to re-
port any violated security goal. For each violated security goal corresponds an
abstract attack trace which is concretized semi-automatically using a pivot lan-
guage. This approach has been able to find reflected XSS vulnerabilities, but has
not been used to discover multi-step XSS. Also, having test engineers provide a
formalized representation of a Web application is something we consider highly
handicapping.

18

6 Conclusion and Future Works

This paper introduced an original approach, called Pattern-driven and Model-
based Vulnerability Testing (PMVT), for the detection of Web application vul-
nerabilities. This approach is based on generic test patterns (i.e. independent
from the Web application under test) and a behavioral models of the application
under test. The behavioral model describes the functional and behavioral aspects
of the Web application. The generic test patterns define abstract vulnerability
scenarios that drive the test generation process. The proposed approach thus
consists of instantiating the abstract scenarios on the behavioral model in order
to automatically generate test cases, which target the vulnerability described
in the initial test pattern. To experiment and evaluate the PMVT approach, a
full automated toolchain, from modeling to test execution, has been developed
and experimented, using real-life Web applications, to detect multi-step cross-
site scripting vulnerabilities, which are nowadays one of the most critical and
widespread Web application attacks.

A thorough experimentation on a real-life e-learning Web application has
been conducted to validate the approach, and a comparison with existing auto-
mated testing solution, such as vulnerability scanners, has shown its effectiveness
to generate more accurate vulnerability test cases and to avoid the generation
of false positive and false negative results. These benefits directly stem from
the combination of the behavioral model, capturing the logical aspects of the
application under test, and the test patterns, driving with precision the test
generation process. Moreover, the automation of the test generation and test
execution makes it possible to adopt an iterative testing approach and is par-
ticularly efficient to manage security regression tests on updated or corrected
further versions of the application under test.

Besides these research results, the experiments showed possible improvements
of the method and the toolchain. The main drawback of our approach echoes
the one of traditional MBT process. Indeed, although we reached a first level
of simplification using the dedicated DASTML Domain Specific Modeling Lan-
guage, the needed effort to design the model is still high. We are working on to
integrate another simplification level by using user traces (as proposed in [17]) to
infer the model: users would browse a Web Application and record their actions,
then an algorithm would translate the results into a DASTML instantiation.
This improvement may also automate the adaptation of the generated abstract
test cases since the user traces could naturally provide the link between the ab-
stract stimuli/data of the model and the corresponding concrete ones. We are
also investigating the extension of the approach in order to address more vulner-
ability classes, both technical (such as cross-site request forgery, file disclosure
and file injection) and logical (such as integrity of data over applications busi-
ness processes). This extension requires to define generic test patterns ensuring
the automated coverage of these vulnerabilities. Finally, another research direc-
tion aims at experimenting and extending the current approach to address Web
applications on mobile devices.

19

Acknowledgment

This work is supported by the French FSN project DAST (see the project Web-
site at dast.univ-fcomte.fr [Last visited: July 2014]).

References
1. Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos, E.P.,

Karagiannis, T.: xJS: practical XSS prevention for web application develop-
ment. In: Proc. of the USENIX conference on Web application development (We-
bApps’10). pp. 147–158. USENIX Association, Boston, MA, USA (June 2010)

2. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the Art: Automated Black-
Box Web Application Vulnerability Testing. In: Proc. of the 31st Int. Symp. on
Security and Privacy (SP’10). pp. 332–345. IEEE CS, Oakland, USA (May 2010)

3. Bernard, E., Bouquet, F., Charbonnier, A., Legeard, B., Peureux, F., Utting, M.,
Torreborre, E.: Model-based testing from UML models. In: Proc. of the Int. Work-
shop on Model-Based Testing (MBT’06). LNCS, vol. 94, pp. 223–230. Springer,
Dresden, Germany (October 2006)

4. Bisht, P., Venkatakrishnan, V.: XSS-GUARD: precise dynamic prevention of cross-
site scripting attacks. In: Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 23–43. Springer (2008)

5. Blome, A., Ochoa, M., Li, K., Peroli, M., Dashti, M.: Vera: A flexible model-based
vulnerability testing tool. In: 6th Int. Conference on Software Testing, Verification
and Validation (ICST’13). pp. 471–478. IEEE CS, Luxembourg (March 2013)

6. Botella, J., Bouquet, F., Capuron, J.F., Lebeau, F., Legeard, B., Schadle, F.:
Model-Based Testing of Cryptographic Components – Lessons Learned from Ex-
perience. In: Proc. of the 6th Int. Conference on Software Testing, Verification and
Validation (ICST’13). pp. 192–201. IEEE CS, Luxembourg (March 2013)

7. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.: A test generation solution
to automate software testing. In: Proc. of the 3rd Int. Workshop on Automation
of Software Test (AST’08). pp. 45–48. ACM Press, Leipzig, Germany (May 2008)

8. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., Utting, M.:
A subset of precise UML for model-based testing. In: Proc. of the 3rd Int. Work-
shop on Advances in Model-Based Testing (AMOST’07). pp. 95–104. ACM Press,
London, UK (July 2007)

9. Buchler, M., Oudinet, J., Pretschner, A.: Semi-Automatic Security Testing of Web
Applications from a Secure Model. In: 6th Int. Conference on Software Security and
Reliability (SERE’12). pp. 253–262. IEEE, Gaithersburg, MD, USA (June 2012)

10. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-
box web vulnerability scanners. In: Proc. of the 7th Int. Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA’10). pp. 111–131.
Springer, Bonn, Germany (July 2010)

11. Doupé, A., Cavedon, L., Kruegel, C., Vigna, G.: Enemy of the State: A State-aware
Black-box Web Vulnerability Scanner. In: Proc. of the 21st USENIX Conference
on Security Symposium (Security’12). pp. 523–537. USENIX Association, Bellevue,
WA, USA (Aug 2012)

12. Doupé, A., Cui, W., Jakubowski, M.H., Peinado, M., Kruegel, C., Vigna, G.: deDa-
cota: toward preventing server-side XSS via automatic code and data separation.
In: Proc. of the 20th ACM SIGSAC Conference on Computer and Cummunications
Security (CCS’2013). pp. 1205–1216. ACM, Berlin, Germany (2013)

20

13. Duchene, F., Groz, R., Rawat, S., Richier, J.L.: XSS Vulnerability Detection Using
Model Inference Assisted Evolutionary Fuzzing. In: Proc. of the 5th Int. Conference
on Software Testing, Verification and Validation (ICST’12). pp. 815–817. IEEE CS,
Montreal, Canada (April 2012)

14. Gálan, E.C., Alcaide, A., Orfila, A., Aĺıs, J.B.: A multi-agent scanner to detect
stored-XSS vulnerabilities. In: 5th Int. Conference for Internet Technology and
Secured Transactions (ICITST’10). pp. 1–6. IEEE, London, UK (November 2010)

15. Kieżun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic creation of SQL
injection and cross-site scripting attacks. In: 31st Int. Conference on Software En-
gineering (ICSE’09). pp. 199–209. IEEE, Vancouver, Canada (May 2009)

16. Kirda, E., Jovanovic, N., Kruegel, C., Vigna, G.: Client-side cross-site scripting
protection. Computers & Security 28(7), 592–604 (2009)

17. Korscheck, C.: Automatic Detection of Second-Order Cross Site Scripting Vulner-
abilities. Diploma thesis, Wilhelm-Schickard-Institut für Informatik, Universität
auf Tübingen (December 2010)

18. Legeard, B., Bouzy, A.: Smartesting CertifyIt: Model-Based Testing for Enterprise
IT. In: Proc. of the 6th Int. Conference on Software Testing, Verification and Val-
idation (ICST’13). pp. 391–397. IEEE CS, Luxembourg (March 2013)

19. Mahapatra, R.P., Saini, R., Saini, N.: A pattern based approach to secure web ap-
plications from XSS attacks. Int. Journal of Computer Technology and Electronics
Engineering (IJCTEE) 2(3) (June 2012)

20. MITRE: Common weakness enumeration. http://cwe.mitre.org/ (Oct 2013),
last visited: February 2014

21. Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-Site Scripting
Prevention with Dynamic Data Tainting and Static Analysis. In: Proc. of the
Network and Distributed System Security Symposium (NDSS’07). pp. 1–12. The
Internet Society, San Diego, CA, USA (February 2007)

22. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. Journal on
Selected Areas in Communications archive 21(1), 5–19 (September 2006)

23. Shar, L.K., Tan, H.B.K.: Automated removal of cross site scripting vulnerabilities
in web applications. Information and Software Technology 54(5), 467–478 (May
2012)

24. Shar, L.K., Tan, H.B.K.: Predicting SQL injection and cross site scripting vul-
nerabilities through mining input sanitization patterns. Information and Software
Technology 55(10), 1767–1780 (October 2013)

25. Smith, B., Williams, L.: On the Effective Use of Security Test Patterns. In: Proc.
of the 6th Int. Conference on Software Security and Reliability (SERE’12). pp.
108–117. IEEE CS, Washington, DC, USA (June 2012)

26. Vouffo Feudjio, A.G.: Initial Security Test Pattern Catalog. Public Deliverable
D3.WP4.T1, Diamonds Project, Berlin, Germany (June 2012), http://publica.
fraunhofer.de/documents/N-212439.html [Last visited: February 2014]

27. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
Proc. of the 30th Int. Conference on Software Engineering (ICSE’08). pp. 171–180.
IEEE, Leipzig, Germany (May 2008)

28. Whitehat: Website security statistics report. https://www.whitehatsec.com/
assets/WPstatsReport_052013.pdf (October 2013), last visited: February 2014

29. Wichers, D.: Owasp top 10. https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project (Oct 2013), last visited: February 2014

30. Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., Kruegel, C.: SWAP: mitigating
XSS attacks using a reverse proxy. In: 5th Int. Workshop on Software Engineering
for Secure Systems (SESS’09). pp. 33–39. IEEE, Vancouver, Canada (May 2009)

