
Risk-Based Vulnerability Testing
using Security Test Patterns

Julien Botella1, Bruno Legeard1,2, Fabien Peureux1,2, and Alexandre Vernotte2

1 Smartesting R&D Center - 2G, Avenue des Montboucons, 25000 Besançon, France,
{botella, legeard, peureux}@smartesting.com

2 Institut FEMTO-ST, UMR CNRS 6174 - Route de Gray, 25030 Besançon, France
{blegeard, fpeureux, avernott}@femto-st.fr

Abstract. This paper introduces an original security testing approach
guided by risk assessment, by means of risk coverage, to perform and au-
tomate vulnerability testing for Web applications. This approach, called
Risk-Based Vulnerability Testing, adapts Model-Based Testing techni-
ques, which are mostly used currently to address functional features.
It also extends Model-Based Vulnerability Testing techniques by driv-
ing the testing process using security test patterns selected from risk
assessment results. The adaptation of such techniques for Risk-Based
Vulnerability Testing defines novel features in this research domain. In
this paper, we describe the principles of our approach, which is based
on a mixed modeling of the System Under Test: the model used for au-
tomated test generation captures some behavioral aspects of the Web
applications, but also includes vulnerability test purposes to drive the
test generation process.

Keywords: Risk-Based Testing, Security test pattern, Model-Based Testing,
Web application vulnerability, CORAS, SQL Injection.

1 Introduction

Based on the current state of the art on security and on all the security reports
like OWASP Top Ten 2013 [1], CWE/SANS 25 [2] and WhiteHat Website Se-
curity Statistic Report 2013 [3], Web applications are the most popular targets
when speaking of cyber-attacks. The fact that modern society relies on the Web
a little more everyday foregrounds the challenges of IT security, particularly in
terms of data privacy, data integrity and service availability.

The mosaic of technologies used in current Web applications (e.g., HTML5
and JavaScript frameworks) increases the risk of security breaches. This situation
has led to significant growth in application-level vulnerabilities, with thousands
of vulnerabilities detected and disclosed annually in public databases such as the
MITRE CVE - Common Vulnerabilities and Exposures [2]. The most common
vulnerabilities found on these databases especially emphasize the lack of resis-
tance to code injection of the kind SQL Injection (SQLI) or Cross-Site Scripting
(XSS), which have many variants. This kind of vulnerabilities indeed appears in
the top list of current Web applications attacks.



2

Application-level vulnerability testing is first performed by developers, but
they often lack the sufficient in-depth knowledge in recent vulnerabilities and re-
lated exploits. This kind of tests can also be achieved by companies specialized
in security testing, in penetration testing for instance. These companies monitor
the constant discovery of such vulnerabilities, as well as the constant evolution
of attack techniques. But they mainly use manual approaches, making the dis-
semination of their techniques very difficult, and the impact of this knowledge
very low. Finally, Web application vulnerability scanners can be used to auto-
mate the detection of vulnerabilities, but since they often generate many false
positive and false negative results, human investigation is also required [4, 5].

This paper proposes a Risk-Based Vulnerability Testing (RBVT) approach in
order to improve the overall level of Web application security by increasing the
accuracy and precision of security testing according to the risk assessment. To
achieve this goal, the approach consists to drive the test generation strategy using
risk metrics and relevant vulnerability test patterns, which are directly related
to risk assessment process of the System Under Test (SUT). This objective also
includes the development of a tool supporting this RBVT process in order to
automate the detection of such vulnerabilities, and therefore to get feedback
about risk assessment. Hence the main contributions of the paper relate to the
proposal of a risk-based and pattern-driven approach to generate vulnerability
test cases for Web applications. More precisely, they are the following:
– Techniques addressing both risk-based test identification, by means of vul-

nerability test patterns, and test prioritization to drive the overall testing
generation process.

– The extension of a test purpose language to drive the test generation engine
through models in order to cover the targeted vulnerability test patterns.

– The full automation, ensuring risk traceability, of the test purpose selection
(given by the risk model), test case execution and verdict assignment from
risk assessment results.

The paper is organized as follows: Section 2 introduces the context and the
principles of the RBVT approach. Section 3 details the use of the RBVT by
describing the content of the testing input artefacts, the test pattern language
and the risk-driven test generation, which is illustrated using a simple example of
Web application, namely eCinema. Related work about vulnerability detection is
discussed in Section 4. Finally, conclusion and future works are given in Section 5.

2 Context and principles of the RBVT approach

Model-Based Testing (MBT) [6] is a software testing approach in which both
test cases and expected results are automatically derived from an abstract model
of the SUT. MBT is usually performed to automate and rationalize functional
black-box testing. It is a widely-used approach that has gained much interest
in recent years, from academic as well as industrial domains, especially by in-
creasing and mastering test coverage, including support for certification, and by
providing the degree of automation needed for accelerating the test process [7].



3

More precisely, MBT techniques derive abstract test cases (including stimuli
and expected outputs) from an abstract model, and enable the generation of
executable tests from these abstract test cases. The abstract model, called test
model, formalizes the behavioural aspects of the SUT in the context of its en-
vironment and at a given level of abstraction. It thus captures the control and
observation points, the expected dynamic behaviour, the data associated with
the tests, and finally the initial state of the SUT. The test cases generated from
such models allow to validate the functional aspects of the SUT by comparing
back-to-back the results observed on the SUT with those specified by the model.
Therefore MBT aims to ensure that the final product conforms to the initial
functional requirements. However, if these techniques are used to cover the func-
tional requirements specified in the test model of the SUT, they are also limited
to this scope since what is not modeled cannot be tested.

The proposed approach to perform vulnerability testing is based on MBT
process, and is thus composed of the four activities depicted in Figure 1:

¬ the Test Purposes activity consists of formalizing test purposes from vulne-
rability test goals that the generated test cases have to cover;

 the Modeling activity aims to define a model that captures the behavioral
aspects of the SUT in order to generate consistent (from a functional point
of view) sequences of stimuli;

® the Test Generation activity comprises the automated production of abstract
test cases from the artefacts defined during the two previous activities;

¯ the Adaptation, Test Execution and Observation activity aims (i) to translate
the generated abstract test cases into executable scripts, (ii) to execute these
scripts on the SUT, (iii) to observe the SUT responses and to compare them
to the expected results in order to assign the test verdict and automate the
detection of vulnerabilities.

Test

Purposes

Model

Vulnerability 

Test

Patterns

Adaptation

Security Test Engineer

Test Execution

1

2

Automated

Test

Generation

3

4

Vulnerability 

Tests

SUT

Functionnal

Specification

Legend :

Fig. 1. Model-based vulnerability testing process

For a further description of each activities of this model-based vulnerability
testing process, a detailed presentation can be found in [8].



4

All these activities are supported by a dedicated toolchain, which is based
on an existing MBT software named CertifyIt [9] provided by the company
Smartesting3. This software is a test generator that takes as input a test model,
written with a subset of UML/OCL (called UML4MBT [10]), which captures
the behavior of the SUT. Concretely, a UML4MBT test model consists of (i)
UML class diagrams to represent the static view of the system (with classes,
associations, enumerations, class attributes and operations), (ii) UML Object
diagrams to list the concrete objects used to compute test cases and to define
the initial state of the SUT, and (iii) state diagrams (annotated with OCL con-
straints) to specify the dynamic view of the SUT. OCL expressions provide the
expected level of formalization necessary for model-based testing modeling since
an operational interpretation of OCL postconditions makes it possible to de-
termine its effect (this specific interpretation of OCL, called OCL4MBT [10],
basically consists to interpret OCL equality as an assignment). That is why such
UML4MBT test models have a precise and unambiguous meaning, so that these
models can be understood and processed by the CertifyIt technology. This pre-
cise meaning makes it possible to simulate the execution of the test models and
to automatically generate test cases by applying predefined coverage strategies
or by applying test directives formalized by a dedicated test purpose language.

A test purpose is a high-level expression that formalizes a test intention linked
to a test objective to drive the automated test generation on the test model. This
is a textual language based on regular expressions, allowing the formalization
of vulnerability test intention in terms of states to be reached and operations
to be called. This test purpose language has been originally designed to drive
model-based test generation for security components, typically Smart card ap-
plications and cryptographic components [11]. This test purpose language has
been extended to be able to formalize typical vulnerability test patterns for Web
applications in conjunction with generic and specific test models.

Each of such generated test cases is typically an abstract sequence of high-
level actions (operations) specified in the UML4MBT test models. These gener-
ated test sequences contain the sequence of stimuli to be executed, but also the
expected results (to perform the observation activity), obtained by resolving the
associated OCL4MBT constraints. About this vulnerability testing process, it
should be noted that, within the traditional MBT process that allows to gener-
ate functional test cases, positive test cases are computed to validate the SUT
in regards to its functional requirements. We call “positive test” a test case that
checks whether a sequence of stimuli produces the expected effects with regards
to the specifications. When a positive test is in success, it demonstrates that the
tested scenario is implemented correctly. Within vulnerability testing approach,
“negative test cases” have to be produced: typically, attack scenarios to obtain
data from the SUT in an unauthorized manner. A negative test case thus targets
an unexpected use of the SUT in order to show that the SUT allows something
that it is not supposed to allow. In our approach, when a negative test case
succeeds, it highlights a problem in the SUT.

3 http://www.smartesting.com



5

We propose to drive this vulnerability testing process by risk assessment in
order to perform and automate risk-based testing for Web applications. Risk
& requirements-based testing was originally the title of an article from James
Bach [12]. This article was underlining the creative aspects of software testing
to manage stated and unstated requirements depending on risks associated with
the SUT. Risk may be defined as the combination of the impact of the severity
(consequence) and the likelihood (probability) of a hazardous failure of the SUT.
A risk-based testing management method focuses on risk assessment and test
prioritization based on requirements. Within MBT, this approach influences the
entire testing process, and has the following impacts:
– Risk analysis drives the development and maintenance of test generation

artefacts: the level of detail as well as the scope of test generation models
are determined according to established priorities. This impacts the test
models, which have to capture risk aspects besides functional features.

– During the test generation phase, test selection criteria applied on the test
models are specified to cover risk and priorities for requirements coverage.

Therefore, MBT allow to implement risk-based testing in the modeling phase
by adapting modeling effort to risk analysis and assessment, and in the test ge-
neration phase by adapting test selection criteria to risk-based test priorities.
RBVT aims to integrate the existing model-based vulnerability testing approach
with risk-based testing approach. Concretely, it consists somehow to drive the
test generation regarding risk assessment results and using dedicated vulnerabi-
lity test patterns. The RBVT overall testing process is depicted in Figure 2.

Fig. 2. Risk-Based Vulnerability Testing overall process

RBVT process starts by risk analysis, for example with an approach such as
CORAS [13], which provides a customized language for threat and risk modeling.
Security test patterns based on identified and prioritized vulnerabilities from the
risk analysis provide a starting point for test case generation: they indeed link
the risk analysis results and security testing goal by providing information how
relevant vulnerability test cases can be derived from risk assessment.



6

In order to generate these expected vulnerability test cases, test cases are
automatically derived from a formalization of the security test patterns using
the test purpose language. Finally, the last step consists to export the abstract
test cases into an execution environment, in which they are concretized using
a dedicated adaptation layer to be executed. Moreover, this process makes it
possible to manage the traceability between the targeted security test patterns
(formalized with test purposes) and the associated generated test cases. This
management is performed through the automated generation, during the test
generation process, of a traceability matrix that links vulnerabilities to generated
test cases. To support this RBVT process, the CertifyIt technology has been
extended by the following developments:

– Import of the risk analysis results. It enables to select the related test pur-
poses and to prioritize them regarding risk identification and estimation.

– Test purpose language extensions. On the one hand, the definition of key-
words enables to provide generic Test Purposes related to security test pat-
terns, and to help for maintenance and reuse. On the other hand, a mecha-
nism to link a Test Purpose to a requirement identifier has been created to
ensure the traceability through the all test generation process.

– Test Purpose catalogue import/export. It makes it possible to reuse and
apply generic Test Purposes on several SUT.

3 Applying the RBVT approach

In this section, we detail each activity of the process introduced in Figure 2,
including the features introduced at the end of the previous section. For each
activity, we present its objectives as well as the tooling that automates it. The
eCinema running example is used to illustrate our statements. Basically, eCinema
is a simple Web application that allows a customer to buy tickets on line before
to go to his favorite cinema. The welcome screen, depicted in Figure 3, displays
the list of available movies and show times.

Fig. 3. eCinema welcome screen



7

Before selecting tickets, a user should be logged to the system. This requires
a registration. A registration is valid when a user gives a name (not already
used) and a valid password. A valid new registration implies that the user is
automatically logged in. When logged in, the user can buy tickets. If tickets are
available, he can buy some of them and see his basket to verify his selection.
When checking his selection, the user can delete tickets and then the number of
available tickets for the session is automatically updated.

3.1 Selection and prioritization of vulnerabilities from risk analysis

The starting point of the process is the identification and prioritization of the
vulnerabilities, which are defined by a risk analysis activity. These results are
indeed used to drive the test generation strategy. Our approach is based on
the CORAS risk assessment method [13]. CORAS is a model-driven method for
risk analysis featuring a tool-supported modelling language especially designed
to model risks that are common for a large number of systems. Such models
serve as a basis to perform risk identification and prioritization. For example,
Figure 4 shows an example of CORAS threat diagram describing SQL Injection
vulnerability that can occur when a user is logging the eCinema Web application.
In this context, due to the insufficient user validation threat, SQL Injection
successful is a threat scenario and can lead to the unwanted incident defined
by the disclosure of confidential information. The likelihood of the threat is
considered as possible and its consequence moderate.

Fig. 4. CORAS model example for SQL Injection vulnerability

Each identified threat scenario is linked to a dedicated vulnerability test pat-
tern (vTP). A vTP defines the testing procedure allowing the detection of the
corresponding threat in a Web application. There are as much vTP as there are
types of application-level breaches. The ITEA2 DIAMONDS4 research project
provided a first definition, as well as a first listing of vTP [14], which has been
extended for test generation needs. Figure 5 presents an excerpt of the vulnera-
bility test pattern defining the SQL Injection.
4 http://www.itea2-diamonds.org



8

Name SQL Injection
CWE-ID(s) CWE-89
Description The software constructs all or part of an SQL

command using externally-influenced input from
an upstream component, but it does not neutral-
ize or incorrectly neutralizes special elements that
could modify the intended SQL command when
it is sent to a downstream component.

Objective(s) Based on attack pattern CAPEC-66
1. Use the application, client or Web browser to
inject SQL constructs input through text fields or
through HTTP GET parameters.
2. Use a possibly modified client application or
Web application debugging tool such to submit
SQL constructs for submitted values or to modify
HTTP POST parameters, hidden fields, non-free
form fields, etc.
3. Check for error messages, delays, disclosed val-
ues in the client application and new / modified
/ deleted values in the database. Detect if a user
input can embed malicious datum enabling a Re-
flected XSS attack.

Test Data SQL Injection Cheat Sheet
... ...
References OWASP Top 10 (2013): A1-Injection, CAPEC-

7: Blind SQL Injection, CAPEC-66: SQL Injec-
tion, OWASP Testing Guide: Testing for SQL In-
jection (OWASP-DV-005), OWASP: Automated
Audit using SQLMap

Fig. 5. Vulnerability test pattern for SQL Injection

The vulnerability test patterns that have to be used by the test generation
algorithm are gathered from the threat scenarios of each CORAS model related
to the SUT. Moreover, likelihood and consequence are also collected from the
CORAS model to assign a priority to the threat scenarios, and thus to prioritize
them. Figure 6 shows the risk assessment matrix that enables to set such priority.

Fig. 6. Risk evaluation matrix

The assigned priority level (from 1 to 5) will be used during test case ge-
neration to select the coverage of the test purpose (priority 1 defines the lower
coverage and so less generated test cases, whereas priority 5 defines the higher
coverage and so more generated test cases). The CWE identifiers and the corres-
ponding priority levels are then exported to CertifyIt in order to drive the test
generation process, which is presented in the next subsections.



9

3.2 Formalizing Vulnerability Test Patterns into Test Purposes

In the test generation tool, dedicated and generic test purposes make it possible
to formalize each vTP imported from risk assessment. A test purpose is a high
level expression that formalizes a test intention linked to a test objective to drive
the automated test generation on the test model. It allows the formalization of
vulnerability test intention in terms of states to be reached and operations to be
called. The language relies on combining keywords, to produce expressions that
are both powerful and easy to read. Basically, a test purpose is a sequence of
major stages to be reached. A stage is a set of operations or behaviors to use,
or/and a state to reach. Transforming the sequence of stages into a complete
test case, based on the test model, is left to the MBT technology (more details
will be given in subsection 3.4). Furthermore, at the beginning of a test purpose,
are defined iterators that are used in the stages in order to introduce context
variations (the threat priority exported from CORAS model is then used to set
a given level of variation combinations). Each combination of possible values of
iterators produces a specific test case.

Figure 7 shows the instantiated test purpose formalizing the vTP of Figure 5.
This schema precises that for all malicious data enabling the detection of SQL
Injection and from all sensible Web pages, it is required to do the following
actions: (i) use any operation to activate the sensible page, (ii) inject malicious
data in all the user inputs of the page, (iii) check if the page is sensible to the
attack. The keywords ALL_* define enumerations of values allowing to master
the final amount of test cases regarding test priority.

Fig. 7. Test purpose formalizing the SQL Injection vTP (of Figure 5)

Finally, variants of malicious data are defined during the modeling activity,
variants of the procedure are defined during the adaptation and execution ac-
tivity. In order to generate tests from models, the test purposes is used in con-
junction with the test model, which is introduced in the next subsection.

3.3 Modeling

As for every MBT approach, the modeling activity consists of designing a test
model that will be used as basis to generate the abstract test cases. This model
uses the UML notation to represent the Web application to be tested. We will
see that some parts of the model are generic and re-usable for modeling any Web
applications, while some other parts are specific to the Web application that is
considered. We present in the following the used UML diagrams (classes, objects,
statechart diagrams), and their respective use in the context of our approach.



10

Class diagrams specify the static aspect of the model, by defining in an ab-
stract manner the structure and entities managed by the SUT. Classes model
business objects. Associations model relations between business objects. Enu-
merations model sets of abstract values, and literals model each value. Class
attributes model evolving characteristics of business objects. Class operations
model points of control and observation of the SUT (we describe here the nav-
igation between pages). In the context of Web applications, the model presents
some generic parts, shown in Figure 8, which are the same for all considered
Web applications:

– four classes (WebAppStructure, Page, Action and Data) and their associa-
tions respectively model the general structure of the application, the avail-
able pages (or screens in case single-URL applications), the available actions
on each page, and the user inputs of each action potentially used to inject
an attack vector (i.e. malicious data to perform the attack). The login page
of an application is modeled using:
• a particular ’Login’ Page, modeling the application’s login page;
• a particular ’Login’ Action, modeling the sending of the form to the server
• two particular Data, modeling the user’s name and password

– the Threat class models the potential threats: its operations injectXSS() and
checkXSS() model the means to exercise and observe the attack.

Fig. 8. Generic class diagram of the SUT structure

Figure 9 presents the class model of the eCinema example. These classes are
eCinema specific classes, and are in addition to the generic classes presented in
Figure 8. This class diagram displays the additional classes ECinema and User
to respectively model the SUT and its potential users.

Fig. 9. eCinema-specific class diagram



11

The UML statechart diagram graphically represents the behavioral aspect of
the SUT, modeling the navigation between pages in the Web applications. States
model Web pages, and transitions model the available links between these Web
pages (HTML links, form submissions, etc.). Triggers of transitions are the UML
operations of the SUT class. Guards of transitions (specified using OCL4MBT)
precisely define the execution context of the transition. Finally, the effects of
the transitions (also specified using OCL4MBT) precisely describe its expected
behavior that should be modeled for vulnerability test generation. Figure 10
presents the statechart diagram of the eCinema example.

Fig. 10. eCinema statechart diagram

The UML object diagram models the initial state of the SUT by instantiating
the class diagram: the instances model business entities available at the initial
state, and the links instantiate the associations between these instances. In our
approach, the object diagram models the Web pages and the user inputs of these
pages. Figure 11 presents the initial state of the eCinema example. It specifies:
(a) one user, with its credentials, and (b) the pages and user inputs of eCinema.

Fig. 11. eCinema object diagram for the initial state

These last two parts (namely, the statechart diagrams and the object dia-
grams) are necessarily specific to each considered application.



12

3.4 Test generation and execution

The main purpose of the test generation activity is to produce test cases from
both the model and the test purposes. Three phases compose this activity. The
first phase transforms the model and the test purposes into elements computable
by the CertifyIt MBT tool. Notably, test purposes are transformed into test tar-
gets, which can be seen as a sequence of intermediate objectives used by the
symbolic generator. Hence, the sequence of stages of a test purpose is mapped
to a sequence of intermediate objectives of a test target. Furthermore, this first
phase manages the combination of values between iterators of test purposes, such
that one test purpose produces an amount of test targets depending of the prior-
ity level calculated during risk assessment. The generator respectively calculates
the first N combinations such that N = maxCombination/(5 − priority + 1)
where maxCombination and priority respectively denote the maximum amount
of possible combinations and the priority level. For example, if the priority is 5
(the higher), all the combinations of values between iterators are expanded.

The second phase produces the abstract test cases from the test targets. This
phase is left to the test case generator. An abstract test case is a sequence of steps,
where a step corresponds to a completely valued operation call. An operation call
represents either a stimulation or an observation of the SUT. Each test target
produces one test case (i) verifying the sequence of intermediate objectives and
(ii) verifying the model constraints. Note that an intermediate objective (and
hence, a test purpose stage) can be transformed into several steps.

Finally, the third phase exports the abstract test cases into the execution
environment. In our case, it consists of (i) creating a JUnit test suite, where
each abstract test case is exported as a JUnit test case, and (ii) creating an
interface. This interface defines the prototype of each operation of the SUT. The
implementation of these operations is in charge of the test automation engineer.

In the test model, all data used by the application (page, user input field, ma-
licious datum, user credentials, etc.) are specified in an abstract way. Hence, the
test suite cannot be executed as it is. The gap between abstract keywords used
in abstract test cases and the real API of the SUT must be filled. Stimuli must
also be adapted. When exporting abstract test cases, the MBT tool provides an
interface defining each operation signature. The test automation engineer is in
charge to implement the automated execution of each operation of this interface.
Since we are testing Web applications, two ways of automation are proposed:

– the GUI level: we stimulate and observe the application via the client-side
GUI of the application. Even if this technique is time consuming, it could
be necessary when the client-side part of the application embeds JavaScript
scripts. For this technique, Selenium framework is used.

– the HTTP level: we stimulate and observe the application via HTTP mes-
sages send to (and received from) the server-side application. This technique
is extremely fast and can be used to bypass HTML and JavaScript limita-
tions. For this technique, we are using the Apache HTTPClient Java library.



13

4 Related work

Related work on vulnerability detection can be classified into two categories:
static and dynamic analysis security testing. Static Application Security Tes-
ting (SAST) are white-box approaches including source, byte and object code
scanners and static analysis techniques. Dynamic Application Security Testing
(DAST) includes black-box web application scanners, fuzzing techniques and
emerging model-based security testing approaches. In practice, these techniques
are complementary, addressing different types of vulnerabilities. For example,
SAST techniques are known to be efficient to detect buffer overflow and badly
formatted string, but weak to detect SQLI, XSS or CSRF vulnerabilities. RBVT
is a dynamic testing technique, so this section focuses on DAST techniques by
providing a state of the art of emerging model-based security testing techniques.

Web application vulnerability scanners aim to detect vulnerabilities by injec-
ting attack vectors. These tools generally include three main components [15]:
a crawler module to follow Web links and URLs in the Web applications in or-
der to retrieve injection points, an injection module which analyzes Web pages,
input points to inject attack vectors (such as SQL Injection), and an analysis
module to determine possible vulnerabilities based on the system response after
attack vector injection. As shown in recent comprehensive studies [16, 17], cor-
roborated by research papers [4, 5] and confirmed by our own experience with
tools such as IBM AppScan5, these tools suffer from two major weaknesses that
highly decrease their practical usefulness:

– Limitations in application discovery As black-box Web vulnerability
scanners ignore any request that can change the state of the Web applica-
tions, they miss large parts of the application. Therefore, these tools test
generally a small part of the Web applications due to the ignorance of the
application behavioral “intelligence”. Due to the growing complexity of the
Web applications, they have trouble dealing with specific issues such as in-
finite Web sites with random URL-based session IDs or automated form
submission.

– Generation of many false positive results The already-mentioned bench-
mark shows that a common drawback of these tools is the generation of false
positives at a very important rate either for Reflected XSS, SQL Injection
or Remote File Inclusion vulnerabilities. The reason is that these tools use
brute force mechanisms to fuzz the input data in order to trigger vulnera-
bilities and establish a verdict by comparison to a reference execution trace.
Therefore, they lack precision to assign the verdict, as they do not compute
the topology of the Web applications to precisely know where to observe.

These strong limitations of existing Web vulnerability scanners lead to the
key objectives of model-based vulnerability testing techniques: better accuracy in
vulnerability detection, both by better covering the application (by capturing the
behavioral intelligence) and by increasing the precision of the verdict assignment.
5 http://www.ibm.com/software/awdtools/appscan/



14

In this way, model-based security testing are emerging techniques aiming to
leverage model-based approaches for security testing [18]. This includes:

– Model-based test generation from security protocol, access-control
or security-oriented models. Various types of models of security aspects
of the SUT have been considered as input to generate security test. For
example, [19] proposes a method using security protocol mutation to infer
security test cases. [20] develops a model-based security test generation ap-
proach from security models in UMLSec. [21] presents a methodology to
exploit a model describing a Web application at the browser level to guide
a penetration tester in finding attacks based on logical vulnerabilities.

– Model-based fuzzing. This approach applies fuzzing operator in conjunc-
tion with models. Fuzzing techniques relate to the massive injection of invalid
or atypical data (for example by randomly corrupting an XML file) generally
by using a randomized approach [22]. Test execution results can therefore
expose various invalid behaviors such as crash effects, failing built-in code
assertions or memory leaks. [23] proposes an approach that generates in-
valid message sequences instead of invalid input data by applying behavioral
fuzzing operators to valid message UML sequence diagrams.

– Model-based test generation from weakness or attack models. Test
cases are generated using threat, vulnerability or attacker models, which re-
flects the attack steps and the required associated data. For example, in [24],
threats of security policies modeled with UML sequence diagrams allow to
extract event sequences that should not occur during the system execution.

Complementary to these model-based techniques for security testing, our
Risk-Based Vulnerability Testing approach is based on a model that captures
functional behavioral features of the SUT, but also specifies the fields that al-
low possible attacks. This feature enables to generate more accurate test cases.
Moreover, contrary to functional MBT, the proposed RBVT process is directly
driven by the risk analysis (with CORAS) and the vulnerability test patterns,
so that the behavioral model is restricted to the only elements that are needed
to compute risk-based vulnerability test cases.

5 Conclusion and future works

This paper has introduced the RBVT approach, that integrates techniques ad-
dressing both risk-based test identification and test prioritization to drive the
overall model-based testing generation process. System requirements are used to
write the UML test model, while the CORAS security model (in relation with
associated generic test pattern catalogue) enables to define selected test pur-
poses and to prioritize them regarding risk assessment. The UML test model
completed with selected test purposes defines the input of the test generation
tool CertifyIt, which automatically derives abstract risk-based vulnerability test
cases and next test scripts that can be executed on the SUT. The overall pro-
cess ensures the traceability between the generated test cases and the targeted
vulnerabilities identified during risk assessment.



15

To achieve and automate this process, we have developed and extended the
existing MBT toolchain, based on CertifyIt, in order to manage the risk treat-
ment by applying appropriate testing strategies regarding risk assessment. Con-
cretely, the generation of test cases is driven by the risk assessment results, in
terms of system perimeter, type of vulnerabilities and associated risk level.

The future work leads in three main research directions: (1) extending the
method by covering more vulnerability classes, both technical (such as CSRF,
file disclosure and file injection) and logical (such as the integrity of data over
applications business processes). We will also (2) investigate methods to gather
and aggregate test results, which could be used to automatically complement the
risk assessment picture. This feature is indeed enabled by the risk traceability
matrix from/to generated test cases and vulnerability objectives. Finally, we
want to (3) study the scalability of the testing process to address large scale
systems. To reach this goal, we propose to define and support a compositional
testing approach by proposing a model composition strategy.

Acknowledgements

The evolution of Smartesting technology to support this risk-based vulnerability
test generation is mostly developed within the European FP7 project RASEN6,
which aims to provide risk-based security testing techniques for large-scale net-
worked systems.

References

1. Wichers, D.: Owasp top 10. https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project (October 2013) Last visited: February 2014.

2. MITRE: Common weakness enumeration. http://cwe.mitre.org/ (October
2013) Last visited: February 2014.

3. Whitehat: Website security statistics report. https://www.whitehatsec.com/
assets/WPstatsReport_052013.pdf (October 2013) Last visited: February 2014.

4. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-
box web vulnerability scanners. In: Proc. of the 7th Int. Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA’10), Bonn, Germany,
Springer (July 2010) 111–131

5. Finifter, M., Wagner, D.: Exploring the relationship between web application de-
velopment tools and security. In: Proc. of the 2nd USENIX Conference on Web
Application Development (WebApps’11), Portland, OR, USA, USENIX Associa-
tion (June 2011) 99–111

6. Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach. Morgan
Kaufmann, San Francisco, CA, USA (2006)

7. Dias-Neto, A., Travassos, G.: A Picture from the Model-Based Testing Area:
Concepts, Techniques, and Challenges. Advances in Computers 80 (July 2010)
45–120 ISSN: 0065-2458.

6 http://www.rasenproject.eu/



16

8. Lebeau, F., Legeard, B., Peureux, F., Vernotte, A.: Model-Based Vulnerability
Testing for Web Applications. In: Proc. of the 4th Int. Workshop on Security
Testing (SECTEST’13), Luxembourg, IEEE CS Press (March 2013) 445–452

9. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.: A test generation solution
to automate software testing. In: Proc. of the 3rd Int. Workshop on Automation
of Software Test (AST’08), Leipzig, Germany, ACM Press (May 2008) 45–48

10. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., Utting, M.: A
subset of precise UML for model-based testing. In: Proc. of the 3rd Int. Workshop
on Advances in Model-Based Testing (AMOST’07), London, UK, ACM Press (July
2007) 95–104

11. Botella, J., Bouquet, F., Capuron, J.F., Lebeau, F., Legeard, B., Schadle, F.:
Model-Based Testing of Cryptographic Components – Lessons Learned from Ex-
perience. In: Proc. of the 6th Int. Conference on Software Testing, Verification and
Validation (ICST’13), Luxembourg, IEEE CS (March 2013) 192–201

12. Bach, J.: Risk and Requirements-Based Testing. Computer 32(6) (June 1999)
113–114 IEEE Press.

13. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS
Approach. 1st edn. Springer Publishing Company, Incorporated (2010)

14. Vouffo Feudjio, A.G.: Initial Security Test Pattern Catalog. Public Deliverable
D3.WP4.T1, Diamonds Project, Berlin, Germany (June 2012) http://publica.
fraunhofer.de/documents/N-212439.html [Last visited: February 2014].

15. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the Art: Automated Black-
Box Web Application Vulnerability Testing. In: Proc. of the 31st Int. Symp. on
Security and Privacy (SP’10), Oakland, CA, USA, IEEE CS (May 2010) 332–345

16. Allan, D.: Web application security: automated scanning versus manual penetra-
tion testing. IBM White Paper (2008) ftp://ftp.software.ibm.com/software/
rational/web/whitepapers/r_wp_autoscan.pdf [Last visited: February 2014].

17. SecToolMarket: Price and Feature Comparison of Web Application Scanners.
http://www.sectoolmarket.com/ (February 2014) Last visited: February 2014.

18. Schieferdecker, I., Grossmann, J., Schneider, M.: Model-based security testing. In:
Proc. of the 7th Int. Workshop on Model-Based Testing (MBT’12). Volume 80 of
EPTCS., Tallinn, Estonia, Open Publishing Association (March 2012) 1–12

19. Dadeau, F., P-C.Héam, Kheddam, R.: Mutation-Based Test Generation from Se-
curity Protocols in HLPSL. In: Proc. of the 4th Int. Conf. on Software Testing,
Verification and Validation, Berlin, Germany, IEEE CS (March 2011) 240–248

20. Jürjens, J.: Model-based Security Testing Using UMLsec: A Case Study. The
Journal of Electronic Notes in Theoretical Computer Science (ENTCS) 220(1)
(December 2008) 93–104

21. Buchler, M., Oudinet, J., Pretschner, A.: Semi-Automatic Security Testing of
Web Applications from a Secure Model. In: Proc. of the 6th Int. Conference on
Software Security and Reliability (SERE’12), Gaithersburg, MD, USA, IEEE CS
(June 2012) 253–262

22. Takanen, A., DeMott, J., Miller, C.: Fuzzing for Software Security Testing and
Quality Assurance. Artech House, Inc., Norwood, MA, USA (2008)

23. Schneider, M., Großmann, J., Tcholtchev, N., Schieferdecker, I., Pietschker, A.:
Behavioral Fuzzing Operators for UML Sequence Diagrams. In: Proc. of the 7th Int.
Workshop on System Analysis and Modeling (SAM’12). Volume 7744 of LNCS.,
Innsbruck, Austria, Springer (October 2012) 88–104

24. Wang, L., Wong, E., Xu, D.: A threat model driven approach for security testing.
In: Proc. of the 3rd Int. Workshop on Software Engineering for Secure Systems
(SESS’07), Minneapolis, MN, USA, IEEE CS (May 2007)


