

RASEN - 316853

Deliverable D5.2.1

Risk Assessment and Security Testing

Toolbox Requirements and Design

RASEN - 316853 Page 2 / 36

Project title: RASEN

Project number: 316853

Call identifier: FP7-ICT-2011-8

Objective: ICT-8-1.4 Trustworthy ICT

Funding scheme: STREP – Small or medium scale focused research project

Work package: WP5

Deliverable number: D5.2.1

Nature of deliverable: Report

Dissemination level: PU

Internal version number: 1.0

Contractual delivery date: 2013-03-31

Actual delivery date: 2013-03-22

Responsible partner: FhG FOKUS

RASEN - 316853 Page 3 / 36

Contributors

Editor(s) Jürgen Großmann (FOKUS)

Contributor(s) Fredrik Seehusen (SINTEF), Fabien Peureux, Bruno Legeard (Smartesting),
Jürgen Großmann, Martin Schneider (FOKUS).

Quality assuror(s) Fabien Peureux (Smartesting), Arthur Molnar (Info World), Fredrik Seehusen
(SINTEF).

Version history

Version Date Description

0.1 13-02-25 Initial DRAFT with input from the RASEN GA

0.2 13-02-28 Updated integration requirements and CORAS tool integration interface
description

0.3 13-03-06 Restructuring and integration of partner contributions from SAG, SINTEF
and UIO

0.4 13-03-07 Integration of contribution from SMA

0.5 13-03-12 Input from SINTEF

0.6 13-03-19 Generic testing model (FOKUS)

0.7 13-03-19 SMA review

0.8 13-03-20 IW review

1.0 13-03-22 Final quality check (SINTEF)

Abstract
The overall idea of the RASEN project is to combine security risk assessment with security testing.
Typically security risk assessment and testing are supported by different tools, often multiple tools. In
contrast, the RASEN risk assessment and security testing toolbox aim explicitly to the integration of
data from security risk assessment and security testing. This deliverable outlines the integration
requirements and the initial design of the RASEN risk assessment and security testing toolbox.

Keywords
RASEN, Security Risk Assessment, Security Testing, Tool Integration

RASEN - 316853 Page 4 / 36

Executive Summary
The RASEN risk assessment and security testing toolbox provides tool support for the RASEN
approach to risk-based security testing and test-based security risk assessment. This deliverable
specifies the initial integration requirements and the initial integration design for the tools that compile
the toolbox. The deliverable starts with a short overview on tool integration approaches and tool
integration platforms. Tool integration itself is approached from two directions. Generic data models,
so called conceptual models, are used to model the data and artefacts that are relevant for security
testing, security risk assessment and security risk management. Moreover, so called integration use
cases describe cross-tool data exchange scenarios and are used to identify the data to be exchanged
between the individual tools of the toolbox. The final section outlines the integration design. It starts
with the description of the tools that are already available from the partners and outlines conceptual
integration interfaces for the different tool categories of the toolbox.

RASEN - 316853 Page 5 / 36

Table of Contents

1 INTRODUCTION ... 6

2 OVERVIEW OF THE INTEGRATION APPROACH ... 9
2.1 TOOL INTEGRATION ASPECTS .. 9
2.2 TOOL INTEGRATION PLATFORMS ... 10
2.3 CONCEPTUAL RASEN TOOLS ... 10
2.4 THE RASEN TOOL INTEGRATION APPROACH ... 11

3 DATA INTEGRATION MODELS .. 13
3.1 GENERIC SECURITY TESTING MODEL (ST MODEL) ... 13

3.1.1 Basic Testing Concepts ... 13
3.1.2 Aggregated Test Artifacts (Testing Documents) ... 14
3.1.3 Security Testing Concepts ... 14

3.2 GENERIC MODEL FOR THE RISK ASSESSMENT AND RISK MANAGEMENT (SRAM MODEL) 15
3.3 SECURITY RISK ASSESSMENT CONCEPTS .. 15
3.4 SYNTHESIS ... 16

4 INTEGRATION REQUIREMENTS ... 19
4.1 SECURITY TEST DERIVATION INTEGRATION REQUIREMENTS .. 19
4.2 SECURITY TEST RESULT AGGREGATION INTEGRATION REQUIREMENTS ... 21
4.3 LEGAL RISK ANALYSIS & COMPLIANCE MANAGEMENT INTEGRATION REQUIREMENTS 23

5 SECURITY TOOL BOX DESIGN .. 25
5.1 SECURITY TESTING TOOL INTEGRATION CAPABILITIES ... 25

5.1.1 CertifyIt ... 25
5.1.2 Fokus!MBT ... 27
5.1.3 Synthesis ... 29

5.2 SECURITY RISK ASSESSMENT AND MANAGEMENT INTEGRATION CAPABILITIES 29
5.2.1 CORAS Risk Assessment Tool ... 30
5.2.2 ARIS Risk & Compliance Manager .. 31
5.2.3 Synthesis ... 32

5.3 INITIAL INTEGRATION INTERFACE DEFINITION .. 32

6 CONCLUSION AND OUTLOOK ... 35

REFERENCES .. 36

RASEN - 316853 Page 6 / 36

1 Introduction
A central innovative idea of the RASEN project is to combine security risk assessment with security
testing. Risk assessment is used to improve the direction of security testing and security testing can
be used to provide confidence on the assumptions made during risk assessment. Typically security
risk assessment and testing are supported by different tools, often multiple tools. In contrast, the
RASEN techniques aim explicitly to the integration of data from security risk assessment and security
testing and thus tool support for an integrated approach is necessary. The RASEN risk assessment
and security testing toolbox provides such an integrated approach. It is initially based on the already
existing tools that have been introduced by the various partners of the RASEN project and provides
additional tool support that is specific for the techniques that are to be developed in RASEN. The table
below provides a conceptual overview on the tools that build the basis of the tool box and the
extensions that are foreseen to be developed in RASEN. The table has been introduced with the
RASEN DoW and will be refined during the project.

Conceptual tool Concrete tool RASEN development

Security risk
assessment tool for
supporting
compositional risk
assessment

CORAS risk
assessment tool
(developed by
SINTEF)
ARIS Risk &
Compliance Manager
(developed by
Software AG).

Extend existing risk assessment tools in
such a way that they can be used in
combination with the test derivation and the
test result aggregation tools, and such that
compositional and continuous assessment
is supported

Security testing tool for
specifying security test
cases (in detail) and
generating executable
tests

CertifyIt for Security
Testing (developed by
Smartesting)
Fokus!MBT
(developed by
Fraunhofer)

Extend existing testing tools in such a way
that they can be used in combination with
the test derivation and the test result
aggregation tools, and such that
compositional and continuous assessment
is supported

Test derivation tool for
supporting the derivation
and prioritization of test
cases based on the risk
assessment

None This tool needs to be developed from
scratch using security testing technologies
provided by Smartesting and Fraunhofer.

Test result aggregation
tool for supporting the
aggregation of security
test results into a format
that allows us to verify
the risk picture and to
update the risk picture
based on the results

CORAS risk monitor
prototype (developed
by SINTEF) which
defines rules for
updating the risk
assessment at run-
time

The CORAS risk monitor may be used as a
starting point. However, the tool needs to
be rewritten to align it with the RASEN
approach. In particular, active testing (as
opposed to passive testing/monitoring)
must be taken into account. In addition,
algorithms for verifying (as opposed to
updating) the risk assessment picture need
to be developed.

Table 1 – Conceptual overview on the RASEN tools

This document describes the initial tool integration requirements and the initial integration design for
the RASEN risk assessment and security testing toolbox. The starting point for the definition of the
integration requirements and the initial design is the anticipated data flow between the security risk
assessment tools and the security testing tools. Section 2 introduces some relevant basics of tool
integration and describes the RASEN approach to integrate the RASEN tools. Section 3 introduces
generic data models that are used as a basis for describing the data flow between the RASEN tools.

RASEN - 316853 Page 7 / 36

The data models are intended to cover the main security risk assessment and testing tools that are
used in RASEN. Based on these data models, the integration requirements are identified in Section 4.
The integration requirements are outlined by means of so called integration use cases. These use
cases describe the interaction between the RASEN tools and thus document the integration
requirements by emphasizing the data flow between the tools for each use case. Moreover they can
be used as evidence that the data models contain sufficient and relevant information needed to
support the main RASEN approaches. Finally, Section 5 describes the initial design of the RASEN risk
assessment and security testing toolbox. This section starts with a brief analysis of the existing
RASEN tools and their integration capabilities. It finally outlines the initial design of the RASEN risk
assessment and security testing toolbox. Section 6 concludes the results of the deliverable and
provides an outlook on the next steps to be taken to integrate the RASEN tools.

RASEN - 316853

2 Overview of the Integration Approach
The RASEN project focuses on security testing techniques for risk-based test case identification and
derivation and on security risk assessment techniques that use aggregation of test case results to
update the risk assessment. Because risk assessment, test design and test management are in
generally (as well as in RASEN) supported by different tools, the integrative techniques from above
require at least a weak integration of the RASEN tools to be sufficiently supported by tools. This
section gives an overview on various aspects and technologies for tool integration and presents the
tool integration approach favored by RASEN.

2.1 Tool Integration Aspects
Looking at the tool integration problem, we have to look at the characteristics of the individual tools
used today. Typically, tools work on their own data structures, which are well suited to the task which
needs to be performed by the tool. So the tool can only process data that is relevant for the tool. Tools
can save and load their internal data to a file which may have a proprietary format. In such cases it is
very difficult to make use of the tool specific data in a different context than the respective tools. So the
question is how to transfer the data between tools. Tool integration is not limited to the question of
data exchange. The various aspects of tool integration have been discussed in literature for a long
time and a couple of tool integration solutions have been developed. Basically, based on work of
Thomas and Nejmeh[19] and Wassermann [20] the aspects of tool integration can be summarized as
follows:

• Data integration: Data integration is probably the most obvious aspect of tool integration. The

interesting point here is to share data between different tools. This is crucial for software
development tasks, because certain data sets are needed at different locations throughout the
complete development process. If data cannot be shared between tools, they need to be
replicated by manual work.

• Control integration: Control integration is about the availability of certain functionalities
provided by a tool in the context of another tool. Control Integration may help in avoiding the
implementation or deployment of similar or same functionality in various different tools or
locations. Control Integration is not easy to achieve since tools might need a modular
architecture, which reflects the service and consumer paradigm. So tools must provide their
functionality via dedicated interfaces.

• Presentation integration: The objective of presentation integration is to give the user a
homogeneous user experience, which means to provide a common look and feel. The benefit
of presentation integration is the reduction of the learning and training phase for new tools. So
users know already how the UI of the tool is working. There are a couple of frameworks and
toolkits that contribute to achieve presentation integration (e.g. Swing, SWT, etc.).

• Process integration: This aspect of tool integration is focusing on how tools may interact in
order to support a development process. So it is important to identify certain process steps
and to figure out which tools can be used for which part of the process and how they have to
interact. This includes also the input and output required to complete certain steps. In
particular events usually play an important role for process integration.

There are in general two different architectural approaches for integrating tools. This could be either
done in a tool coalition approach or in a tool federation approach, where tool coalition is based on
point-to-point connection between tools and tool federations are based on a central integration
platform. Depending on the context of the tool integration both approach have benefits and
drawbacks. The major difference is that tool coalitions can be used easier in small and ad-hoc
environments, where tool federations better fit to larger environments. Some tool federation platforms
are presented in the next sections.

RASEN - 316853 Page 10 / 36

2.2 Tool Integration Platforms
Jazz [3] is a tool integration approach of IBM. It basically allows data integration and control
integration. The data ownership concept of Jazz is such that every tool holds its own data. A
centralized and externalized data repository is not part of the architectural design. Only via specific
interfaces, subsets of the tool data are made public. Jazz has a particular approach to presentation
integration as it allows the rendering of data located in remote tools with the user interface of that tool.
This works for specific subsets of data. The communication of Jazz Integration Architecture is based
on REST-full web services.

CDO [1] is an Eclipse project and hosted by the Eclipse Foundation. CDO is a data integration
technology that is based on a database principle either with object-relational or object-oriented
mappings. CDO is a common way to persist data, which is based on the Eclipse Modeling Framework
– EMF. It is based on classical client-server architecture. CDO supports basically an online mode,
which allows seeing changes done by a team member immediately in the development environments
of the other team members. Every update made by clients is communicated to the server and then
back to the other clients.

EMF Store [2] became recently an Eclipse project hosted at the Eclipse Foundation. It is another
model repository for EMF-models in parallel to the CDO one. EMF store follows a very similar
approach to ModelBus as it supports both the online and the offline model for collaboration. EMFStore
emphasizes the merge process in Eclipse IDE based environments. Furthermore, it claims to have
special support for migration of models. This means that it in particular support the evolution of meta-
models. Similar to CDO in EMFStore the meta-models need special preparation before they can be
used with EMF-store.

ModelBus [14] is a model-driven tool integration framework that allows building a seamlessly
integrated tool environment for system engineering and test processes. It comprises a tool integration
platform (run-time environment) as well as the tool integration development environment. ModelBus is
based on SOA principles. It consists of a central bus-like communication infrastructure, a number of
core services and a set of additional management tools. Depending on the usage scenario at hand,
different development tools can be connected to the bus via tool adapters. Once a tool has been
successfully plugged in, its functionality immediately becomes available to others as a service.
Alternatively, it can make use of services already present on the ModelBus. The particular strength of
ModelBus is the automation of individual development steps by using the orchestration facility. It helps
to automatically trigger and execute sets of actions needed for running a development process.

CReMa [10] is a traceability platform for Eclipse-based tools. Traceability is a mechanism for relating
artifacts that reside in different tools, and is vital for ensuring the completeness of the specification and
for the system itself [11]. A system with trace relations can respond accordingly on specification
changes and system restructurings. CReMa is being developed by the Itemis AG and has been
extended in the DIAMONDS project by Fraunhofer FOKUS to meet the requirements of a Security
Test Management Platform (STMP) for Risk-based Security Testing. CReMa and the DIAMONDS
extensions allow for tracking the dependencies between risk assessment artifacts that have been
defined in CORAS and test results that are provided by the Security Test Management Tool. The
plugins to adapt to the tools are written in Java and designed as Eclipse plugins, which also reflects a
component based architecture. The whole platform is based on the EMF concepts and integrates with
the Eclipse principals for presentation and data integration.

2.3 Conceptual RASEN Tools
The project proposal outlines four conceptual tools to describe the RASEN approach and thus to
define the environment for tool integration. A closer investigation of the subject matter and the tools
from the partners has shown that a more precise differentiation of tools is necessary to profoundly
describe the integration between tools. The following table introduces seven different conceptual tools
that are relevant in the context of the RASEN approach.

RASEN - 316853 Page 11 / 36

Conceptual tool Concrete tool

Security Risk Assessment Tool (SRAT)
for supporting compositional risk
assessment

CORAS risk assessment tool (developed by
SINTEF)

Security Risk Management Tool (SRMT)
for continuously managing the results from
risk assessments.

ARIS Risk & Compliance Manager (developed by
Software AG).

Security Testing Tool (STT) for specifying
security test cases (in detail) and generating
executable tests

CertifyIt for Security Testing (developed by
Smartesting)
Fokus!MBT (developed by Fraunhofer)

Security Test Management Tool (STMT)
for managing the executable tests and their
results.

CertifyIt for Security Testing (developed by
Smartesting)
Fokus!MBT (developed by Fraunhofer)

Attack Pattern and Test Pattern Database
(PDB) for managing attack patterns and test
patterns

None, might be later integrated in STT and SRAT

Test Derivation Tool (TDT) for supporting
the derivation and prioritization of test cases
based on the risk assessment

None, might be later integrated in the STT tools,
i.e. CertifyIt for Security Testing or Fokus!MBT

Test Result Aggregation Tool (TRAT) for
supporting the aggregation of security test
results into a format that allows us to verify
the risk picture and to update the risk picture
based on the results

CORAS risk monitor prototype (developed by
SINTEF), which defines rules for updating the risk
assessment at run-time

Table 2 – Conceptual RASEN tools

2.4 The RASEN Tool Integration Approach
As a starting point, the RASEN project has four concrete tools that need to be integrated so that some
of their data can be exchanged. With respect to the tool integration aspects outlined in Section 2.1 this
refers to data integration and control integration. Other integration aspects like presentation integration
or process integration are currently out of scope.

The tools that form the basis of the RASEN toolbox are the risk assessment tool CORAS, the risk
management tool Aris and the testing tools Fokus!MBT and Smartesting CertifyIt for Security Testing
(called “CertifyIt” hereafter). We refer to the data, which are stored by these tools as the CORAS
model, the Aris model, the Fokus!MBT model, and the CertifyIt model, respectively.

As illustrated in Figure 1, our approach for integrating the RASEN tools is to:

• Define a generic model for the security risk assessment and risk management domain (SRAM
model) and a generic security testing model that captures test specification and test
management (ST model).

• Define the relationship between the generic SRAM model and the generic ST model, resulting
in a generic risk assessment and testing model (SRAT model for short).

• Define adapters for the risk assessment tools for translating to and from the tool specific
models to the generic SRAM and ST model and to define similar adapters for the testing tools.

RASEN - 316853 Page 12 / 36

SRAT model

Aris model

CORAS model

SRAM model

ST model

Fokus!MBT
model

CertifyIt model

Risk assessment TestingRisk assessment and
testing bridge

Ad
ap

te
r

Ad
ap

te
r

Ad
ap

te
r

Ad
ap

te
r

Figure 1 Overview of integration approach

As first step towards integration, the risk assessment tools and the testing tools should be able to
handle subsets of the SRAT model. That is, the RASEN tools should be able to import and export data
with respect to the terms and concepts of the SRAT model. In this deliverable, the foundations for
such exports are defined.

RASEN - 316853

3 Data Integration Models
In this section we define data models that serve as a basis for tool integration at the data level. The
data models cover the following domains: testing, security testing, risk assessment, and security risk
assessment. Put together, the models constitute the starting point for a generic model for security risk
assessment and testing that will enable data exchange between the RASEN tools at the risk
assessment level and the testing level.

To ensure that the data models can be used as a starting point for the conceptual model that will be
developed later as part of the RASEN methodology, all data items have been defined (in English)
based on relevant standards.

3.1 Generic Security Testing Model (ST Model)
The generic security testing model (ST model) defines the basic artifacts and data structures that are
necessary to describe the data that are provided for data exchange by the RASEN security testing
tools (STT and STMT). The data structures and artifacts are defined following established testing
standards like IEEE 829[4], ISO/IEC/IEEE 29119[6], the ISTQB Glossary of testing terms [9], and the
UML Testing Profile (UTP)[17]. While Section 3.1.1 describes the data structures for the basic testing
terms and concepts, Section 3.1.2 describes their aggregation to test documents that are mainly
inspired by IEEE 829. Section 3.1.3 finally describes refinements towards security testing.

3.1.1 Basic Testing Concepts
The data structures in this section describe the basic testing concepts and their relation to each other.
The basic testing concepts are mainly inspired by the ISTQB Glossary of testing terms [9].

Figure 2 The basic testing concepts

 Test Objective: A (mainly textual) specification of what shall be tested (UTP [17]). Other
standards refer to this concept as test requirement (ISTQB [17]) or test condition
(ISO/IEC/IEEE 29119 [6]).

 Test Case: A set of input values, execution preconditions, expected results and execution
postconditions, developed for a particular objective or test condition, such as to exercise a
particular program path or to verify compliance with a specific requirement (ISTQB [17])

 Test Result: The consequence/outcome of the execution of a test. It includes outputs to
screens, changes to data, reports and communication messages sent out (ISTQB [17]).

 Test Incident: Any event occurring during testing that requires investigation (ISTQB [17]).

 Test Pattern: An artefact that specifies a set of best practices to achieve dedicated test
objectives in the context of a certain testing problem. Just as design patterns capture design
knowledge into a reusable medium, test patterns capture testing knowledge into a reusable
medium.

RASEN - 316853 Page 14 / 36

3.1.2 Aggregated Test Artifacts (Testing Documents)
The artefacts in this section describe aggregations of the basic testing concepts. These aggregations
are used during a test process to transfer related data transferred from one process step to the next.
The definition of the testing documents is taken from IEEE 829 [4] and ISO/IEC/IEEE 29119 [6].

Figure 3 The main testing documents and their relation to the basic testing concepts

 Test Plan: A management planning document that shows: How the testing will be done, who
will do it, what will be tested, how long it will take, what the test coverage will be, i.e. what
quality level is required (IEEE 829 [4], ISO/IEC/IEEE 29119 [6]).

 Test Case Specification: Specifying the test data for use in running the test conditions
identified in the Test Design Specification (IEEE 829 [4], ISO/IEC/IEEE 29119 [6]).

 Test Log: Recording which test cases were run, who ran them, in what order, and whether
each test passed or failed (IEEE 829 [4], ISO/IEC/IEEE 29119 [6]).

 Test Incident Report: detailing, for any test that failed, the actual versus expected result and
other information intended to throw light on why a test has failed. The report consists of all
details of the incident such as actual and expected results, when it failed, and any supporting
evidence that will help in its resolution. The report will also include, if possible, an assessment
of the impact of an incident upon testing (IEEE 829 [4], ISO/IEC/IEEE 29119 [6]).

3.1.3 Security Testing Concepts
The data structures in this section describe the refinements that are necessary to adapt the basic
testing concepts to the context of security testing.

Figure 4 Basic security testing concepts

• Security Test Pattern: a software security test pattern is a recurring security problem, and
the description of a test case that reveals that security problem, that is described such that the
test case can be instantiated many times over, without ever doing it the same way twice. Just

RASEN - 316853 Page 15 / 36

as design patterns capture design knowledge into a reusable medium, software security test
patterns capture security-testing knowledge into a reusable medium.

• Security Test Objective: a security test objective is a test objective specialized towards
testing security properties like confidentiality, integrity or availability of a system.

3.2 Generic Model for the Risk Assessment and Risk Management
(SRAM Model)

In this section we define a generic model for risk assessment and risk management. The definitions of
the main terms are mainly based on the ISO31000 standard for risk management.

Figure 5 Generic model for risk assessment

• Risk: Risk is the combination of the consequences of an event with respect to an objective
and the associated likelihood of occurrence (adapted from [7]).

• Objective: An objective is something the stakeholder is aiming towards or a strategic position
it is working to attain (adapted from [18]).

• Risk Source: Risk source is an element, which, alone or in combination, has the intrinsic
potential to give rise to risk [7].

• Stakeholder: Stakeholder is a person or organization that can affect, be affected by, or
perceive themselves to be affected by a decision or activity [7].

• Event: Event is the occurrence or change of a particular set of circumstances [7].

• Likelihood: Likelihood is the chance of something happening [7].

• Consequence: Consequence is the outcome of an event affecting objectives [7].

• Risk Criterion: A risk criterion is the term of reference against which the significance of a risk
is evaluated [7].

3.3 Security Risk Assessment Concepts
In this section, we refine the generic model for risk assessment into the domain of security. The
definitions are mainly based on the ISO 27000 standard on information security.

RASEN - 316853 Page 16 / 36

Figure 6 Generic model for security risk assessment

• Asset: Asset is anything that has value to the stakeholders (adopted from[8]).

• Security Requirement: Security requirement is a specification of the required security for the
system (adopted from[18]).

• Security Risk: Security risk is a risk caused by a threat of exploiting a vulnerability and
thereby violating a security requirement.

• Unwanted Incident: Unwanted incident is an event representing a security risk.

• Threat: Threat is potential cause of an unwanted incident [8].

• Vulnerability: Vulnerability is weakness of an asset or control that can be exploited by a
threat [8].

3.4 Synthesis

Figure 7 Generic model for security risk assessment and testing

In this section we relate the concepts from the testing domain to the concepts of the security risk
assessment domain. In order to do this, it is not necessary to add any new concepts to the conceptual
model, but associations have to be specified between the testing concepts and the security risk
assessment concepts.

Currently, as shown in Figure 7, we see one main link between the testing and the security risk
assessment domain going from TestCase (from the testing domain) to Vulnerability (in the security risk
assessment domain). This is because the main purpose of security testing is to discover
vulnerabilities. Other relationships, such as the risks that are being targeted by a test case can be
derived by transitivity by following the associations of the vulnerability.

RASEN - 316853 Page 17 / 36

We have also added an association between TestCase and Unwanted Incident. This is because all
potential vulnerabilities may not necessarily be known in advance before the tests are executed. In this
case it will not be possible to link the testing model to the risk assessment model without introducing
"dummy" vulnerabilities. In order to avoid this, we have therefore introduced a link between TestCase
and Unwanted Incident. Note that if the potential vulnerabilities that are targeted by a test case are
known, then the relationship to the unwanted incident can be deduced by transitivity.

RASEN - 316853

4 Integration Requirements
The integration requirements are specified by first identifying the integral integration use cases that are
addressed in the project. An integration use case describes the use of the RASEN tools by means of
scenarios in which two or more tools are involved. The use case definition is based on the following
use case template that provides a structure to unify the specification. Mandatory fields are the name of
the use case, the actors that are involved, the precondition of the use case (i.e. the things that
necessarily must have happened, so the use case scenario can be successfully started), the
postcondition of the use case (i.e. the results after the scenario has been successfully applied) and the
data that are exchanged between the tools.

Name The name of the integration use case

ID A unique identifier of the integration uses case. It starts with IUC_ and is expanded
with a subsequent number (e.g. IUC_01)

Actors The actors that are referred to in the scenario (supposed to be the users and the
tools that need to be integrated)

Precondition The precondition that need to be enabled when the scenario is initiated.

Postcondition The postcondition that describes the result of the scenario.

Scenario The scenario that describes the individual actions taken by the actors.

1. Actor :Action
2. Actor :Action

Data
exchanged The data that are exchanged during the integration use case

Table 3 – Integration use case template

4.1 Security Test Derivation Integration Requirements

Name Preparation for security testing based on risk assessment results

ID IUC_01

Actors Risk Analyst (RA), Security Tester (ST), Security Risk Assessment Tool (SRAT),
Security Testing Tool (STT)

Precondition A risk assessment model with likelihood estimates exists in the SRAT

Postcondition A prioritized list of test-scenarios exists in the STT

RASEN - 316853 Page 20 / 36

Scenario 1. RA loads the risk assessment model in the SRAT tool
2. RA annotates the risk assessment model in the SRAT tool with annotations

(e.g. testability and uncertainty) that are used to guide the test-scenario
prioritization.

3. RA starts the test scenario prioritization in the SRAT tool
4. SRAT automatically identifies potential test scenarios in the annotated risk

assessment model and generates a prioritized list of test scenarios.
5. RA selects the test scenarios that should be tested and uses the SRAT to

export these into a generic risk-assessment and testing model which
contains the prioritization values.

6. ST imports the generic risk assessment and testing model (containing the
prioritized test scenarios) into the STT.

7. RA constructs a risk assessment model and estimates likelihood values

Data
exchanged

Data involved in the scenario: Risk assessment model, annotated risk assessment
model, list of prioritized test scenarios, generic risk assessment and test model.
Data exchanged: Generic risk assessment and testing model

Table 4 – Use case: Preparation for security testing based on risk assessment results

Name Test identification on basis of Attack Pattern + Test Pattern combination

ID IUC_02

Actors Risk Analyst (RA), Security Tester (ST), Risk Assessment Tool (SRAT), Security
Testing Tool (STT), Attack Pattern and Test Pattern Data Base (PDB)

Precondition Risk assessment is done, test patterns are assigned to the elements of the risk
assessment

Postcondition Security test cases that are specific to the risks addressed in the risk assessment
have been generated.

Scenario 1. RA loads the risk assessment model in the SRAT tool.

2. RA and ST identify test pattern in the PDB with respect to the risk
assessment model in the SRAT tool.

3. SRAT calculates risk-based priority values for Vulnerabilities, Threat
Scenarios or Treatments.

4. STT gets vulnerabilities, threat scenarios, mitigations and related test pattern
from the SRAT and the PDB

5. STT generates a certain amount of security test cases with respect to the
vulnerabilities, threat scenarios, mitigations, test pattern and the related risk
values

Data
exchanged

Vulnerabilities, Threat Scenarios and/or Treatments + related Test Pattern + Risk-
based Priority Values

Table 5 – Use case: Test identification on basis of Attack Pattern + Test Pattern combination

RASEN - 316853 Page 21 / 36

Name Test prioritization for MBTG

ID IUC_03

Actors Security Tester (ST), Risk Assessment Tool (SRAT), Security Testing Tool (STT)

Precondition Risk assessment is done

Postcondition Security test cases that are specific to the risks addressed in the risk assessment
have been generated.

Scenario 1. STT gets vulnerabilities from the SRAT

2. ST assigns test purposes to the vulnerability in the STT

3. STT generates a certain amount of security test cases with respect to risk
values

Data
exchanged

Vulnerabilities + calculated Risk Values

Table 6 – Use case: Test prioritization for MBTG

4.2 Security Test Result Aggregation Integration Requirements

Name Calculating Vulnerability Coverage

ID IUC_04

Actors Security Test Management Tool (STMT), Security Risk Assessment Tool (SRAT)

Precondition The results of a test run exist in form of a TestLog in the STMT

Postcondition Vulnerabilities in the SRAT provide information about the number of failed and
passed related security test cases.

Scenario 1. STMT gets the Test Specification from the STT
2. STMT exports the TestLog containing TestResults and related

Vulnerabilities into a generic risk assessment and testing model.
3. SRAT imports the generic risk assessment and testing model and displays

the vulnerabilities with an overview on related security test cases and their
results

Data
exchanged

Test Specification, Test Log, Test Result that relate to a Vulnerability, generic risk
assessment and testing model

Table 7 – Use case: Calculating Vulnerability Coverage

RASEN - 316853 Page 22 / 36

Name Updating vulnerability information based on test results

ID IUC_05

Actors Risk Analyst (RA), Security Tester (ST), Security Risk Assessment Tool (SRAT),
Security Testing Tool (STT), Security Test Result Aggregation Tool (STRAT)

Precondition The results of a test run exist in form of a TestLog in the STT

Postcondition Measurements related to Vulnerabilities (likelihood of existence, exploitability) are
updated in the risk assessment model based on the test results.

Scenario 1. STMT exports the TestLog containing TestResults and related
Vulnerabilities into a generic risk assessment and testing model.

2. STRAT imports the generic risk assessment and testing model containing
the TestResults and updates the vulnerability measures based on the test
results.

3. SRAT imports the updated generic risk assessment and testing model with
updated vulnerability measures.

4. SRAT updates the risk picture based on the new vulnerability measurements

Data
exchanged

Vulnerabilities, vulnerability measures, Test Results, generic risk assessment and
testing model

Table 8 – Use case: Updating vulnerability information based on test results

Name Getting information about new vulnerabilities based on test results

ID IUC_06

Actors Security Risk Assessment Tool (SRAT), Security Testing Tool (STT)

Precondition The results of a test run exist in form of a TestLog in the STT

Postcondition The new vulnerabilities identified in the STT exist in the risk assessment model of
the SRAT

Scenario 1. STT exports the test results to a generic risk assessment and testing model
which contains the new vulnerabilities that are identified.

2. SRAT imports the generic risk assessment and testing model and converts it
into a tool specific risk assessment model containing the new vulnerabilities
that were identified.

3. The user of the SRAT places the new vulnerabilities at the right location in
the tool specific risk assessment model.

Data
exchanged

TestLog, Vulnerabilities, Generic risk assessment and testing model, Tool specific
risk assessment model, (location of vulnerability in system).

Table 9 – Use case: Getting information about new vulnerabilities based on test results

RASEN - 316853 Page 23 / 36

4.3 Legal Risk Analysis & Compliance Management Integration
Requirements

Name GRC in ARIS

ID IUC_07

Actors Compliance Manager (CM), InfoWorld (IW), Risk Management Tool (SRMT), Risk
Assessment Tool (SRAT)

Precondition Decision to ensure compliance

Postcondition Model in SRMT :

• Business processes under analysis (e.g., InfoWorld’s),

• Legal requirements (e.g. data protection)

• Identified compliance risks

Scenario 1. CM models IW’s business process in SRMT
2. CM models legal requirements in SRMT
3. CM identifies and models compliance risks for IW in SRMT

Data
exchanged

Risks from SRMT are used as input for analysis in SRAT

Table 10 – Use case: GRC in ARIS

Name Compliance risk assessment

ID IUC_08

Actors Risk Management Tool (SRMT), Risk Assessment Tool (SRAT), Compliance
Manager (CM)

Precondition Models in SRMT:

• Business processes under analysis (e.g., InfoWorld’s),

• Legal requirements (e.g. data protection)

• Identified compliance risks

Postcondition • Risk value is assigned

• Risk evaluation is carried out

• Risk controls are assigned to risk

RASEN - 316853 Page 24 / 36

Scenario 1. CM uses SRAT to assign risk values to identified risks
2. CM uses SRAT to evaluate risks
3. CM uses SRAT to assign risk controls to identified risks

Data
exchanged

Risks from SRMT are used as input for analysis in SRAT

Table 11 – Use case: Compliance risk assessment

Name Compliance implementation

ID IUC_09

Actors Risk Management Tool (SRMT), Risk Assessment Tool (SRAT), Compliance
Manager (CM)

Precondition • Business process, legal requirements and risks are modelled in SRMT

• Risk value is assessed in SRAT

Postcondition Output of risk assessment (accept or treat risks) used to inform compliance process
in SRMT

Scenario 1. CM uses output from SRAT to model compliant business process in SRMT

Data
exchanged

Risk value, Treatments

Table 12 – Use case: Compliance implementation

RASEN - 316853

5 Security Tool Box Design
This section outlines the initial design of the RASEN risk assessment and security testing toolbox. It
starts with the analysis of the technical integration capabilities of the RASEN tools and defines the
requirements on the integration interfaces for the main conceptual tools that have been defined in
Section 2.3. Finally this section outlines the next steps to be processed to finally obtain an integrated
risk assessment and security testing toolbox.

5.1 Security Testing Tool Integration Capabilities
This section briefly describes the security testing tools developed and provided by the RASEN
partners, and defines the interfaces that should be implemented during the project to integrate each
test generation technology into a common framework. This goal will include extension and optimization
of existing test generation tools (to specifically address risk-based vulnerability testing for large-scale
systems), and interface adaptation to be able to link the tools to each other to propose a fully
integrated framework covering the RASEN testing approach described in Figure 1.

Within the RASEN project, testing tool providers are Smartesting, with the tool CertifyIt for Security
Testing, and Fraunhofer FOKUS, with the tool Fokus!MBT. These tools are respectively introduced in
Sections 5.1.1 and 5.1.2. Finally, Section 5.1.3 gives a brief synthesis about the testing tool integration
aspects.

5.1.1 CertifyIt
Smartesting CertifyIt for Security Testing is a commercial tool suite that automatically generates
security test cases based on security test patterns and a behavioral/environmental model of the
system under validation [13]. Figure 8 – Smartesting CertifyIt for Security Testing Process, introduces
the various artifacts that are used to generate security test scripts from security test patterns.

Figure 8 – Smartesting CertifyIt for Security Testing Process

Test purposes are a formal description of the test procedure directly interpreted by CertifyIt and
composed with a test model (called model in the figure) to automatically generating security test
scripts. The modeling activity produces a model based, on one hand, on the functional specifications
of the application, and on the other hand on the test purposes which will be applied to it (keywords
used in test purposes have to be modeled) - see [12] for more details.

Within the RASEN project, this initial approach will be used as a basis to perform Risk-Based
Vulnerability Testing (RBVT), and will therefore be extended to:

RASEN - 316853 Page 26 / 36

1. take into account risk assessment to drive the test generation process;

2. support risk traceability throughout the testing process to provide relevant feedback to
complete risk assessment;

3. support compositional security testing;

4. be integrated in the RASEN tool chain from Risk Analysis to Security Test results aggregation.

All these extensions will give rise to the RBVT approach, which is depicted in Figure 9. As shown in
this picture, Smartesting CertifyIt for Security Testing Tool will be extended to specify security test
cases and to generate the corresponding executable tests (STT), but Smartesting tooling will also
embed the Test Derivation Tool (TDT) for supporting the derivation and prioritization of test cases
based on the risk assessment, as well as the Security Test Management Tool (STMT) for managing
the executable tests and their results.

Figure 9: Smartesting RBVT global process

To implement this RASEN process based on Smartesting tooling, the following input data are required:

• The vulnerabilities to be targeted by the test cases in order to derive dedicated security test
purposes that will define the strategy to be used by the test generation activity.

• The definition of security testing priorities from compositional risk assessment to be able to
drive the test generation strategy.

• A generic test model including the behavioral relevant aspects of the application under test in
order to derive a test generation model.

• An implementation of the application under test and the required access data (including logical
test data and credentials for testing) to be able to execute the generated security test cases
and to gather the test results.

To implement this RASEN process based on Smartesting tooling, the following output data can be
proposed:

Testing using CertifyItTesting using CertifyIt

Execution layerExecution layer

Adaptation layerAdaptation layer

Security test Security test
casescases

Risk assessment and
testing bridges
Risk assessment and
testing bridges

generated security generated security
test procedurestest procedures

Generic RAGeneric RA
modelmodel

Requirement ManagementRequirement Management

RequirementsRequirements

or

Risk traceability Risk traceability
matrixmatrix

Security test Security test
case objectivescase objectives

Risk assessmentRisk assessment

Risk Risk
analysisanalysis

or

Generic testGeneric test
modelmodel

Generic RAT model

Security test Security test
resultsresults

CertifyItCertifyIt test test
generation modelgeneration model

CertifyItCertifyIt security security
test purposestest purposes

RASEN - 316853 Page 27 / 36

• The abstract test cases and corresponding executable test scripts, which include, for each
generated test case, the test objectives (related to risk analysis) and the test structure (steps,
input parameters, expected results).

• The execution results for each of the generated test cases that have been executed on the
application under test, including verdict (Attack-Pass / Attack-fail / Functional-Pass /
Functional-Fail / Inconclusive) and details related to the execution information.

• The risk traceability matrix for each of the generated test cases, with respect to risk analysis,
as well as regarding the vulnerability repositories.

From a technical point of view, Smartesting provides an Eclipse-based modeler plug-in that checks
that the model fits the Smartesting CertifyIt restrictions on UML/OCL, and exports a model in order to
be used by the Smartesting CertifyIt tool to generate test cases. The test cases and all execution
results are published into a proprietary XML file, which can be used (using dedicated Java API) to
produce HTML test documentations (HTML publisher), test specification (UTP) or executable test
scripts (Selenium, HTMLUnit, etc.). More generally, to acquire input data and to publish output data,
RASEN development will make it possible to use structured input files (XML-based), Java libraries with
dedicated API and Eclipse Plug-in with dedicated API to import and export artifacts from and to
Smartesting tooling. These artifacts will provide sharing points with the other technologies of the
RASEN framework.

5.1.2 Fokus!MBT
Fokus!MBT is a rich test modeling environment that simplifies the creation of the underlying test model
by guiding the user through methodology-specific support. In RASEN it may serve as an
implementation of the STT and STMT tools. In the project it will be extended so that it may additionally
serve as TDT and TRAT tool. The Fokus!MBT is based on a service-oriented communication
infrastructure of loosely coupled services, interoperating with each other in a distributed environment.

Fokus!MBT is based on UML and the UML Testing Profile (UTP). UTP represents the integrated data
model used for data and information exchange among the services of the Fokus!MBT tool chain. This
allows adapted services to interoperate with each other as well as it improves the communication flow
among involved stakeholders. Fokus!MBT hides technical complexity of UML and all incorporated
profiles from the test engineers, so that they can solely concentrate on their mission-relevant
knowledge. The following modeling paradigms are incorporated in Fokus!MBT.

• UML. UML contributes elementary object-oriented concepts like packages, classes, properties
and interfaces. It is also used to provide instances of the TestingMM with a package-oriented
structure, like any MOF or UML model itself.

• UTP. UTP represents the core conceptual model of Fokus!MBT.

• SysML. The concise and intuitive possibility of expressing requirements inside UML models
have been extracted from SysML. UML itself is not capable of modeling requirements natively.

• Fokus!MBT profile. Additional technical or conceptual concepts not provided by an official
specification are incorporated into the proprietary Fokus!MBT profile.

Fokus!MBT is built on top of Eclipse Papyrus, an open source UML modeling environment, which, in
turn, relies on the Eclipse Modeling Framework (EMF) and the Graphical Modeling Framework (GMF).
In addition to diagrams, Fokus!MBT integrates an editor framework called Core Editor. The Core
Editor is able to organize multiple so called editor configurations. An editor configuration consists of a
number of editor pages. Each page visualizes certain task-relevant information encoded in the test
model by using form-based widgets like trees, tables and lists. We call this kind of model authoring
form-based modeling. It additionally adapts to the ModelBus framework [14] for control and process
integration.

RASEN - 316853 Page 28 / 36

Figure 10: UTP meta-model

Fokus!MBT has no overall meta-model. It is based on standards like UML, UTP, SysML etc. The
testing domain is at best described by the conceptual UTP meta-model that is shown in Figure 10:
UTP meta-model. This meta-model will be the basis for the integration with the other tools of the
RASEN project.

Fokus!MBT is neither a commercial nor an open source tool, but adheres to a proprietary licensing
mechanism.

RASEN - 316853 Page 29 / 36

Figure 11: Fokus!MBT global services

Fokus!MBT 0.8 is based on Eclipse Indigo (3.7), Papyrus 0.8.2, UML 3.0.0 (i.e., UML 2.2 specification
). The next version (0.9) will be based on Eclipse Kepler (4.3), Papyrus 0.10, UML 4.0.0 (i.e., UML
2.4.1 specification).

5.1.3 Synthesis
This section has presented the capabilities of the tools CertifyIt for Security Testing and Fokus!MBT,
respectively provided by Smartesting and Fraunhofer FOKUS. It introduced the initial design of these
tools and the planned extension to address RASEN objectives and integration into the RASEN risk
assessment and security testing toolbox. This capability analysis has shown that the RASEN testing
tooling is in line to be used in isolation, each tool offering its own services to generate risk-based
security test cases and risk-related testing report, but also in collaboration. Indeed, the input and
output format supported by the tools are (or will be) focused on UML2 standard and UML2 profiles
such as UTP or SysML. These standards allow the tools to share the same testing artefacts, to
exchange testing results and to interoperate to manage a test campaign. Moreover, from a technical
point of view, the tools can be integrated into the Eclipse architecture, which makes it possible to
produce a fully integrated testing framework to support the RASEN process.

5.2 Security risk assessment and management integration
capabilities

This section describes the risk assessment tools that will be used as input to the RASEN project and
that will be developed further within the project. Within the RASEN project, the main purpose of the RA
tools will be to (1) provide a risk assessment model that can be used as a basis for test identification
and prioritization, and (2) receive and update risk assessment model based on the test results. The
two risk assessment tools of the RASEN project are the CORAS tool (described in Section 5.2.1) and
the ARIS tool (described in Section 5.2.2).

RASEN - 316853 Page 30 / 36

5.2.1 CORAS Risk Assessment Tool
The CORAS risk assessment tool is intended to support documentation of risk assessment results.
More specifically, the tool is a graphical diagram editor for specifying CORAS risk assessment
diagrams.

The official version of the tool is freely available (http://coras.sourceforge.net/downloads.html) as a
standalone tool based on Eclipse. The tool is open-source and released under the Eclipse Public
License 1.0.

If needed, the CORAS tool can also be made available as an Eclipse plugin. In this case, the tool
depends on the following plugins, which must be part of the Eclipse platform:

EMF 2.5, GMF 2.2, Epsilon Corse 0.8.9, Epsilon EMF/GMF Live Validation 0.8.9.

The CORAS meta-model
The risk assessment documents specified in the CORAS tool are stored in the form of a CORAS risk
assessment model conforming to the CORAS meta-model. This meta-model is defined in Ecore,
thereby enabling data integration on the basis of EMF.

A CORAS risk model consists of a set of diagrams which may be of different kinds. Each diagram
describes a graph consisting of elements and relations between the elements. Both elements and
relations may be of different kinds and they may have attributes such as likelihood values or
consequence values.

The core CORAS meta-model is shown in Figure 12 - Figure 14. This meta-model will be the basis for
the integration with the other tools of the RASEN project. However, it is expected that the meta-model
may be changed during the course of the project as new requirements are identified.

Figure 12 CORAS meta-model - diagrams

Figure 13 CORAS meta-model - elements

Relation
Identifier

Element
Diagram

1..* *1..* 1..*

Asset
diagram

Threat
diagram

Risk
diagram

Treatment
diagram

Treatment
overview diagram

Identifier

Element

Treatable
element

Threat

Core
element

Likelihood

Element with
likelihood

Human threat
accidental

Human threat
deliberate

Non-human
threat

Threat
scenario

Unwanted
incident Risk level

Risk
Vulnerability

Asset value
Asset

Direct asset Indirect asset

Treatment
scenarioParty

Treating
element

http://coras.sourceforge.net/downloads.html

RASEN - 316853 Page 31 / 36

Figure 14 CORAS meta-model - relations

Interfaces

In the setting of risk-based testing, the CORAS tool must support test identification and test
prioritization and store this information in a format that can be imported by testing tools. In the setting
of test-based risk assessment, the CORAS tool must be able to import a generic risk assessment and
testing model and convert this into a CORAS risk assessment model (described in the previous
section). Hence, the two main interfaces of the tool are:

• Export the CORAS risk assessment model by converting into a generic risk assessment and
testing model that contains the results of the risk-based test identification and test
prioritization.

• Import a generic risk assessment and testing model and covert this into a CORAS risk
assessment model.

The CORAS tool assumes that aggregation of the test results to the risk assessment model is
performed before the generic risk assessment and testing model is imported into the CORAS tool.

5.2.2 ARIS Risk & Compliance Manager
The ARIS Risk & Compliance Manager (ARCM) is a role based workflow software system that
supports the flexible implementation and efficient operation of an enterprise-wide compliance and risk
management system. Elements like forms, control processes, risk documentation, reports and in
particular those elements with a close relation to the modeling aspects are stored in the ARCM
database. On the other hand elements like risk, diagrams, business models, and business control
diagrams are located in the business process database of the ARIS Business Server (ABS).

The documentation of business processes and functions using models in ARIS brings a variety of
advantages like consistency, reduction of complexity, reusability, potential for evaluation, integrity, etc.
However, these advantages can only be fully utilized if methodological and functional rules and
conventions for modeling in ARIS Business Architect (ABA) are adhered to.

In ARIS system data imports and exports are realized with the help of customer-specific report-scripts
which map elements of the input/output to the internal object models. Hereby technically inputs from
XML files like GRC-XML [16] can be used to be imported into the GRC modeling framework but
technically any other input is feasible.

GRC-XML is a Risk and Control Taxonomy, combining a family of languages for Governance, Risk,
and Compliance information sharing, integration, and communication. The framework can provide [16]:

• A basis for corporations to standardize on a common language of Risk and Control

Relation

Likelihood

Relation with
likelihood

Initiates Leads-to Impacts Harm
Treatment category

Treats

Consequence

Relation with
consequence

Treating
elementThreat Core

element

Vulnerability

Asset value
Asset Treatable

element

source target
source target

source
source

sourcetarget target
1

1
1 1 1

1..*

1 1 1
target

1 1

* * * *

*

* * * * * *

RASEN - 316853 Page 32 / 36

• The ability to compare the results of risk and control initiatives between companies

• An integrated platform for corporation between various GRC systems

For the RASEN project we envision to use a combination of the CORAS tool (cf. Section 5.2.1) and
the ARCM tool in the following style:

In the first step, the CORAS tool is used for an initial risk assessment according to the CORAS
methodology. Once this is successfully done, the risks discovered along with risk estimates and other
annotations are exported into a unified intermediate language (which could possibly be GRC-XML)
and transferred into ABS, the central repository server. Here, this information is stored together with
the specific risk (gained by the CORAS approach) and used as a perfect matching of the initial
situation when the CORAS risk assessment took place.

5.2.3 Synthesis
Initially, our plan is to integrate risk assessment with the testing tools. This is to ensure that our
integration approach is not specific to any particular risk assessment tool. However, we will also
investigate the possibility of integrating the two risk assessment tools on the risk assessment side.
This is because the tools have slightly different purposes. That is, the ARIS tool is more focused on
risk management, while the CORAS tool is more focused on risk assessment. This means that it may
be possible to use the CORAS tool as part of the risk management process supported by the ARIS
tool.

5.3 Initial Integration Interface Definition
This section specifies the integration interfaces for the major conceptual tools that have been defined
in Section 2.3. The interface definition is based on the integration use cases from Section 4 and
denotes required and provided data for each of the conceptual tools. The data are specified in terms
of the conceptual model from Section 3.

Conceptual Tool Security Risk Assessment Tool (SRAT)

Concrete Tools CORAS

Requires Generic testing model1 (see IUC_04), Test Log, Test Result that relates to a
Vulnerability, Risk (see IUC_07, IUC_08), Updated generic risk assessment
and testing model based on test results (see IUC_05, IUC_06)

Provides Generic risk assessment model (see IUC_01), Vulnerabilities, Threat
Scenarios, Treatments, Test Pattern + Risk-based Priority Values (see
IUC_02, IUC_09), Vulnerabilities + Risk Values (see IUC_03, IUC_6)

Table 13 – Security Risk Assessment Tool (SRAT)

Conceptual Tool Security Risk Management Tool (SRMT)

Concrete Tools ARIS Risk Manager

1 Please note that the data structures given in bold letters are covering all following structures for the given

section.

RASEN - 316853 Page 33 / 36

Requires Risk Values, Treatments (IUC_09)

Provides Risks (see IUC_07, IUC_08)

Table 14 – Security Risk Management Tool (SRMT)

Conceptual Tool Security Testing Tool (STT)

Concrete Tools Smartesting CertifyIt (Section 5.1.1)

Fokus!MBT (Section 5.1.2)

Requires Generic risk assessment model (see IUC_01), Vulnerabilities, Threat
Scenarios and/or Treatments + related test pattern + risk-based priority values
(see IUC_02), calculated risk values (see IUC_03)

Provides Test Specification (see IUC_04)

Table 15 – Security TestingTool (STT)

Conceptual Tool Security Test Management Tool (STMT)

Concrete Tools Smartesting CertifyIt (Section 5.1.1)

Fokus!MBT (Section 5.1.2)

Requires Test Specification (see IUC_04)

Provides Generic testing model (see IUC_04), Generic testing model (see IUC_05),
Test Log, Test Result that relate to a Vulnerability

Table 16 – Security Test Management Tool (STMT)

RASEN - 316853

6 Conclusion and Outlook
This deliverable specifies the initial integration requirements and the initial integration design of the
RASEN risk assessment and security testing tool box. The deliverable starts with a short overview on
tool integration approaches and platforms. Afterwards the deliverable introduces the tools and artifacts
that are seen from a conceptual point of view, necessary to address the main RASES use cases.
Integration is approached from two directions. Generic data models, so called conceptual models,
model the data and artifacts that are relevant for security testing and security risk assessment and
security risk management. These models provide the basis for the definition of so called integration
use cases. An integration use case describes a cross-tool data exchange scenario and is used to
identify the data to be exchanged between the RASEN tools. The final section outlines the integration
design. It starts with the description of the tools that are already available from the partners. Based on
the integration use cases and the tool descriptions, finally a list of tool integration interfaces are
specified. After having defined the initial requirements and the initial integration design, the integration
task will proceed as follows.

1. Create deployable generic security testing (ST model) and security risk assessment and
management model (SRAM model). These models will be designed in UML.

2. Create a deployable generic risk assessment and testing model (SRAT model) on basis of the
ST model and the SRAM model.

3. Instantiate a common XML-based exchange format on basis of the SRAT model.

4. Develop export/import adapter for the relevant instantiations of the conceptual tools (concrete
tools) with respect to the interfaces in Section 5.3.

5. Identify additional integration use cases and update the models if necessary.

On basis of the models RASEN will enable traceability between risk assessment artifacts and testing
artifacts. Traceability has been especially used as a key concept in the domain of Safety. Traceability
there is traditionally based on a Traceability Information Model (TIM) that allows understanding the
relationships around various Safety Requirements. Such a model enables the realization of different
types of traces [15].

• Structural traces: traces that are contained inside the models that have to be traced.

• Explicit traces: traces that are manually created and connect between models.

• Implied traces: transitive associations, indirect associations.

RASEN will integrate a major part of its tooling in the well-known open source tool integration platform
eclipse (www.eclipse.org). Smartesting, SINTEF, and Fraunhofer are currently using this platform.
This allows for deploying the project results into a large community of open source security and
software development providers. Particular effort will be made to define open interfaces and data
formats for communication between the various tools, thus enabling the integration of open source
tools (developed by SINTEF and Fraunhofer), and commercial tools (developed by Software AG,
Fraunhofer and Smartesting), and also enabling individual tools to be replaced in the future by tools
that satisfy the interface definition.

http://www.eclipse.org/

RASEN - 316853

References
[1] CDO project: Eclipse Connected Data Objects.www.eclipse.org/cdo/, as of date 15.02.2013

[2] EMF Store project: Model repository for EMF.www.eclipse.org/emf-store/, as of date
15.02.2013

[3] IBM: IBM Rational Jazz technology platform.www.ibm.com/software/rational/jazz/, , as of
date 15.02.2013

[4] IEEE: IEEE Standard for Software and System Test Documentation (IEEE 829-2008), ISBN
978-0-7381-5747-4, 2008.

[5] IEEE: IEEE Standard Glossary of Software Engineering Terminology (IEEE 610.12-1990),
ISBN 1-55937-067-7, 1990.

[6] IEEE: IEEE 29119 Software and system engineering - Software Testing Part 1: Concepts
and definitions, 2012.

[7] International Standards Organization. ISO 31000:2009 (E), Risk management – Principles
and guidelines, 2009.

[8] International Standards Organization. ISO 27000:2009 (E), Information technology –
Security techniques – Information security management systems – Overview and
vocabulary, 2009.

[9] ISTQB: ISTQB Glossary of testing terms version
2.2.http://www.istqb.org/downloads/finish/20/101.html, as of date 19.03.2013.

[10] Itemis: The CreMA tool.http://www.guersoy.net/knowledge/crema, as of date 15.02.2013

[11] V. Katta, T. Stålhane: A Conceptual Model of Traceability for Safety Systems, proceedings of
Springer-Verlag

[12] F. Lebeau, B. Legeard, F. Peureux, A. Vernotte: Model-based vulnerability testing for web
applications. SECTEST 2013, the Fourth International Workshop on Security Testing,
affiliated with ICST 2013, Luxembourg, March 22, 2013.

[13] B.Legeard, F. Lebeau, F. Bouquet, J. Botella, J. F. Capuron, F. Schadle: Model-based
testing of cryptographic components - lessons learned from experience. Proceeding of the
IEEE Inter. Conf. on Software Testing, Verification and Validation. ICST 2013, Luxembourg,
March 18-22, 2013.

[14] Modelbus team: Model-driven tool integration framework.www.modelbus.org, as of date
15.02.2013

[15] S. Nejati, M. Sabetzadeh, D. Falessi, L. Briand, T. Coq: A SysML-based approach to
traceability management and design slicing in support of safety certification: Framework,
Tool Support, and Case Studies.
http://simula.no/publications/Simula.simula.193/simula_pdf_file, as of date 15.02.2013

[16] OCEG: GRC-XML Version 1.0.http://www.oceg.org/resource/grc-xml-version-10, as of date
15.02.2013

[17] OMG: UML testing profile version 1.1 (formal/2012-04-01).
http://www.omg.org/spec/UTP/1.1, as of date 19.03.2013

[18] F. John Reh. Glossary of business management terms and abbreviations.
http://management.about.com/cs/generalmanagement/g/objective.htm, as of date
19.04.2012.

[19] I. Thomas, B. Nejmeh: Definitions of tool integration for environments. Software IEEE, 1992

[20] A. Wassermann: Tool integration in software engineering environments, Software
Engineering Environment. Lecture Notes in Computer Science, 1990

http://www.eclipse.org/cdo/
http://www.eclipse.org/emf-store/
http://www.ibm.com/software/rational/jazz/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.istqb.org/downloads/finish/20/101.html
http://www.guersoy.net/knowledge/crema
http://www.modelbus.org/
http://simula.no/publications/Simula.simula.193/simula_pdf_file
http://simula.no/publications/Simula.simula.193/simula_pdf_file
http://www.oceg.org/resource/grc-xml-version-10
http://www.omg.org/spec/UTP/1.1

	1 Introduction
	2 Overview of the Integration Approach
	2.1 Tool Integration Aspects
	2.2 Tool Integration Platforms
	2.3 Conceptual RASEN Tools
	2.4 The RASEN Tool Integration Approach

	3 Data Integration Models
	3.1 Generic Security Testing Model (ST Model)
	3.1.1 Basic Testing Concepts
	3.1.2 Aggregated Test Artifacts (Testing Documents)
	3.1.3 Security Testing Concepts

	3.2 Generic Model for the Risk Assessment and Risk Management (SRAM Model)
	3.3 Security Risk Assessment Concepts
	3.4 Synthesis

	4 Integration Requirements
	4.1 Security Test Derivation Integration Requirements
	4.2 Security Test Result Aggregation Integration Requirements
	4.3 Legal Risk Analysis & Compliance Management Integration Requirements

	5 Security Tool Box Design
	5.1 Security Testing Tool Integration Capabilities
	5.1.1 CertifyIt
	5.1.2 Fokus!MBT
	5.1.3 Synthesis

	5.2 Security risk assessment and management integration capabilities
	5.2.1 CORAS Risk Assessment Tool
	5.2.2 ARIS Risk & Compliance Manager
	5.2.3 Synthesis

	5.3 Initial Integration Interface Definition

	6 Conclusion and Outlook
	References

