
 
 

 
   

RASEN - 316853 
 

 

 
 
 
 

Deliverable D4.1.1 

 
Baseline for Compositional Risk-Based 

Security Testing 
 
  



 
 

 
  

RASEN - 316853 Page 2 / 43 
 

Project title: RASEN 

Project number: 316853 

Call identifier: FP7-ICT-2011-8 

Objective: ICT-8-1.4 Trustworthy ICT 

Funding scheme: STREP – Small or medium scale focused research project 

 
Work package: WP4 

Deliverable number: D4.1.1 

Nature of deliverable: Report 

Dissemination level: PU 

Internal version number: 1.0 

Contractual delivery date: 2013-01-31 

Actual delivery date: 2013-01-31 

Responsible partner: Smartesting 

 



 
 

 
  

RASEN - 316853 Page 3 / 43 
 

Contributors 
 
Editor(s) Fabien Peureux (SMA) 

Contributor(s) Jürgen Großmann (FOKUS), Bruno Legeard (SMA), Fabien Peureux (SMA), 
Martin Schneider (FOKUS), Fredrik Seehusen (SINTEF) 

Quality assuror(s) Arthur Molnar (IW), Bjørnar Solhaug (SINTEF) 

 
 
Version history 
 
Version Date Description 

0.1 12-11-09 TOC proposition 

0.2 12-12-17 Preliminary draft of the deliverable  

0.3 13-01-07 Updates of Section 2 & 3 

0.4 13-01-11 Updates of Section 2 & 5 

0.5 13-01-16 Updates of Section 4 & 5 

0.6 13-01-21 Final updates for all document – ready for internal review 

1.0 13-01-31 Final version 

 
 
Abstract 
Work package 4 will develop a framework for security testing guided by risk assessment and 
compositional analysis. This framework, starting from security test patterns and test generation 
models, aims to propose a compositional security testing approach able to deal with large scale 
networks systems. This report provides a state of the art of methodologies involved to reach this goal, 
respectively, risk-related security testing approaches, such as security testing metrics and testing 
approaches for large-scale networked systems. The report finally provides the RASEN baseline for 
compositional risk-based security testing. The baseline defines the basis for the development work to 
be completed during the project. 
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Executive Summary 
 
The overall objective of RASEN WP4 is to develop techniques for how to use risk assessment as 
guidance and basis for security testing, and to develop an approach that supports a systematic 
aggregation of security testing results. The objective includes the development of a tool-based 
integrated process for guiding security testing deployment by means of reasonable risk coverage and 
probability metrics. 

The purpose of this document is twofold. First, we give an overview of the state of the art that is 
relevant for the WP4 research objective. Second, we present the RASEN WP4 baseline which is the 
existing tools and techniques that serve as a promising starting point for the research tasks. 

The description of the state of the art and the baseline are organized according to the three main 
research tasks of WP4, which are the following: 

• T4.1: Deriving test cases from risk assessment results, security test patterns and test 
generation models in a compositional way 

• T4.2: Automating test execution based on risk assessment in a compositional way 

• T4.3: Metrics and Dashboard of security testing results based on risk assessment 

The discussion of the state of the art and the identification of the WP4 baseline are guided by the 
RASEN research questions that are relevant for the work package. These research questions are the 
following: 

1. What are good methods and tools for aggregating test results (obtained by both active testing 
and passive testing) to the risk assessment?  

2. How can test results be exploited to obtain a more correct risk picture? 

3. What are good methods and tools for deriving, selecting, and prioritizing security test cases 
from risk assessment results?  

4. What are suitable metrics for quantitative security assessment in complex environments? 

As discussed in this deliverable, existing techniques do not deal with the complexity of large, 
heterogeneous networked systems. The progress beyond the state of the art targeted by RASEN 
focuses mainly on the compositional management of security testing, deriving security test results of 
the system from security testing of its components. This work will focus mainly on model-based 
security testing techniques, ensuring the compositionality on the basis of security test patterns and 
models.
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1 Introduction 
The objective of RASEN WP4 is to develop techniques for how to use risk assessment as guidance 
and basis for security testing, and to develop an approach that supports a systematic aggregation of 
security testing results. The objective includes the development of a tool-based integrated process for 
guiding security testing deployment by means of reasonable risk coverage and probability metrics. In 
reaching the objectives, WP4 focus in particular on three more specific tasks. First, developing 
techniques for deriving test cases from risk assessment results, security test patterns and test 
generation models in a compositional way. Second, developing tools for automating test execution 
based on risk assessment in a compositional way. Third, developing metrics and Dashboard of 
security testing results based on risk assessment. 

This deliverable gives an overview of relevant state of the art, and identifies the baseline for the 
upcoming RASEN WP4 R&D activities. The state of the art in application security and vulnerability 
testing is structured in two main classes of techniques: 

• SAST – Static Application Security Testing, which are white-box approaches that include 
source, byte and object code scanners and static analysis techniques; 

• DAST – Dynamic Application Security Testing, which includes black-box web application 
scanners, fuzzing techniques and emerging model-based security testing approaches. 

In practice these techniques are complementary, addressing different types of vulnerabilities. As we 
will see, DAST is most relevant for the RASEN project. The description of the state of the art in this 
deliverable and the identification of the WP4 baseline are guided by the relevant RASEN research 
questions. These, extracted from the RASEN DoW, include the following: 

• What are good methods and tools for aggregating test results (obtained by both active testing 
and passive testing) to the risk assessment?  

• How can test results be exploited to obtain a more correct risk picture? 

• What are good methods and tools for deriving, selecting, and prioritizing security test cases 
from risk assessment results?  

• What are suitable metrics for quantitative security assessment in complex environments? 

The document is structured as follows. In Section 2 we give an overview of security testing 
approaches that are related to risk assessment. In Section 3 we present techniques to measure and 
quantify security testing relevance. Section 4 describes existing approaches to security testing of 
large-scale networked system. In Section 5 we present the RASEN WP4 baseline, before concluding 
in Section 6 by summarizing. 

  



 
 

 
  

RASEN - 316853 Page 7 / 43 
 

2 Risk-Related Security Testing Approaches 
This section firstly presents the state of the art on risk-related approaches, focusing on Dynamic 
Application Security Testing (DAST).  In Section 2.2, we motivate and describe techniques to identify 
and prioritize test cases with regards to risk analysis results. We next give an overview of the risk-
based testing approaches that use security and vulnerability test patterns to drive the test case 
definition (Section 2.3), and that use security-annotated models to apply fuzzy techniques (Section 
2.4).  

2.1 Dynamic Application Security Testing 
Software security testing aims at validating and verifying that a software system meets its security 
requirements [1][117]. Two principal approaches are used: functional security testing and security 
vulnerability testing [2][118]. Functional security testing is used to check the functionality, efficiency 
and availability of the designed security functionalities and/or security systems (e.g. firewalls, 
authentication and authorization subsystems, access control). Security vulnerability testing (or 
penetration testing, often called pentesting) directly addresses the identification and discovery of yet 
unknown system vulnerabilities that are introduced by security design flaws or by software defects, 
using simulation of attacks and other kinds of penetration attempts. Vulnerability testing is therefore 
a risk-based testing approach to discover vulnerabilities on the basis of exposed weaknesses and 
vulnerabilities in databases such as CVE1, OWASP2 or CAPEC3 catalogues. These databases collect 
known vulnerabilities and provide the information for developers, testers and security experts. For 
example, the CVE database provides currently in NVD v2.24 more than 54 500 exposed 
vulnerabilities. They relate to all the technologies and frameworks used to develop web applications. 
For instance, more than 700 vulnerabilities have been identified in various versions of Joomla!, one of 
the Top 3 content management systems. But this large amount of vulnerabilities relates to a few 
number of vulnerability classes, such as cross-site scripting (XSS), SQL injection or file upload to 
mention some of the most prominent.    

Model-based security testing. Model-based testing (MBT) uses selected algorithms for generating 
test cases automatically from models of the system under test (SUT) or of its environment. Although 
there are a number of research papers addressing model-based security (see e.g. [3][119][4][120]) 
and model-based testing (see e.g. [5]), there is still little work on model-based security testing (MBST).  
Of what exists in the state of the art, [6] discusses and implements an MBST approach which reads in 
context-free grammars for critical protocol interfaces and generates the tests by systematically walking 
through the protocol behavior. [7]The work in  addresses the problem of generating test sequences 
from abstract system specifications in order to detect possible vulnerabilities in security-critical 
systems. The authors assume that the system specification, from which tests are generated, is 
formally defined using the Focus language. The approach has been applied to testing firewalls and 
transaction systems. In [8], a threat driven approach to model-based security testing is presented. 
UML sequence diagrams specify a threat model i.e., event sequences that should not occur during the 
system execution. The threat model is then used as a basis for code instrumentation. The 
instrumented code is executed using randomly generated test cases. If an execution trace matches a 
trace described by the threat model, security violations are reported. 

Weakness and vulnerabilities models. A weakness or vulnerability model describes the weakness 
or vulnerability independently of the SUT. The information needed to develop such models is given by 
databases like the Common Vulnerabilities and Exposures (CVE) repository. These databases collect 
known vulnerabilities and provide the information to developers, testers and security experts, so that 
they can systematically check their products for known vulnerabilities. One of the challenges is how 
these vulnerabilities can be integrated into system models, so that they can be used for test 
generation. One possible solution is based on the idea of mutation testing [9]. For security testing, 
models of the SUT are mutated in a way that the mutants represent weaknesses or known 
vulnerabilities. These weakness or vulnerability models can then be used for test generation by 

                                            
1 CVE – Common Vulnerabilities and Exposures – MITRE - http://cve.mitre.org/  
2 OWASP – The Open Web Application Security Project - www.owasp.org  
3 CAPEC – Common Attack Pattern Enumeration and Classification – MITRE - http://capec.mitre.org/  
4 National Vulnerability Database Version 2.2 - http://nvd.nist.gov/ - Last access January 2013. 

http://cve.mitre.org/
http://www.owasp.org/
http://capec.mitre.org/
http://nvd.nist.gov/
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various MBT approaches. The generated tests are used to check whether the SUT is weak or 
vulnerable with respect to the weaknesses and vulnerabilities in the model. [10] presents the 
application of this principle to security protocols. [11] presents a methodology to exploit a model 
describing a Web application at the browser level to guide a penetration tester in finding attacks based 
on logical vulnerabilities (e.g. a missing check in a Role-Based Access Control (RBAC) system, non-
sanitized data leading to XSS attacks). The authors provide mutation operators that reflect the 
potential presence of specific vulnerabilities and allow a model-checker to generate attack traces that 
exploit those vulnerabilities.  

Fuzzing. Fuzz testing or fuzzing is a software testing technique, often automated or semi-automated, 
that involves providing invalid, unexpected, or random data as inputs to a computer program. The 
program is then monitored for exceptions such as crashes, failing built-in code assertions or memory 
leaks. Fuzzing is commonly used to test for security problems in software or computer systems. The 
field of fuzz testing originates with Barton Miller at the University of Wisconsin 1988 [12]. Fuzzing was 
originally based on a completely randomized approach. Recently more systematic approaches have 
been proposed. Black-box-based and model-based fuzzers use their knowledge about the message 
structure to systematically generate messages containing invalid data among valid inputs [13][129]. 
Systematic approaches are often more successful because the message structure is preserved and 
thus the likelihood increases that the generated message is accepted by the SUT. Fuzzing based on 
Security-Annotated Models, a relevant approach for the RASEN project, is presented in Section 2.4. 

Penetration testing. Black-box web application vulnerability scanners are automated tools that probe 
web applications for security vulnerabilities, without access to source code. They mimic external 
attacks from hackers, provide cost-effective methods for detecting a range of important vulnerabilities, 
and may configure and test defenses such as web application firewalls [14][15]. Web application 
scanners have gained popularity due to their independence from the specific web application’s 
technology, ease of use, and high level of automation. They have limitations, however, as discussed in 
Section 2.2.2. 

Detecting errors – the oracle problem. Fuzzing and pentesting monitor for exceptions such as 
crashes, failing built-in code assertions or memory leaks. Test automation should provide better 
analysis of the test results, that is, automating the test oracle’s evaluation of the test case’s actual 
results as pass or no pass. One problem is the test oracle comparator: given a test case and an 
abstraction of expected results, how to automatically determine whether the Web application produces 
correct output. Major challenges to developing oracles for Web applications are the difficulty of 
accurately modeling Web applications and observing all their outputs [15][16]. 

2.2 Risk-Based Test Identification and Prioritization  
This section deals with techniques that are used for identifying and prioritizing test cases based on risk 
analysis results. By technique we mean an algorithm, a language, or an analysis method which can be 
used as part of a methodology or an overall process. Most of the approaches to risk-based testing are 
based on already existing techniques within the areas of risk analysis (such as HAZOP or fault trees) 
and testing. The reader is referred to RASEN deliverable D3.1.1 for further details on these 
techniques. In the following we will concentrate on techniques that are specific to risk-based testing. 

2.2.1 Motivation for Techniques for Risk-Based Test Identification and 
Prioritization 

It is impossible to test every execution of most computer systems since there are usually an infinite 
number of possible executions. Therefore, when testing a system, we are usually forced to select the 
parts/executions of the system that will be tested. For security testing, where it is often difficult to find 
an adequate coverage criteria, the tester must choose which parts of the system to test based on 
some kind of prioritization of the most “security critical” parts of the system. Often this kind of 
prioritization is done informally by the security tester based on the knowledge that she/he has. The 
drawbacks of doing this informally are that: 

• the decisions on which the prioritization is done are not well-documented; 

• the prioritization will be extremely dependent on the security tester; 
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• the prioritization can be somewhat arbitrary and can be difficult to establish a sense of 
coverage. 

In sum, these points could result in the testing effort being focused in the wrong directions, which 
again may result in the test cases being less likely to identify vulnerabilities in the system. 

A structured approach to test prioritization is less likely to suffer from the same drawbacks as a purely 
informal approach. One natural way of structuring the prioritization process is to use the risk analysis 
to guide the test prioritization. This is natural because test prioritization can always be seen as being 
based on some notion of risk (although this notion may be implicit).  In addition to providing a 
structured approach to prioritizing test cases, risk analysis can also be used as part of a test 
identification process. The reason for this is that a risk analysis is often performed by means of fault or 
threat modeling, and the results from this modeling can naturally be used as input to the test 
identification process. 

2.2.2 Techniques for Risk-Based Test Identification and Prioritization 
Although there are several approaches that use risk analysis in order to identify and prioritize tests, 
most of these approaches are based on already existing techniques from risk analysis and testing. In 
other words, very few new techniques are proposed that specifically combine risk analysis and testing. 
We will nevertheless give a summary of the existing techniques that are used by risk-based testing 
processes, before describing in more detail the techniques proposed that have been specifically 
developed in a risk-based testing setting. 

Almost all the approaches to risk-based testing use risk analysis in one of two ways. Either the risk 
analysis is used to prioritize those parts/features of the system under test that are most risky, or risk 
analysis is used as part of a failure/threat identification process. The main steps of the former 
approach are: 

• Step 1: Break the target of analysis into smaller parts/features. 

• Step 2: Estimate a risk value for each part/feature. 

• Step 3: Specify tests for the parts/features that have the highest risk. 

Clearly, the approaches that follow this process use risk analysis to prioritize the testing. However, 
none of the approaches that follow this process use information from the risk analysis to identify 
relevant tests, only the test areas are identified. In Table 1 we have listed all the approaches that we 
are aware of that follow the process described above, and the techniques used in each step. All of 
these approaches use already existing techniques such as HAZOP [50] to identify risks, or code 
complexity measures to identify areas of code that are most likely to fail. 
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Approach Step 1 Step 2 Step 3 

Bach [17] No particular support. List of questions used in risk analysis. List 
and tables are used to organize risks. 

No 
particular 
support. 

Redmill 
[34][35][36] 

System described as a 
set of services and 
service functions. No 
particular support for 
identifying these, but 
examples are given. 

HAZOP is used to identify risks. 
Risk analysis based on likelihood and/or 
consequence with tables for documenting 
the results is proposed. 

No 
particular 
support. 

Souza et al. 
[39][40] 

System described in 
terms of requirements 
and features 

Risk analysis performed using questioners 
and/or checklists. Results are document 
using “metrics” which are proposed by the 
authors. 

No 
particular 
support. 

Bai et al. [18] System described as a 
set of web-services.  

Risks are calculated based on the 
probability of failure of service functions 
and so-called data ontologies which are 
arguments to service functions. Test cases 
are grouped according to the risk of the 
target features the tests are aimed at. 

No 
particular 
support. 

Felderer et 
al. [23] 

System is described as a 
set of units, components, 
and features. 

Criteria for how to measure the probability 
and impact are specified. Units, 
components, and requirements are 
estimated/measured according to the 
criteria. Finally, risks are calculated based 
on the estimated/measured values.  

No 
particular 
support. 

Ottevanger 
[32] 

System is described as a 
set of quality 
characteristics and 
subsystems. 

Select and determine relative importance of 
quality characteristics. Divide system into 
sub-systems and determine relative 
importance of these. 

No 
particular 
support. 

Rosenberg 
et al. [37] 

Only object-oriented 
source code is 
considered, which is 
described/broken down 
into classes. 

For each class, estimate the likelihood of 
failure based on a measure its complexity. 
Prioritize the classes with highest likelihood 
values when testing. 

No 
particular 
support. 

Wong et al. 
[43] 

Only source code is a 
considered, which is 
broken down into 
functions or code blocks. 

For each function of code block, estimate 
the likelihood of failure on a measure its 
complexity. Prioritize the functions/blocks 
with highest likelihood values when testing. 

No 
particular 
support. 

Table 1 – Summary of approaches that use risk analysis to prioritize test areas 

The approaches that use risk analysis as part of a failure or threat identification have the following 
main steps: 

• Step 1: Perform a risk analysis of the target system. 

• Step 2: Perform threat/fault modeling.  

• Step 3: Specify tests for the most severe threats/faults. 

Many of the approaches that follow this process do not use the risk analysis in order to prioritize tests, 
but all of them use results from the fault/threat modeling as input to the test specification step. In Table 
2, we have summarized all approaches that we are aware of that follow the above process, and 
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highlighted the techniques used in each step. Again, most of the approaches are based on already 
existing techniques such as fault trees. 

Approach Step 1 Step 2 Step 3 

Murthy et al 
[31] 

Risk analysis is based on 
the NIST process [48]. 

Threat modeling activity is 
on Microsoft’s Threat 
Modeling process from 
Microsoft’s security 
developer center.  

Misuse cases are used to 
describe security test 
scenarios.  No detailed 
explanation of how to do 
this is given. No description 
of how threats are 
prioritized is given. 

Zech et al. 
[44][45][46] 

Performed by 
transforming the system 
model into a risk model. 
However, little description 
of system model, risk 
model, or the 
transformation is given. 

Performed by 
transforming the risk 
model into a misuse case 
model. Little description of 
misuse case model or the 
transformation is given. 

The misuse cases are seen 
as test cases that can be 
executed. Little description 
of how this is done is given. 
No description of how 
threats are prioritized is 
given. 

Casado 
et.al [20] 

 

Targets web-service transactions which are 
decomposed into properties. Fault trees [49] are used 
to describe risks (and threats) for each transaction 
property.  

Leafs in fault trees 
correspond to tests. A test 
for a leaf node is a 
sequence of transaction 
notifications that will reach 
the state described by the 
leaf node. The details are a 
little unclear in the paper. 
No description of how tests 
are prioritized is given. 

Kumar et 
al.[30] 

Targets faults introduced by aspect oriented 
programming. A fault model is proposed (a table with 
fault types) and a risk model (a table assigning risk 
levels to fault types).  

Tests are specified for fault 
types that have high risk. 
No description of how tests 
are prioritized is given. 

Gleirscher 
[24] 

The test model is derived from system requirements 
and expressed as a Golog script. Hazards/faults are 
specified as logic properties. 

The test model is executed 
to see if it admits the 
specified hazards/faults. No 
description of how tests are 
prioritized is given. 

Erdogan et 
al. [47] 

Threats are modeled in CORAS [51] threat diagrams 
as part of the risk analysis.  

Each threat scenario is 
prioritized based on three 
criteria: severity, testability 
and uncertainty. The threat 
scenarios with the highest 
priority are detailed into test 
cases. 

Table 2 - Summary of risk-based testing approaches that use threat/fault modeling 

The only approach which considers threat prioritization is [47]. In this approach, tests are derived from 
so-called threat scenarios that are prioritized according to three criteria: 

• Severity: An estimate of the impact that a threat scenario has on the identified risks of the 
analysis. 

• Testability: An estimate of the time it would take to test a threat scenario and/or whether the 
threat scenario could be tested given the tools available. 
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• Uncertainty: An estimate of the uncertainty related to the severity estimate of a threat 
scenario. High uncertainty suggests a need for testing 

The only approaches that we are aware of that present novel techniques that are specifically intended 
to be used in a risk-based testing setting are [21][22][29][41]. All of these follow a process which differs 
slightly from the processes described above. That is, the approaches assume that a test model is 
already available at the start of the process, and they have two main steps: 

• Step 1: Annotate/update the test model based on risk information. 

• Step 2: Generate tests from the test model and use the risk information to prioritize the 
tests. 

The approach given by Chen et al. [21][22] uses risk analysis for the purpose of prioritizing test cases 
in the context of regression testing. The part of the approach that considers the identification and 
prioritization of test cases is explained in detail and is motivated by its application on a case study. 

The approach uses UML activity diagrams to model system features and then derives test cases from 
the activity diagrams. A test case, in this approach, is a path in an activity diagram starting from the 
activity diagram’s initial node and ending at its final node. Furthermore, the approach carries out risk 
analysis of the test cases in order to prioritize them with respect to their risk exposure values. The risk 
analysis process in the approach is a slightly modified version of the risk analysis process given in 
Amland [1][16] and is therefore also supported by a table based risk analysis technique. The approach 
carries out this risk analysis process to also identify the most important test scenarios. Test scenarios 
are basically a collection of test cases that collectively simulate use cases. The approach does not 
specifically address security and is also is not supported by a dedicated tool. 

The approach given by Stallbaum et al. [41] presents a technique to automate the generation of test 
case scenarios based on activity diagrams (which are regarded as test models in this approach), and 
to automatically prioritize test case scenarios based on their total risk value. 

A test case scenario, in this approach, is a path in an activity diagram starting from the activity 
diagram’s initial node and ending at its final node. This is similar to what is referred to as a test case 
by Chen et al. [21][22]. Furthermore, each activity in an activity diagram is annotated with a risk value. 
In this approach, a risk value is the product of the probability that an activity contains a fault and the 
total damage caused by the fault. The risk values that are assigned on the activities are further used to 
calculate the total risk value for a test case scenario. The approach does not explain how risk 
assessment is carried out, but focuses only on the automation technique. 

Kloos et al. [29] present an approach for generating tests based on a set of fault trees (a fault tree 
represents one critical failure mode in its root node), and events that may lead to the critical failure 
mode in its child nodes and a so-called base model, i.e. a state machine providing information about 
the possible stimulations of the system under test. The main idea of the approach is to use the fault 
trees together with the base model to derive a test model which includes the event sets of the fault 
trees that are sufficient to test the root fault of the tree. 

The following are the steps in the approach: (1) classify basic events of the fault tree, (2) select event 
sets of the fault trees, (3) build test model, (4) generate test cases and (5) execute test cases. Only 
Step 1, 2 and 3 are explained in detail. 

The purpose of Step 1 is to match the events described in the fault tree with the abstraction level used 
in the base model by classifying all of the events in each fault tree into four different classes; 
“controllable”, “observable”, “external” and “internal” events. 

In Step 2, the most critical failure modes are considered for further testing. It is mentioned that the 
most critical failure modes are identified based on the risk information given in their respective fault 
trees, i.e. fault probability and the severity given that the failure occurs, but it is not explained how, and 
based on what, these values are identified. All of the events in each fault tree are then grouped into 
event sets by making use of, what is referred to as, event set calculation. The purpose of Step 3 is to 
construct a test model. The test model is constructed by making use of a test model construction 
algorithm provided by the approach. The algorithm makes use of the event classification (Step 1) and 
transforms each event in the event sets (identified in Step 2) to state machine transitions. The 
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transformed events are also integrated into the base model during this process. The final state 
machine diagram is then referred to as the test model. 

In Step 4, test cases are generated based on the test model constructed in Step 3. The approach 
refers to other literature for details on generating the test cases from the test models, but they are 
basically generated by considering each path (starting from the initial state and ending at the final 
state) in the state machine diagram as a test case. Finally, the test cases are executed in Step 5. 

2.3 Risk-Based Testing from Security and Vulnerability Test 
Patterns 

While risk analysis is on one hand a system-specific task, on the other hand there are also 
vulnerabilities and threats common to a set of different systems or certain kinds of systems. E.g. 
common vulnerabilities for many systems are buffer overflows, or SQL injection for web applications. 
In the context of the ITEA-2 research project DIAMONDS5, a set of templates for risk analysis was 
identified [68] based on security incidents [70] and security functional requirements from the Common 
Criteria [78]. Seven template diagrams were defined, e.g. “Malfunctions”, “External Intrusions and 
Attacks”, and “Malicious Behavior of Users and Administrators”. 

The initial set of template diagrams were defined following a four-step process: 

1. Selection of vulnerabilities and incidents from a list of 92 proposed security indicators. 

2. Mapping of selected vulnerabilities and incidents to vulnerabilities and threat scenarios of the 
CORAS [88] risk analysis approach. 

3. Enriching the template diagram with specific threats and vulnerabilities mentioned in the 
security indicator description selected in Step 1. 

4. Completing the template diagram by manually mapping vulnerabilities and threat scenarios 
to security functional requirements from the Common Criteria. The security functional 
requirements act as treatments to the vulnerabilities and threat scenarios they are mapped to 
in Step 2. 

An example of such a template diagram is depicted in Figure 1. It shows an excerpt of a “Malfunctions” 
diagram comprising several threats, e.g. “Hostile Administrator”, vulnerabilities, e.g. “Unlawful 
voluntary stoppage” and a threat scenario “INC21: Downtime or malfunction of the trace production 
function” based on a security indicator and two treatments, e.g. “FAU_GEN.1: Audit data generation”, 
from the Common Criteria. 

 

Figure 1: Example of a risk template [68] 

                                            
5 See www.itea2-diamonds.org for more information. 

http://www.itea2-diamonds.org/
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While these template diagrams are a way to facilitate model-based risk analysis, in addition to these 
risk templates a security test pattern catalogue was developed [67]. 

The SecurityTestPatterns.org group defines security test patterns as follows:  

"A software security test pattern is a recurring security problem, and the description of the a test case 
that reveals that security problem, that is described such that the test case can be instantiated a 
million times over, without ever doing it the same way twice." [103] 

The test pattern catalogue [67] comprises 17 security test patterns defined in a generic way and based 
on Mitre Corporation and the SecurityTestPatterns.org Group. Each security test pattern definition 
follows a tabular template for their description consisting of the following fields: 

• Pattern name 

• Context: kind of test pattern (e.g. organizational, generic, behavioral, or test data), group of 
security approach (planning, prevention, detection, diligence, response) 

• Problem/goal: addressed testing problem or goal regarding security testing achieved by the 
security test pattern 

• Solution: full description of the pattern 

• Known uses 

• Discussion: pitfalls, impact of the pattern 

• Related patterns 

• References 

Table 3 shows the security test pattern “Verify Audited Event’s Presence” as an example. The fields 
“known uses” and “references” are here of interest. They may refer to external resources where the 
described pattern is applied or applicable. In this case, there are references to security functional 
requirements from the Common Criteria. In combination with the aforementioned approach of a 
template library for model-based risk analysis, security functional requirements forms a link between 
template diagrams and security test patterns and provide traces between risk analysis and security 
testing. This link allows applying security test patterns in order to conduct security testing based on 
risk analysis that takes advantage of the template diagrams. 
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Pattern name  Verify audited event’s presence 

Context Test Pattern Kind: Behavioral 
Testing Approach(es): Detection 

Problem/Goal This pattern addresses how to check that a system logs a particular type of 
security-relevant event for auditing purpose 

Solution Test procedure template 
1. Activate the system’s logging functionality 
2. Clear all existing log entries 
3. Record current system time ts  
4. Stimulate the system to generate the expected event type 
5. Check that the system’s log contains entries for the expected event / Taking 

into account only logs displaying timestamps tl satisfying the following 
condition: tl > ts 

Known uses  Common Criteria SFRs: FAU_GEN.1, FAU_GEN.2 

Discussion This pattern assumes that the test framework provides means for tracing and 
evaluating the logs produced by the SUT. Evaluation may be performed online 
(i.e. quasi simultaneously, while the system is still running) or offline, i.e. after 
the system has completed its operation. 
An interesting issue to be considered is how to apply this pattern in situations 
whereby it may be impossible or too costly to clear the log repository or to 
restart the running system. 

Related patterns 
(optional) 

• Sandwich test architecture pattern 
• Proxy test architecture pattern 
• Verify audited event’s content 

References FAU_GEN.1, FAU_GEN.2 

Table 3: Example test pattern "verify audited event's presence" 

2.4 Fuzzing Based on Security-Annotated Models 
Fuzzing is a security testing approach consisting in stressing the interface of a system under test 
(SUT) with invalid, random or unexpected inputs [94]. The focus of fuzzing is to find security-relevant 
weaknesses in the implementation that may cause denial of service, degradation of service or 
undesired behavior [108]. 

Fuzzing experiences major development. The original fuzzers simply generated input data 
randomly. Such data is mostly totally invalid [108] and is therefore rejected by the SUT in most cases 
because it does not pass simple sanity checks [94]. To do so, modern fuzzers use knowledge about 
the protocol that is used for communicating with the SUT in order to generate input data. It aims at 
generating semi-valid input data, which means that it contains mostly valid parts, but also a few invalid 
parts, instead of being completely invalid. Hence, such data is called semi-valid [92]. Semi-valid input 
data has a significantly better chance to pass possibly faulty sanity checks. Containing only little 
invalid data, they may pass the sanity check of the SUT due to a single input validation fault, and 
therefore be processed by deeper components of the SUT. Semi-valid input is therefore often able to 
reveal security relevant weaknesses in the SUT’s implementation [71][74][112][116]. 

http://www.cygnacom.com/labs/cc_assurance_index/CCinHTML/PART2/Part23-2-1.htm
http://www.cygnacom.com/labs/cc_assurance_index/CCinHTML/PART2/Part23-2-2.htm
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Figure 2: Targets of random-based and model-based fuzzers (cf. [108]) 

Model-based or smart fuzzers have a complete model of the SUT’s protocol and are able to generate 
complex interactions with it by sending a set of valid messages and after reaching a certain state, 
stressing it with semi-valid input data. Therefore, while random fuzzers often find just simple bugs, 
more complex bugs can be found by model-based fuzzers [108]. Another consequence is that model-
based fuzzers are more efficient because the targeted input space is much smaller than the input 
space of all invalid inputs targeted by random-based fuzzers. This is illustrated in Figure 2, which is 
adopted from [108]. 

While fuzzing is typically a black box approach where nearly nothing is known about the internals of 
the SUT [109], there are also some gray box and white box approaches where the source code or the 
code structure is used to guide the test generation process [71][73]. 

Determining the test verdict while fuzzing is much more difficult than by functional testing. While in 
functional testing the output of the SUT in reaction to a stimulus can be observed and compared to an 
expected result, this is not viable for fuzzing. More or less detailed monitoring of the SUT with respect 
to the expected faults is necessary. Simple monitoring can be achieved in different ways. One 
possibility is a connectivity check to verify if the SUT is still alive [105]. Another is valid case 
instrumentation where a functional test case is executed after each fuzz test case in order to 
determine if the SUT is not only alive but also working and functional [108]. Other kinds of bugs, e.g. 
memory corruption, require more sophisticated monitoring techniques, such as library interception that 
enables easier detection of memory bugs by using special libraries such as Guard Malloc [108]. 

2.4.1 Model-Based Data Fuzzing 
As mentioned above model-based fuzzers employ protocol knowledge in order to generate semi-valid 
input data. The model can be created by a system engineer or a tester, or it can be inferred by 
investigating traces or using machine-learning algorithms. There are many possibilities for what can be 
used as a model. Context-free grammars are widely used as a model for protocol messages 
[53][84][112]. As a model for the flow of messages, state machines can be employed as in [53][57][59]. 

 

Grammars 

Many of the early model-based fuzzers use context-free grammars for specification of both message 
syntax and the flow of messages. In the PROTOS project on Security Testing of Protocol 
Implementations [83][84], Kaksonen, Laakso and Takanen used a Backus-Naur-Form (BNF) based 
context-free grammar to describe the message exchange between a client and a server consisting of a 
request and a response, as well as the syntactical structure of the request and the response 
messages. The context-free grammar acts as a model of the protocol. In the first step, they replace 
some rules by explicit valid values. In a second step they insert exceptional elements into the rules of 
the grammar, e.g. extremely long or invalid field values. In the third step, they define test cases by 
specifying sequences of rules to generate test data. 

In [112], Viide et al. introduce the idea of inferring a context-free grammar from training data that is 
used for generating fuzzed input data. They used compression algorithms to extract a context free 
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grammar from the training data following the "Minimum Description Length" principle, in order to avoid 
the expensive task of creating a model of the SUT. The quality of the inferred model directly correlates 
with the amount and dissimilarity of available traces used for extracting the grammar. 

While fuzzing is originally a black-box approach, Godefroid et al. [72] followed a white-box approach. 
In order to improve code coverage, they created a grammar from program branches by performing 
symbolic execution and constraint solving. For each program path, a path constraint is generated by 
combining all path conditions with logical “and”. These generated constraints are called grammar 
constraints. In combination with a context-free grammar of the input language, a context-free 
constraint solver solves these grammar constraints in order to generate inputs yielding to higher code 
coverage. 

Kitagawa, Hanaoka and Kono [87] used a language called tsfrule for describing the state machine and 
message syntax. Messages are manually specified using regular expressions. They describe different 
fuzzing strategies they implemented: long string generation, violation of character restrictions, 
erroneous values, format string attacks as well as structural mutations affecting the number of fields or 
removing delimiters. 

 

State Machines 

In order to model the message flow of a protocol, also state machines can be used. Allen, Dou and 
Marin [55] modeled the FTP protocol in combination with block-based analysis. The state machine 
was used to generate so called test pattern that represents valid sequences of client/server 
interactions. In contrast, fuzzing of the different types of blocks is written manually in Python scripts. 

Banks et al. describe in [57] a tool called SNOOZE for developing stateful network protocol fuzzers. 
The tool reads an XML-based protocol specification containing, among other things, the syntax of 
messages and a state machine representing the flow of messages. A fault injector component allows 
modifying integer and string fields to generate invalid messages. SNOOZE can be used to develop 
individual fuzzers and provides several primitives for fuzzing several values depending on their type. 
Monitoring of the system under test was realized by observing the received messages for their 
presence and the correct type. 

Non-deterministic finite state machines (NFSM) are used by Jing et al. [82] for describing a protocol. 
The rationale for the use of non-deterministic finite state machines is that protocol specifications are 
often ambiguous. They focused on the verification of the SUT's state depending on whether a state 
transition is defined by a protocol specification for anomalous input. They rely on this differentiating 
factor and propose corresponding “normal-verification sequences”. These verification sequences are 
used to determine the SUT's current state and compare it to the protocol specification. Anomalous 
protocol data units (PDU) are generated by using e.g. boundary values, removing or adding fields 
within PDU or generating length and checksum errors. For each anomalous PDU, only one field was 
mutated at once called single-field mutation testing. Test cases are generated in TTCN-3 (Testing and 
Test Control Notation, version 3) with an extension. This extension consists of a new keyword 
loopreplace which allows modification of a template without generating a new one. 

Shu, Hsu and Lee [77][104] used partial finite state machine (FSM) reduction to obtain a FSM from a 
large set of traces. They proposed to monitor the system to be tested to obtain traces and compute a 
tree FSM from these traces. In the next step, they minimized the number of states by calculating a set 
of merging constraints and use these to merge corresponding states. This learned FSM was used to 
guide the test process. Transition coverage was used to measure the comprehensiveness of the 
generated test cases. They implemented fuzzing itself by applying “typical fuzz function”. 

For testing the IPv6 Neighbor Discovery Protocol, Becker et al. [59] used a finite state machine as a 
behavioral model of the protocol and decomposed the messages of the Neighbor Discovery Protocol. 
They applied several fuzzing strategies, e.g. changing field values or duplicating fields like checksums. 
They combined their fuzzing approach with reinforcement learning that used two reward functions: 
One function that measures the entropy, i.e. the number of different functions called while the SUT is 
processing a single message, and the power, i.e. the number of function calls due to processing a 
single message. 
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Taber et al. [107] used fuzzing to test softphones based on the Session Initiation protocol (SIP). For 
SIP messages, they used message templates that contain placeholders. These placeholders were 
replaced by well-known attack vectors and randomly generated data. A state machine contains the 
SIP states and guides a handler that generates the SIP messages. The softphone was controlled via 
its graphical user interface (GUI) by executing GUI events in the SUT. In contrast to other fuzzers, the 
GUI was also monitored for error messages or conspicuous changes. 

Abdelnur, State and Festor [53] developed a fuzzer for the SIP protocol called KiF that uses an 
augmented BNF (ABNF) for the syntax of SIP messages and a protocol state machine for the 
transitions consisting of incoming and outgoing messages. A second state machine, called test state 
machine, was used to describe scenarios by prioritizing or omitting transitions. Syntactical valid and 
invalid messages are generated by employing a fuzzer expression grammar. This grammar is based 
on the ABNF and contains additionally a fuzzer evaluator. This evaluator allows the construction of 
syntactically invalid messages by replacing, repeating and choosing items. The SUT is observed by 
comparing received messages with the expected messages specified by the protocol state machine 
and checking the syntactical correctness using the context-free grammar. The aliveness of the SUT is 
detected by valid case instrumentation. 

AutoFuzz is a fuzzer that acts as a proxy server. It was developed by Gorbunov and Rosenbloom [74] 
and constructs a FSM by observing incoming and outgoing messages with passive synthesis and 
partial FSM reduction. Additionally, the message syntax is captured in generic message sequences by 
employing algorithms that are used in bioinformatics for sequence alignment. Here, it was used to 
identify message fields for block-based analysis. AutoFuzz's role as a proxy server allows applying 
fuzzing functions to message fields depending on the state of the FSM. 

 

Evolutionary Fuzzing 

DeMott, Enbody and Punch followed this approach in [66]. They evaluate and evolve pools of 
sessions, where each session represents a complete transaction with the SUT, using a fitness function 
that determines the code coverage. The generations are created by crossing pools, selecting, crossing 
and mutating sessions. After creating a new generation, the SUT is fed with the sessions of the pools 
and the fitness of every session and pool is recalculated. This process is stopped after a given number 
of generations. 

Duchene et al. [69] employed model inference assisted by evolutionary algorithms to evolve malicious 
input data in order to fuzz web applications for XSS vulnerabilities. They started by manually writing an 
attack grammar for cross-site scripting attacks. Individuals for the first generation are generated by this 
attack grammar and by reused input sequences from model inferring. The first generation evolves 
using a fitness function that assesses how close individuals are to detect XSS. How close individuals 
are to detect XSS vulnerabilities serves as a fitness function and is determined by the number of 
classes of the input grammar that are retrieved as output from the SUT and the traversed states. 
Successful XSS attacks are detected if the observed output is not confined by an output grammar. 

A fuzzing approach that aims at risk-based security testing is presented by Xu et al. [115]. They 
understand risk as a relation between use case resources and targeted resources that are necessary 
to perform certain functionalities. The targeted resources are annotated in class diagrams. Sequence 
diagrams representing use cases are annotated based on the annotated class diagrams. After that, 
abstract test cases are generated by traversing the annotated sequence diagram. The process of test 
case generation is not described. 

 

2.4.2 Behavioral Fuzzing Based on Security-Annotated Models 
Behavioral fuzzing is a complementary approach to traditional data fuzzing. It aims at generating 
invalid message sequences instead of invalid input data in order to reveal vulnerabilities. An overview 
of behavioral fuzzing approaches, this section is originating from, can be found in [100]. 

 

  



 
 

 
  

RASEN - 316853 Page 19 / 43 
 

Implicit Behavioral Fuzzing 

Inferring a model from traces as performed in [112] leads often to implicit behavioral fuzzing. 
Depending on the quality of the traces, there may be substantial differences between the model and 
the implementation. Therefore, if the model is not exact, because the available traces have a poor 
quality, invalid message sequences may be generated and thus, implicit behavioral fuzzing is done 
when using the inferred model. 

The evolutionary approach of DeMott, Enbody and Punch [66] in the previous section performs also 
implicitly behavioral fuzzing while learning the model. At the beginning of the learning process the 
model is mostly incorrect and so invalid messages and data are sent to the SUT. During the process, 
the learned model is getting closer to the implemented behavior of the SUT. During this approximation 
the fuzzing gets less random-based and gets subtler because the difference between the invalid 
generated behavior and the correct use of the SUT gets smaller. Therefore, implicit behavioral fuzzing 
performed by dynamic generation and evolution-based is superior to that performed by random-based 
fuzzers. 

However, there is a crucial drawback of implicit behavioral fuzzing: While vulnerabilities like 
performance degradation and crashes can be found, other kinds of vulnerabilities cannot be detected. 
That is the case because there is no specification the revealed behavior of the SUT can be compared 
to and hence, vulnerabilities, e.g. revealing secret data or enabling code injection, may be perceived 
as intended features. 

 

Explicit Behavioral Fuzzing 

Behavioral fuzzing is mentioned in [84] where the application of mutations was not only constrained to 
the syntax of individual messages but also applied to “the order and the type of messages exchanged” 
[84]. Understanding behavioral fuzzing in that way, random-based fuzzing implicitly performs 
behavioral fuzzing. Because the protocol is unknown, randomly generated data can be both messages 
and data. Hence, in addition to data fuzzing, also behavioral fuzzing is done – but in a random way. 

For testing the IPv6 Neighbor Discovery Protocol, Becker et al. in [59] used a finite state machine as a 
behavioral model of the protocol and decomposed the messages of the Neighbor Discovery Protocol. 
They applied several fuzzing strategies, e.g. changing field values or duplicating fields like checksums, 
which all constitute data fuzzing. The different fuzzing strategies mentioned by the authors are not 
constrained to fuzzing input data by deleting, inserting or modifying the values of fields. They are also 
supplemented by the strategies of inserting, repeating and dropping messages, which are already to 
be considered as behavioral fuzzing. Similar strategies are introduced in [77][104] where the type of 
individual messages is fuzzed as well as messages are reordered. 

The aforementioned framework SNOOZE [57] provides several fuzzing primitives in order to develop a 
protocol-specific fuzzer. Among those primitives, there are functions to get valid messages depending 
on the state of a session and on the used protocol, but also primitives to get invalid messages. Thus, 
SNOOZE both data fuzzing and behavioral fuzzing. 

The most explicit approach to behavioral fuzzing is found in [87]. Kitagawa, Hanaoka and Kono 
propose to change the order of messages in addition to invalidate the input data and find 
vulnerabilities. They employ a protocol specific state machine in order to determine whether a 
message shall be changed. Unfortunately, they do not describe how the message order should be 
changed to make it invalid. 

An approach to model-based behavioral fuzzing using UML sequence diagram was presented in 
[100]. UML sequence diagrams, e.g. functional test cases, representing valid message sequences 
were modified by employing a set of behavioral fuzzing operators and applying them to model 
elements such as combined fragments, state invariants and time/duration constraints in order to 
generate an invalid sequence diagram. Fuzzing operators are for instance “Remove Message” that 
deletes a message from a sequence diagram, “Change Type of Message” that changes the operation 
that is called by a message or “Negate Interaction Constraint” that negates a guard of a combined 
fragment in order to activate the enclosed message sequence when it should not be activated. Table 4 
shows a list of all fuzzing operators proposed in [100] and their constraints. Several of these fuzzing 
operators are being applied to a sequence diagram to generate a single test case. 
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Behavioral Fuzzing Operators for…  

Messages Constraints 

Remove Message 
Repeat Message 
Move Message 
Change Type of Message 
Insert Message 

• not enclosed in a combined fragment 
negative 

• considered respectively ignored if 
enclosed in a combined fragment 
consider/ignore 

Swap Messages • not enclosed in a combined fragment 
negative 

• considered respectively ignored if 
enclosed in a combined fragment 
consider/ignore 

Permute Messages Regarding a Single SUT 
Lifeline 
Rotate Messages  Regarding a Single SUT 
Lifeline 

• applicable for messages within a 
combined fragment weak 

Permute Messages Regarding a Single SUT 
Lifeline 
Rotate Messages  Regarding a Single SUT 
Lifeline 

• applicable for messages within a 
combined fragment strict 

Combined Fragments Constraints 

Negate Interaction Constraint 
 
Interchange Interaction Constraints 

• applicable to combined fragments option,  
break, negative 

• applicable to combined fragment 
alternatives 

Disintegrate Combined Fragment and Distribute 
Its Messages 

• applicable to combined fragments with 
more than one interaction operand 

Change Bounds of Loop • applicable to combined fragment loop 
with at least one parameter 

Insert Combined Fragment 
Remove Combined Fragment 
Repeat Combined Fragment 
Move Combined Fragment 

• applicable to all combined fragments 
except negative 

Change Interaction Operator  

Time/Duration Constraints  

Change Time/Duration Constraint • applicable to constraints that are on the 
lifeline of the test component 

Table 4: Behavioral fuzzing operators for UML sequence diagrams [100] 

Because the approach generates a large number of test cases – usually too many to execute them all 
– a test case selection based on annotations to the model was introduced in [101]. The annotations 
were made using the UML profiling mechanism, in this case using the profile UMLsec [4] that provides 
a set of security related stereotypes. The UMLsec stereotype for specifying role-based access control 
was used and extended for UML sequence diagram and with additional tags for authentication. The 
achievement of this approach is twofold. On one hand, it allows focusing on a certain security aspect 
and thus allows to substantially reducing the number of test cases. In the presented example, the 
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number of test cases was reduced from 48 test cases to 8. Another, much more important advantage 
is that this approach allows it to combine risk analysis and fuzzing by augmenting a model with 
stereotypes that refer to identified threats or vulnerabilities from the risk model. 
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3 Security Testing Metrics  
How to measure security was reported to be a hard problem [80] and quantifying security in an 
absolute way is still considered an open question [92]. Savola et al. [99] state that the term security 
metric is misleading because security cannot be measured as a universal property. In spite of this, 
several definitions were made in the context of security, also by Savola [97]. (An exhaustive overview 
of different definitions of metric and measurement can be found in [58].) 

The US National Institute of Standards and Technology (NIST) defines metrics as follows [106]: 
“Metrics are tools designed to facilitate decision making and improve performance and accountability 
through collection, analysis and reporting of relevant performance-related data. The purpose of 
measuring performance is to monitor the status of measured activities and facilitate improvement in 
those activities by applying corrective actions, based on observed measurements.” In a superseding 
document, they use the term measure instead of metrics for the “results of data collection, analysis, 
and reporting” and measurement for the process of measuring [64]. 

Vaughn et al. [110] argue that measures are often mistaken as metrics. They define metric as a 
relation of “individual measures to some common terms or framework”. Savola [97] stresses the 
difference between the terms "measurement result" and "metrics", and defines a measurement result 
as a “single-point-in-time data on a specific factor to be measured", while metrics are "descriptions of 
data derived from measurements”. In [80], Wayne Jansen summarizes several definitions of security 
metrics by saying that a “metric generally implies a system of measurement based on quantifiable 
measures”. 

3.1 Measurements 
All these understandings of metrics have in common the need for measurements. In order to get 
reasonable results from such measurements, they must fulfill some requirements: 

• Reliability [86], repeatability [52], stability [61] or consistent measurement [81]: Measurements 
must be reliable meaning that different measurements using the same method in the same 
context have to be consistent. Reliability for qualitative measures is often difficult to achieve 
because certain security properties are intangible and subjective [56][80]. 

• Validity [86] means that the measurement should measure what it is intended to measure. 
According to Kan [86], validity consists of three properties: (a) construct validity means that 
actual measurements represent the theoretical construct, thus, it measures what is intended to 
be measured; (b) criterion-related/predictive validity describes how the values of 
measurements and the actual property to be measured relate and (c) content validity means 
the degree to which a measure covers the range of meanings included in a theoretical 
concept. 

• Easiness [52] and cheap to gather [81], preferably in an automated way. If performing the 
measurement is too difficult compared to the information that can be obtained from it, there is 
no motivation to incur the measurement. Automated measurements reduce the opportunities 
for human error [64]. 

• Objectivity [52][110] and expression as a cardinal number or percentage [81], not with 
qualitative labels like ‘high’, ‘medium’, and ‘low’. Qualitative measurements are usually 
subjective [56] and hence, not appropriate. Obviously, subjective measures are interfering with 
the property of reliability. As discussed also by [95], in spite of this many security metrics are 
subjective. 

• Use at least one unit of measure in order to be expressive and to declare what is measured 
[81]. 

• Contextually specific in order to allow decision making [52][81]. 

• Succinctness for reducing complexity, to remove aspects that are not important and thus, 
reducing the uncertainty of a measure [52]. 

Objective and, associated with it, quantitative security metric is doubted to be a feasible goal. A survey 
of quantitative security metrics by Verendel [111] revealed that most quantitative security metrics are 
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not sufficiently validated by empirical tests. Hence, it is not clear whether they get corroborated or 
falsified. 

Vaughn et al. [110] classified security metrics and measures along the following properties additional 
to objectivity as discussed above: 

• Static/dynamic: Dynamic metrics evolve with time and are preferred over static metrics 
because the measured property of a system as well as the threats to a system [95] change 
over time. 

• Absolute/relative: While relative metrics depend on other metrics, absolute metrics do not. 
Hence, relative metrics are meaningful only in the given context of the metrics they depend 
on. 

• Direct/indirect: Direct metrics “are generated from observing the property that they measure”. 
This is the preferred way to obtain metrics, while indirect metrics can be used when direct 
measurement is not feasible. 

3.2 Security Metrics Frameworks 
As discussed above, there is an important difference between a measure and a metric. Vaughn et al. 
[110] describe the need for relating measures to common terms or a framework in order to obtain a 
metric. In the following, different approaches to achieve this goal are discussed. One is a security 
scorecard that describes in detail how measuring vulnerabilities can be composed to a security 
scorecard. Others are more abstract and describe general ways of composing and decomposing 
different metrics. 

3.2.1 Security Scorecard 
A simple framework was developed by Nichols and Peterson [91] in form of a security scorecard that 
summarizes different measurements related to the Open Web Application Security Project (OWASP) 
Top Ten Vulnerability Categories [96]. They propose to translate measurement results to a qualitative 
traffic light metaphor. For that purpose, they employed principles of the Six-Sigma-Quality Framework 
[79] for expressing values in terms of defects divided by opportunities, mapping them to colors and 
aggregating all different measures. The different measures, colors, and the aggregated measures 
including trends are depicted in an example in Figure 3, which is adopted from [91]. 
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Figure 3: Security scorecard [91] 

3.2.2 Composition of Security Metrics 
Composition of metrics is a controversially discussed topic. Though there is not much research, there 
is doubt if composition of security metrics is feasible. For instance, it is disputed in [80] that in theory 
systems can be designed to be predictably composable, while in practice this has never occurred; two 
systems can be composed, and in spite of the fact that both system are solely secure, the composition 
is not [80][110]. Verendel questions the simple addition of metrics for composed systems. He criticizes 
that mutual dependencies of components are neglected by additive composition of different security 
metrics. Savola [97] sees the necessity of decomposition of software security by design in order to 
evaluate the overall security of a system, but does not propose how this could help for measurement. 
Jansen [80] detected a lack of understanding and insight into the composition of security mechanism 
that impedes progress in security metrics. Composition approaches of security metrics is proposed 
either along the composition of a system, or along the composition of security requirements. 

 

Composition of Security Metrics along Composition of a System 

Wang and Wulf [114] propose a decomposition of a system (along physical subsystems or logical 
functions). They introduce three different functional relationships in order to determine the security 
strength of the composed element: weakest link if the functioning of the composed element is 
ultimately bounded by the weakest of its components, weighted weakest link as a generalization of 
weakest link with various degrees of impact on the different components to the composed element, 
and prioritized siblings where each of a set of components that constitute a composed element 
contributes to a different aspect of the composed element. For each of these relationships, Wang and 
Wulf provided a way how to calculate the security strength of the composed element from its 
components. 
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Walter and Trinitis [113] provide three different composition operators in order to compose metrics of 
different components depending on their interrelation: AND, OR and MEAN. AND is used when two 
components can be attacked in parallel where only one needs to be successfully attacked in order to 
compromise the system consisting of these two components – meaning that the composition is at 
most as secure as the components it is composed from. When two components compose two 
successive lines of defense and hence, both have to be attacked to compromise the composed 
system (meaning the composition is more secure than its components), the OR operator is used. The 
MEAN operator is used for systems where both components must be successfully attacked in order to 
compromise the composed system, but successfully attacking only one already compromises the 
system partially. Walter and Trinitis discussed the mathematical implications depending on statistical 
dependency and the kind of the (random) variable used to determine the security of any component. 
They also illustrate how more complex compositions can be achieved using these operators. However, 
the paper lacks an application that provides evidence of the approach as well as discussing the 
situations in where each of the operators are applicable. This remains unclear in particular for the 
MEAN operator. 

 

Composition of Security Metrics along Security Requirements 

Savola [95] argues for a taxonomy that enhances the composition of security metrics. He seizes the 
idea of Wang and Wulf [114] as discussed above, and applies it to security requirements as depicted 
by Figure 4, adopted from [97], in order to identify the basic measureable components. However, he 
does not focus on their interplay in order to determine the composition of metrics and measurements. 

 

 

Figure 4: Decomposition of the security requirement “Authentication” [97] 

 

 
A similar approach is used by Heymann et al. [75] to analyze the dependencies between security 
objectives that originally result from security requirements. They decompose security requirements 
and their corresponding security properties into three layers, one for high-level and low-level 
objectives, another for security patterns in order to achieve those objectives, and a third layer for the 
correspondent metrics. The benefit from this approach is twofold. On one hand, it explains how 
security patterns can be used to achieve certain security objectives and, therefore, the security 
requirements. On the other hand, it ships metrics with security patterns that facilitates measuring the 
corresponding security aspect. The decomposition of security requirements to security objectives is in 
turn used for composing the different metrics associated with the applied security patterns. The 
introduced decomposition operators are “and” and “or”. Therefore, the decomposition is not as 
diversified as the decomposition approach by Walter and Trinitis discussed above. 
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Figure 5: Composition of metrics along security requirements and patterns [75] 

 
 

3.3 Metrics for Security Testing 
As discussed in the previous sections, several required properties of security metrics have been 
identified, but Verendel [111] criticized the lack of validation of metrics. Jansen [80]  noted that there 
are only few actual metrics that have been reported to be useful in practice. Many of such metrics refer 
to organizational measurements, e.g. [60] with metrics for baseline defense coverage, patch latency, 
password strength. Of course, some metrics are more general, whereas some are more specific for 
certain security testing approaches. 

Many metrics regarding testing are coverage criteria. Some coverage criteria used for functional 
testing are also suitable for measuring non-functional security testing. Code coverage is a metric often 
used for testing and also for fuzzing. For example, Godefroid et al. [72] use instruction coverage, 
Abdelnur et al. [54] path coverage and DeMott et al. [66] unique function hits. The same approach is 
employed by Becker et al. [59] and by Abdelnur et al. [54] and is called entropy and power as 
measures of functions involved in processing a single message.  

Another code coverage metric rather related to security is the attack surface [76][89][90]. It measures 
the attackability of a system by identifying its resources that constitute the system’s attack surface. 
The approach is based on a formal entry point and exit point framework that identifies such points 
where (malign) data may enter or leave the system, and may act as basis of an attack [89]. The attack 
surface of a system is defined by these entry and exit points, the channels that can be used by an 
attacker to connect to the system, and untrusted data items the system reads from or writes to and the 
attacker has access to. An estimation of the damage potential of a resource based on its privileges 
and the effort the attacker has to spend to gain access to the resource is used to define the attack 
surface measurements. A weakness of this approach is that this damage potential-effort ratio is 
subjective and thus lacks objectivity as required by [52]. By measuring how test cases cover the attack 



 
 

 
  

RASEN - 316853 Page 27 / 43 
 

surface of a system under test, a simple coverage criterion may be defined that can be used as a 
metric. 

Nichols and Peterson [91] developed a metrics framework based on the top ten vulnerabilities of the 
Open Web Application Security Project [93]. In addition to design-time and deployment-time 
measurements, they propose runtime measurements for cross-site scripting, injection flaws and 
denial-of-service-vulnerabilities obtained by conducting penetration tests, e.g. fuzzing. This approach 
suffers from only respecting the most frequent vulnerabilities, just counting corresponding flaws and 
ignoring other aspects that may have a considerable effect on security. 

There are also metrics specific for the security testing approach of fuzzing presented in Section 2.4. 
Microsoft made an empirical investigation based on Windows Vista file parsers for different file formats 
on how many test cases are necessary to cover most of the bugs. Microsoft recommends executing at 
least 500,000 test cases and another 250,000 test cases after each found bug. Using another fuzzing 
tool is recommended when no bug was found by the initial set of 500,000 test cases or after 250,000 
test cases since the last found bug [102]. This poses a traditional rate of found defects that is also 
used in functional testing. But it seems questionable if these results are valid for other than the used 
tools and kinds of SUTs. Other metrics specific for fuzzing are coverage metrics regarding the 
specification. Kaksonen and Takanen [85] measure the ratio of symbols of a specification that were 
replaced by anomalies when generating invalid input data, and all symbols of the specification. They 
focus on locations of specification (the symbols) and disregard the kinds of anomalies (invalid values) 
injected on these locations. The different kinds of anomalies injected on the different locations can be 
measured related to the number of all anomalies applicable on the different locations [85]. 

3.4 Methodologies for Developing Security Metrics 
While there are a few security metrics that are employable for security testing, as presented in the 
previous section, there are also methodologies for developing security metrics. Such methodologies 
may also be helpful for developing metrics for security testing. 

One approach was developed by Chandra, Khan and Agrawal [62][63][64] and identified five phases: 

1. Identification of security factors in order to find and extract a filtered set of security factors. 
Several activities relate to this phase, e.g. security requirements and validation, determining of 
security factor selection criteria, verification of security factors, and defining hierarchy and 
impact of security factors. 

2. Identification or design of a metric suite  comprising activities such as identification of 
software characteristics, analysis of available security models and metrics and designing 
security metrics and metrics suite. 

3. Validation of security metric suite based on validation goals, standards, invalidity criteria, 
and validation framework. This phase also uses security factors identified in Phase 1 for 
validation. 

4. Quantification of security factors as basis for the next phase. 

5. Estimation of security is the last phase consisting among others of risk analysis, security 
ranking and precautionary measures. 

The main weakness of the presented approach is insufficient description of how to conduct the the 
different phases. However, while they are intended for the estimation of security at design phase and 
not for security testing, they can serve as a template of a process of designing metrics for security 
testing. 

Savola [98] proposes a risk-driven methodology for privacy metrics development consisting of the 
following steps: 

1. Privacy threat analysis as analysis of risks for privacy. 

2. Utilization of privacy taxonomies that help in creation of privacy objectives and 
requirements and may support development of metrics collections in a holistic and systematic 
way. The taxonomy to be used depends on the use case and on legal context. 
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3. Development and prioritization of privacy requirements in order to mitigate the threats 
identified in the first phase. 

4. Identification of basic measureable components by decomposing the requirements 
identified in the previous phase. This approach was already discussed in Section 3.2.2. 

5. Development of measurement architecture is technically necessary for obtaining and 
processing measureable data. 

6. Feasibility analysis and integration of metrics from other sources on the basis of the 
identified basic measureable components. 

7. Balanced and detailed collection of privacy metrics includes definition of  

a. their purpose, 

b. target description, e.g. using a composition-decomposition approach, 

c. formalization in a computable and understandable form,  

d. value scale or ordering, 

e. possibly needed thresholds. 

This approach is focused on privacy along the example of cloud computing. But the risk-driven 
approach seems to be also appropriate for developing security testing metrics in the context of the 
RASEN project by adapting it to the needs for risk-based security testing. This may include: 

• Step 1 and 3 because the CORAS approach used in RASEN also includes what is done in 
Step 3 

• Step 2 for identification of suitable taxonomies, 

• and the composition-decomposition approach used in steps 4 and 7 for target description of 
metrics. 
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4 Testing Approaches for Large-Scale Networked Systems  
This section provides a state of the art of approaches that are used to produce security and/or 
vulnerability test cases for large-scale networked systems. Networked systems are today crucial 
components and often rely on a very high level of complexity since they support many necessary 
features from the basic functionality provided by computer networks to the applications executed on 
top of these networks. This complexity arises from a variety of causes. These systems are indeed 
often designed to address problems that cannot be completely defined: they meet the(rapidly 
changing) needs of diverse stakeholders; they must interact with other legacy systems, processes and 
policies; they may be critical systems that have to ensure both a high level of performance and 
dependability; and finally, they can be affected by political influences in the organizations developing 
the system or in the environment of the customer. Since networked systems have become complex 
and large-scale to be able to support increasing various needs and requirements, testing techniques 
targeting networked systems have to take this complexity into account. While there are many existing 
techniques for testing networked systems, each providing unique capabilities and benefits regarding 
vulnerability testing, few of them address large-scale features. We now provide an overview of existing 
techniques for testing networked systems, and introduce both their advantages and the limitations. 

As proposed in [132], we can divide the different approaches into 3 categories: staging infrastructures, 
replay systems, and finally modeling and simulation-based approaches. In the following we look at 
each of them in turn. 

4.1 Lab and Staging Infrastructures 
Another technique for evaluating networked systems is deployment at a smaller scale before making 
the modified system visible to all users. Using this approach, the goal is to subject the system to an 
environment very similar that of the full production environment. Deploying applications at a smaller 
scale can be accomplished in multiple ways. The system can then be deployed to a staging 
environment that is intended to replicate or approximate the production environment. For example, 
Cisco maintains a testing facility called NSite [133] on which network devices and configurations can 
be tested before deployment. Infrastructures such as Emulab [134] provide a configurable 
environment for networked systems. Another methodology used in practice is deploying changes to a 
limited set of users. As instance, the large-scale distributed web infrastructure of Google uses this kind 
of approaches [135] in which a portion of users may be included in one or more concurrently-running 
experiments. 

The primary benefit of lab and staging environments is that the actual networked system is executed 
without requiring modeling. In particular, it may be possible to capture bugs or test the system’s 
performance under synthetic workloads or workloads captured from production systems. Another 
major benefit of staging environments using real users is that they can incorporate actual user 
behaviors, thus testing the full end-to-end workflow including the real networking environment. 

This kind of approach also has important limitations. First, deploying and maintaining an alternate 
staging infrastructure may be costly. Such a staging infrastructure should be consistent with the 
production network in terms of not only configuration and topology, but also hardware, operating 
system, and software versions, since behavior may change between versions (e.g.[136]). Keeping 
such an environment synchronized with a production environment can be a large undertaking. 
Second, alternate staging environments may not fully capture the complexities of the production 
environment. Finally, allowing the tested system to serve real users may be risky if the system being 
tested does not perform as desired. Though it may be possible to reduce exposure by early detection 
of such cases, dissatisfied users may abandon use of a product or move to a competitor. 

4.2 Logging/Replay Systems 
Another useful technique for testing networked systems is logging and replay. Logging and replay 
consists of capturing data, typically an execution trace, from a running system in a production or 
staging environment, and then processing it offline. In an offline environment, it is possible to analyze 
the captured trace (e.g., for a visual display) or even replay the system to replicate the observed 
behavior and potentially ease the debugging process. 
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Replay tools typically strive to ease debugging for parallel and networked systems by providing 
deterministic replay. Networked systems are notoriously difficult to debug due to race conditions and 
non-deterministic behavior, making it difficult to detect and replicate bugs. Numerous approaches have 
been used to capture execution traces, spanning hardware-level (e.g.[137]), OS-level (e.g.[138]), user-
space (e.g.[139]), and even cross-layer designs (e.g.[140]). The various approaches frequently make 
trade-offs in terms of logging overhead, types of applications they can support, whether they can 
replay a trace deterministically, and even relaxations on the replayed execution trace (e.g. [141]). 

Logging and Replay have two primary benefits. First, they focus on using the actual system instead of 
a model. This allows developers to use the tools directly with existing systems with little or no 
modification. Indeed, some logging/replay tools are even targeted to be of low-enough overhead for 
production systems. Second, logging and replay tools typically provide repeatability. When debugging 
a complex networked system, the ability to replicate a bug and inspect the exact execution leading to 
an error can be extremely useful. 

Despite their benefits, logging and replay systems do have limitations for testing large-scale networked 
systems. The primary limitation is that they can only consider scenarios that actually occurred; they 
are designed to capture execution traces and are not focused on testing alternative scenarios (e.g., by 
changing the behavior of the environment of the system itself). The ability to test alternative system 
behaviors or environments is important when evaluating a networked system (e.g., to evaluate 
behavior under particular failure scenarios). 

4.3 Modeling and Simulation 
Theoretical modeling and simulation techniques are characterized by capturing key properties of the 
full-scale system and creating an analytical model or an implementation focusing on key functionality. 
This has been a useful approach in many settings. 

First, there are many generic simulation toolkits that have been developed and extended (see [142] for 
more details). These toolkits implement common functionality (e.g., network topologies and protocols) 
that approximate real-world settings. They frequently also provide interfaces to easily control and 
modify test scenarios. Using these toolkits, it is possible to develop a simulated version of a system 
and easily change parameters such as network topology, tests with machine failures, etc. 

Theoretical modeling and analysis have also been widely applied in many networked systems. Due to 
the complexity of many networked systems, it is challenging to develop a tractable model for the 
complete system. Thus, many models are developed for specific parts of a system. For example, 
models have been developed for network reachability (e.g. [143]), security (e.g. [144]), interdomain 
routing (e.g., [145]), and content distribution in an application-layer overlay (e.g., [146]). There are only 
several works concerned with model based testing of large software. The bibliography analysis shows 
that the most part of model based testing society tends to work with toy and small-size examples (e.g. 
[147]), even if complexity and gigantic size of modern systems urgently requires new test development 
techniques. There only exists a limited number of works related with the large-scale model-based 
testing, but they mainly concern architecture-based testing (e.g. [148]). 

By focusing only on key functionalities of a system, modeling and simulation have two primary 
benefits. First, since only key characteristics are captured, it can take less time to identify the impacts 
of certain changes. Making a change to the full-scale system typically entails details such as designing 
test cases, conducting regression tests, and handling error conditions. In addition, for networked 
systems in particular, it is typically faster to design, execute and analyze different test scenarios (e.g. 
network conditions, failure scenarios, etc.) since the physical infrastructure is not used. Second, 
modeling and simulation can be helpful to understand relationships between system components and 
parameters. Modeling and simulation also have important limitations. First, it can be difficult to 
determine exactly which key properties will affect the behavior of a complete system. The behavior of 
a networked system may not only depend on its own behavior, but also on the behavior of external 
systems that it uses (e.g., DNS, BGP). Furthermore, even if certain key properties are determined to 
be important, one may be forced to make simplifying assumptions to keep the model tractable or 
simply because it is not known how to model certain behaviors. For example, measurements studies 
(e.g. [149]) have shown that the behavior of certain networks can be very different than previously 
assumed. As a result, a model or simulation may miss possibly-unknown interactions with properties 
that are not modeled or not modeled accurately [150]. Beyond choosing which properties to model, it 



 
 

 
  

RASEN - 316853 Page 31 / 43 
 

can also be difficult or impossible to keep a simulation or model in sync with a deployed system. As a 
networked system evolves, a simulation or model must be kept in sync in order to produce meaningful 
results.  

4.4 Synthesis 
Though existing techniques are useful, they appear to be not sufficient for realistically evaluating 
correctness of networked systems at a large scale. In particular, though lab and staging infrastructures 
may be able to run a networked system in various testing scenarios, they typically do not scale to the 
size and full complexity of the production environment. Logging and replay frameworks are limited to 
detecting bugs that have already been observed and are not suitable for testing alternative scenarios 
or system behaviors. Finally, abstract models used by simulation and modeling approaches do not 
capture the full complexity of many networked systems and the environments in which they run. To 
address these challenges within the RASEN project, we notably propose to use model-based 
approaches driven by risk assessment to focus the scope of the testing goal, and to adopt a 
compositional approach to manage the complexity of such systems. This focus would offer to increase 
the risk-relevance of the generated test cases and to propose scalable approaches for large-scale 
networked systems. The next section thus introduces the baseline to initiate the proposed RASEN 
approach. 
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5 RASEN Baseline 
This section provides an initial assessment of the state of the art by specifying the starting point for the 
further development in the RASEN project. 

5.1 Baseline for Techniques on Risk-Based Test Identification and 
Prioritization 

In this section, we identify techniques for risk-based test identification and prioritization that will be 
used as a starting point for further research in the RASEN project.  In the state of the art overview in 
Section 2 we distinguished between approaches that either (A) use the risk analysis to prioritize those 
parts/features of the system under test that are most risky, or (B) use risk analysis as part of a 
failure/threat identification process. All the approaches in category (A) address test prioritization, but 
not test identification. Conversely, all approaches in category (B) consider test identification and not 
test prioritization. However, there is one exception that considers both test identification and test 
prioritization [47]. The approach will therefore be carefully considered as a starting point for the R&D 
work of RASEN WP4. However, in [47], the technique for test prioritization is only described informally. 
Within the RASEN project, we aim to formalize the technique and to develop tool support for 
automated test prioritization. 

As also discussed in Section 2, there are not many novel techniques that are proposed which are 
specifically intended to be used in the risk-based testing setting. All the approaches that we have 
particularly highlighted ([21][22][29][41]) are based on the assumption that a precise test model (in the 
form a UML activity diagram or state machine) is available at the start of the analysis process. This 
assumption restricts the applicability of the approaches. Therefore we will not initially consider any of 
these approaches as part of the RASEN baseline. It may, however, be the case that we later in the 
project consider a process where a precise test model is assumed. In that case, it would be 
appropriate to use the techniques proposed by Kloos et al. [29] as a starting point. Out of all the 
techniques proposed for risk-based testing, this one seems to be the most comprehensive. 

5.2 Baseline for Risk-based Testing from Security Test Pattern 
Security test patterns are a relatively new research area. The SecurityTestPatterns.org group 
maintains a catalogue of security test patterns with focus on the security problem that should be 
revealed by applying the pattern. Within the DIAMONDS project, an extended security test pattern 
approach focused on dynamic testing was presented [67]. The approach comprises nine security test 
patterns from the SecurityTestPatterns.org group and eight additional security test patterns. These 
security test patterns are enriched with known uses by security functional requirements from the 
Common Criteria. 

On the other hand, a CORAS template library for risk analysis covering risks that are common for a 
large number of systems was developed [68]. Its purpose is to facilitate risk analysis using the CORAS 
approach. Beside common vulnerabilities and threats, also treatment measures in the form of security 
functional requirements from the Common Criteria. 

The security functional requirements are the link between risk analysis and security testing when using 
templates from the CORAS template library. Thus, using risk templates that contain treatments based 
on security functional requirements, risk-based security testing is enabled. 

While may serve as a starting point for risk-based security testing within Task 4.1—and thus, initially 
addresses the research question on good methods and tools for deriving, selecting, and prioritizing 
security test cases from risk assessment results—it provides no support for security testing based on 
risks that do not originate from any of the CORAS risk templates. Additionally, not all security test 
patterns reference security functional requirements from the Common Criteria. Further, not all security 
problems can be mitigated by functional security measures, such as errors in the implementation of 
functional security measures that may thwart security functional measures such as weak random 
numbers for cryptographic algorithms. 
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We thus propose to revisit and adapt the traditional approach of Model-Based Testing in order to 
generate vulnerability test from risk analysis to address large-scale system. This approach, called 
Risk-based Vulnerability Testing (RBVT), is depicted in Figure 6. 

 

 

Figure 6: Risk-based vulnerability testing process 

This process is composed of the four following activities:  

1. Test and Risk Purposes activity consists in formalizing test purposes from risk analysis and 
vulnerability test patterns that the generated test cases have to cover. 

2. Modeling activity aims to produce models that capture the behavioral aspects of the SUT in 
order to generate consistent (from a functional point of view) sequences of stimuli. The use of 
a composition of models should ease the management of large-scale system and enable the 
repeatability of the approach by compositionally reusing some results from sub-components 
when addressing a global system. 

3. The Test Generation and Adaptation activity consists in automatically producing abstract test 
cases from the artifacts defined during the two previous activities; 

4. The Concretization, Test Execution and Observation activity aims to (i) translate the generated 
abstract test cases into executable scripts, (ii) to execute these scripts on the concrete 
system, (iii) to observe its responses and to compare them to the expected results in order to 
assign the test verdict and automate the detection of vulnerabilities and risk reporting. 

5.3 Baseline for Fuzzing Based on Security-Annotated Models 
Fuzzing is an effective approach for finding vulnerabilities in systems. There are several approaches to 
guide the fuzz test generation for finding certain vulnerabilities, e.g. cross-site scripting vulnerabilities 
[69]. Despite that, there are no universal fuzzing approaches that are able to find different kinds of 
vulnerabilities and at the same time have guidance for how to identify specific kinds of vulnerabilities; 
fuzzing is still an approach to find different kinds of vulnerabilities without knowing in advance which 
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will be found. Guiding the fuzz test generation process in order to find certain vulnerabilities or to focus 
on certain security aspects may be a way to reasonably reduce the number of fuzz test cases [101] 

An approach to behavioral fuzzing [100] is presented that guides the test generation in order to find 
authentication bypass vulnerabilities [101]. For that purpose, a UML model is enriched with security 
annotations using the UMLsec profile with its stereotype for role-based access control. By extending 
the tags and applicability of this stereotype for UML sequence diagrams, guidance of the test 
generation approach is enabled. This allows testing for certain vulnerabilities and reduces the number 
of test cases and thus, improves the efficiency of the behavioral fuzzing approach regarding the tested 
vulnerability and enables risk-based fuzzing. In contrast to the risk-based testing approach discussed 
in Section 5.2, this approach relies on augmenting the behavior model with security-related information 
where testing for these vulnerabilities might be relevant. While the approach constitutes a starting 
point for the RASEN project, it has two drawbacks. On the one hand, behavioral fuzzing complements 
data fuzzing. It enables finding of new vulnerabilities that cannot be found with data fuzzing, and is a 
complementary approach to data fuzzing and should not be used solely. Therefore, the approach of 
risk-based testing using security annotations in the model has to be extended to data fuzzing.  
Additionally, there is only a single example for role-based access control. A systematic approach to 
the use of annotations for test generation guidance is an open issue that constitutes a starting point for 
a systematic risk-based fuzzing approach. A prioritization based on risk assessment results is also not 
addressed.  

While there exists one approach to risk-based data fuzzing [115], its concept of risk as a relation 
between use case resources and target resources is different from the general understand of risk as 
the probability that a certain event may occur. In addition to this understanding of risk, the test 
generation process is not described. 

5.4 Baseline for Security Testing Metrics 
Task 4.3 in Work Package 4 of RASEN project is related to metrics for security testing results and 
addresses the RASEN research question on suitable metrics for quantitative security assessment in 
complex environment. Measuring security, and in particular quantitative assessment of security, is 
considered as a hard problem [80][92]. 

Section 3 presents state of the art of security metrics with respect to security testing, and also metrics 
frameworks to get an overall picture from a set of measurements and metrics, including composition of 
metrics and methodologies for developing security metrics. It can be generally said that there is only 
little research about metrics employable for security testing or composition of metrics regarding 
security. There exists only few security testing metrics where some of them are specific for fuzzing. 
Simplest are just counting the number of found flaws of certain kinds. Most are coverage metrics of 
code that does not respect the fact that, depending on the testing approach, the whole code cannot be 
covered. Hence, code coverage metrics becomes rather a relative than an absolute metric. 

Another kind of metric more related to security is the attack surface metric [89] that uses the different 
resources of a systems (such as methods, channel and data) to determine the attack opportunities. 
Other metrics that are applied when conducting fuzz testing are related to the symbols of the 
specifications and the anomalies that are injected at the different locations of a specification identified 
by these symbols [85]. The combination of these two metrics could be a good starting point for the 
development of a coverage and completeness metrics that includes aspects regarding the results of 
the risk analysis that shall drive the security testing process. Additionally to security metrics, there are 
also a few methodologies for developing security metrics. One of these approaches is a risk-driven 
approach [99][98] (cf. Section 3.4) that seems to be a starting point for the development of such 
metrics as required by the RASEN project. For that purpose, that methodology has to be customized 
to the needs of the RASEN project. 

Task 4.3 is furthermore about a dashboard for presenting the security testing results based on risk 
assessment. The security scorecard by Nichols and Peterson [91] as discussed in Section 3.2.1 goes 
in the direction of such a dashboard. While it focuses rather on found vulnerabilities than on security 
testing metrics in the sense of coverage and completeness as required by Task 4.3, the employed 
traffic light metaphor could be used for the dashboard for ease of use of use but requires definition of 
appropriate thresholds for the illustrated metrics. 



 
 

 
  

RASEN - 316853 Page 35 / 43 
 

6 Summary 
RASEN WP4 addresses compositional security testing guided by risk assessment. This deliverable 
describes the state of the art of methodologies that provide guidance for security testing techniques 
from risk assessment. Section 2 provides an overview of risk-related security approaches, with a 
particular focus on risk-based testing techniques driven by vulnerability test patterns and security-
annotated models. Section 3 provides an overview of security testing metrics and their composition 
along security requirements. The section also describes methodologies used to develop security 
metrics, which could be helpful for developing metrics for security testing within RASEN project. 
Section 4 gives an overview over existing security testing approaches that may be utilized to address 
large-scale networked systems. The section shows that, even if useful techniques exist, they mainly 
appear to be insufficient for realistically networked systems at a large scale. 

The main lesson learned is that there is a lack of approaches of risk-based testing techniques (and 
associated tools) targeting security and vulnerability in the context of large-scale networked systems. 
However, all the related existing principles, mixed with the expertise of the project partners, permit to 
define a baseline for the RASEN methodology, as exposed in Section 5. For the further development 
in the RASEN project, this baseline proposes, as starting point, the following research topics in relation 
with the research questions enounced in the summary of the document: 

• To use techniques addressing both risk-based test identification and test prioritization to drive 
the overall testing generation process. For this purpose, we propose to extend CORAS 
capabilities to allow the guidance of security test generation techniques on the basis of risk 
assessment results. 

• To drive model-based testing generation using risk assessment results in order to generate 
vulnerability test purposes and test cases. This novel approach is called risk-based 
vulnerability testing (RBVT). 

• To drive behavioral fuzzing testing approaches using models annotated by security 
information coming from risk assessment results. This novel approach is called risk-based 
fuzzing. 

• To define a dedicated methodology for security testing metrics and to elaborate a dashboard 
for presenting the security testing results based on risk assessment. 

• To propose a compositional security testing process enabling to deal with large scale 
networks systems in complex environments. This compositional approach leads to re-use 
results from sub-components when addressing a global module. 

These baselines will be used within WP4 to elaborate a tool-based integrated compositional process 
for guiding security testing deployment by means of reasonable risk coverage and probability metrics. 
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