

RASEN - 316853

Deliverable D4.1.1

Baseline for Compositional Risk-Based

Security Testing

RASEN - 316853 Page 2 / 43

Project title: RASEN

Project number: 316853

Call identifier: FP7-ICT-2011-8

Objective: ICT-8-1.4 Trustworthy ICT

Funding scheme: STREP – Small or medium scale focused research project

Work package: WP4

Deliverable number: D4.1.1

Nature of deliverable: Report

Dissemination level: PU

Internal version number: 1.0

Contractual delivery date: 2013-01-31

Actual delivery date: 2013-01-31

Responsible partner: Smartesting

RASEN - 316853 Page 3 / 43

Contributors

Editor(s) Fabien Peureux (SMA)

Contributor(s) Jürgen Großmann (FOKUS), Bruno Legeard (SMA), Fabien Peureux (SMA),
Martin Schneider (FOKUS), Fredrik Seehusen (SINTEF)

Quality assuror(s) Arthur Molnar (IW), Bjørnar Solhaug (SINTEF)

Version history

Version Date Description

0.1 12-11-09 TOC proposition

0.2 12-12-17 Preliminary draft of the deliverable

0.3 13-01-07 Updates of Section 2 & 3

0.4 13-01-11 Updates of Section 2 & 5

0.5 13-01-16 Updates of Section 4 & 5

0.6 13-01-21 Final updates for all document – ready for internal review

1.0 13-01-31 Final version

Abstract
Work package 4 will develop a framework for security testing guided by risk assessment and
compositional analysis. This framework, starting from security test patterns and test generation
models, aims to propose a compositional security testing approach able to deal with large scale
networks systems. This report provides a state of the art of methodologies involved to reach this goal,
respectively, risk-related security testing approaches, such as security testing metrics and testing
approaches for large-scale networked systems. The report finally provides the RASEN baseline for
compositional risk-based security testing. The baseline defines the basis for the development work to
be completed during the project.

Keywords
Security testing, risk-based security testing, fuzzing on security models, security testing metrics,
large-scale networked systems

RASEN - 316853 Page 4 / 43

Executive Summary

The overall objective of RASEN WP4 is to develop techniques for how to use risk assessment as
guidance and basis for security testing, and to develop an approach that supports a systematic
aggregation of security testing results. The objective includes the development of a tool-based
integrated process for guiding security testing deployment by means of reasonable risk coverage and
probability metrics.

The purpose of this document is twofold. First, we give an overview of the state of the art that is
relevant for the WP4 research objective. Second, we present the RASEN WP4 baseline which is the
existing tools and techniques that serve as a promising starting point for the research tasks.

The description of the state of the art and the baseline are organized according to the three main
research tasks of WP4, which are the following:

• T4.1: Deriving test cases from risk assessment results, security test patterns and test
generation models in a compositional way

• T4.2: Automating test execution based on risk assessment in a compositional way

• T4.3: Metrics and Dashboard of security testing results based on risk assessment

The discussion of the state of the art and the identification of the WP4 baseline are guided by the
RASEN research questions that are relevant for the work package. These research questions are the
following:

1. What are good methods and tools for aggregating test results (obtained by both active testing
and passive testing) to the risk assessment?

2. How can test results be exploited to obtain a more correct risk picture?

3. What are good methods and tools for deriving, selecting, and prioritizing security test cases
from risk assessment results?

4. What are suitable metrics for quantitative security assessment in complex environments?

As discussed in this deliverable, existing techniques do not deal with the complexity of large,
heterogeneous networked systems. The progress beyond the state of the art targeted by RASEN
focuses mainly on the compositional management of security testing, deriving security test results of
the system from security testing of its components. This work will focus mainly on model-based
security testing techniques, ensuring the compositionality on the basis of security test patterns and
models.

RASEN - 316853 Page 5 / 43

Table of contents
1 INTRODUCTION ... 6

2 RISK-RELATED SECURITY TESTING APPROACHES .. 7
2.1 DYNAMIC APPLICATION SECURITY TESTING ... 7
2.2 RISK-BASED TEST IDENTIFICATION AND PRIORITIZATION ... 8

2.2.1 Motivation for Techniques for Risk-Based Test Identification and Prioritization 8
2.2.2 Techniques for Risk-Based Test Identification and Prioritization ... 9

2.3 RISK-BASED TESTING FROM SECURITY AND VULNERABILITY TEST PATTERNS 13
2.4 FUZZING BASED ON SECURITY-ANNOTATED MODELS .. 15

2.4.1 Model-Based Data Fuzzing ... 16
2.4.2 Behavioral Fuzzing Based on Security-Annotated Models ... 18

3 SECURITY TESTING METRICS .. 22
3.1 MEASUREMENTS.. 22
3.2 SECURITY METRICS FRAMEWORKS ... 23

3.2.1 Security Scorecard... 23
3.2.2 Composition of Security Metrics .. 24

3.3 METRICS FOR SECURITY TESTING ... 26
3.4 METHODOLOGIES FOR DEVELOPING SECURITY METRICS .. 27

4 TESTING APPROACHES FOR LARGE-SCALE NETWORKED SYSTEMS 29
4.1 LAB AND STAGING INFRASTRUCTURES .. 29
4.2 LOGGING/REPLAY SYSTEMS .. 29
4.3 MODELING AND SIMULATION .. 30
4.4 SYNTHESIS ... 31

5 RASEN BASELINE .. 32
5.1 BASELINE FOR TECHNIQUES ON RISK-BASED TEST IDENTIFICATION AND PRIORITIZATION 32
5.2 BASELINE FOR RISK-BASED TESTING FROM SECURITY TEST PATTERN .. 32
5.3 BASELINE FOR FUZZING BASED ON SECURITY-ANNOTATED MODELS ... 33
5.4 BASELINE FOR SECURITY TESTING METRICS ... 34

6 SUMMARY .. 35

REFERENCES .. 36

RASEN - 316853 Page 6 / 43

1 Introduction
The objective of RASEN WP4 is to develop techniques for how to use risk assessment as guidance
and basis for security testing, and to develop an approach that supports a systematic aggregation of
security testing results. The objective includes the development of a tool-based integrated process for
guiding security testing deployment by means of reasonable risk coverage and probability metrics. In
reaching the objectives, WP4 focus in particular on three more specific tasks. First, developing
techniques for deriving test cases from risk assessment results, security test patterns and test
generation models in a compositional way. Second, developing tools for automating test execution
based on risk assessment in a compositional way. Third, developing metrics and Dashboard of
security testing results based on risk assessment.

This deliverable gives an overview of relevant state of the art, and identifies the baseline for the
upcoming RASEN WP4 R&D activities. The state of the art in application security and vulnerability
testing is structured in two main classes of techniques:

• SAST – Static Application Security Testing, which are white-box approaches that include
source, byte and object code scanners and static analysis techniques;

• DAST – Dynamic Application Security Testing, which includes black-box web application
scanners, fuzzing techniques and emerging model-based security testing approaches.

In practice these techniques are complementary, addressing different types of vulnerabilities. As we
will see, DAST is most relevant for the RASEN project. The description of the state of the art in this
deliverable and the identification of the WP4 baseline are guided by the relevant RASEN research
questions. These, extracted from the RASEN DoW, include the following:

• What are good methods and tools for aggregating test results (obtained by both active testing
and passive testing) to the risk assessment?

• How can test results be exploited to obtain a more correct risk picture?

• What are good methods and tools for deriving, selecting, and prioritizing security test cases
from risk assessment results?

• What are suitable metrics for quantitative security assessment in complex environments?

The document is structured as follows. In Section 2 we give an overview of security testing
approaches that are related to risk assessment. In Section 3 we present techniques to measure and
quantify security testing relevance. Section 4 describes existing approaches to security testing of
large-scale networked system. In Section 5 we present the RASEN WP4 baseline, before concluding
in Section 6 by summarizing.

RASEN - 316853 Page 7 / 43

2 Risk-Related Security Testing Approaches
This section firstly presents the state of the art on risk-related approaches, focusing on Dynamic
Application Security Testing (DAST). In Section 2.2, we motivate and describe techniques to identify
and prioritize test cases with regards to risk analysis results. We next give an overview of the risk-
based testing approaches that use security and vulnerability test patterns to drive the test case
definition (Section 2.3), and that use security-annotated models to apply fuzzy techniques (Section
2.4).

2.1 Dynamic Application Security Testing
Software security testing aims at validating and verifying that a software system meets its security
requirements [1][117]. Two principal approaches are used: functional security testing and security
vulnerability testing [2][118]. Functional security testing is used to check the functionality, efficiency
and availability of the designed security functionalities and/or security systems (e.g. firewalls,
authentication and authorization subsystems, access control). Security vulnerability testing (or
penetration testing, often called pentesting) directly addresses the identification and discovery of yet
unknown system vulnerabilities that are introduced by security design flaws or by software defects,
using simulation of attacks and other kinds of penetration attempts. Vulnerability testing is therefore
a risk-based testing approach to discover vulnerabilities on the basis of exposed weaknesses and
vulnerabilities in databases such as CVE1, OWASP2 or CAPEC3 catalogues. These databases collect
known vulnerabilities and provide the information for developers, testers and security experts. For
example, the CVE database provides currently in NVD v2.24 more than 54 500 exposed
vulnerabilities. They relate to all the technologies and frameworks used to develop web applications.
For instance, more than 700 vulnerabilities have been identified in various versions of Joomla!, one of
the Top 3 content management systems. But this large amount of vulnerabilities relates to a few
number of vulnerability classes, such as cross-site scripting (XSS), SQL injection or file upload to
mention some of the most prominent.

Model-based security testing. Model-based testing (MBT) uses selected algorithms for generating
test cases automatically from models of the system under test (SUT) or of its environment. Although
there are a number of research papers addressing model-based security (see e.g. [3][119][4][120])
and model-based testing (see e.g. [5]), there is still little work on model-based security testing (MBST).
Of what exists in the state of the art, [6] discusses and implements an MBST approach which reads in
context-free grammars for critical protocol interfaces and generates the tests by systematically walking
through the protocol behavior. [7]The work in addresses the problem of generating test sequences
from abstract system specifications in order to detect possible vulnerabilities in security-critical
systems. The authors assume that the system specification, from which tests are generated, is
formally defined using the Focus language. The approach has been applied to testing firewalls and
transaction systems. In [8], a threat driven approach to model-based security testing is presented.
UML sequence diagrams specify a threat model i.e., event sequences that should not occur during the
system execution. The threat model is then used as a basis for code instrumentation. The
instrumented code is executed using randomly generated test cases. If an execution trace matches a
trace described by the threat model, security violations are reported.

Weakness and vulnerabilities models. A weakness or vulnerability model describes the weakness
or vulnerability independently of the SUT. The information needed to develop such models is given by
databases like the Common Vulnerabilities and Exposures (CVE) repository. These databases collect
known vulnerabilities and provide the information to developers, testers and security experts, so that
they can systematically check their products for known vulnerabilities. One of the challenges is how
these vulnerabilities can be integrated into system models, so that they can be used for test
generation. One possible solution is based on the idea of mutation testing [9]. For security testing,
models of the SUT are mutated in a way that the mutants represent weaknesses or known
vulnerabilities. These weakness or vulnerability models can then be used for test generation by

1 CVE – Common Vulnerabilities and Exposures – MITRE - http://cve.mitre.org/
2 OWASP – The Open Web Application Security Project - www.owasp.org
3 CAPEC – Common Attack Pattern Enumeration and Classification – MITRE - http://capec.mitre.org/
4 National Vulnerability Database Version 2.2 - http://nvd.nist.gov/ - Last access January 2013.

http://cve.mitre.org/
http://www.owasp.org/
http://capec.mitre.org/
http://nvd.nist.gov/

RASEN - 316853 Page 8 / 43

various MBT approaches. The generated tests are used to check whether the SUT is weak or
vulnerable with respect to the weaknesses and vulnerabilities in the model. [10] presents the
application of this principle to security protocols. [11] presents a methodology to exploit a model
describing a Web application at the browser level to guide a penetration tester in finding attacks based
on logical vulnerabilities (e.g. a missing check in a Role-Based Access Control (RBAC) system, non-
sanitized data leading to XSS attacks). The authors provide mutation operators that reflect the
potential presence of specific vulnerabilities and allow a model-checker to generate attack traces that
exploit those vulnerabilities.

Fuzzing. Fuzz testing or fuzzing is a software testing technique, often automated or semi-automated,
that involves providing invalid, unexpected, or random data as inputs to a computer program. The
program is then monitored for exceptions such as crashes, failing built-in code assertions or memory
leaks. Fuzzing is commonly used to test for security problems in software or computer systems. The
field of fuzz testing originates with Barton Miller at the University of Wisconsin 1988 [12]. Fuzzing was
originally based on a completely randomized approach. Recently more systematic approaches have
been proposed. Black-box-based and model-based fuzzers use their knowledge about the message
structure to systematically generate messages containing invalid data among valid inputs [13][129].
Systematic approaches are often more successful because the message structure is preserved and
thus the likelihood increases that the generated message is accepted by the SUT. Fuzzing based on
Security-Annotated Models, a relevant approach for the RASEN project, is presented in Section 2.4.

Penetration testing. Black-box web application vulnerability scanners are automated tools that probe
web applications for security vulnerabilities, without access to source code. They mimic external
attacks from hackers, provide cost-effective methods for detecting a range of important vulnerabilities,
and may configure and test defenses such as web application firewalls [14][15]. Web application
scanners have gained popularity due to their independence from the specific web application’s
technology, ease of use, and high level of automation. They have limitations, however, as discussed in
Section 2.2.2.

Detecting errors – the oracle problem. Fuzzing and pentesting monitor for exceptions such as
crashes, failing built-in code assertions or memory leaks. Test automation should provide better
analysis of the test results, that is, automating the test oracle’s evaluation of the test case’s actual
results as pass or no pass. One problem is the test oracle comparator: given a test case and an
abstraction of expected results, how to automatically determine whether the Web application produces
correct output. Major challenges to developing oracles for Web applications are the difficulty of
accurately modeling Web applications and observing all their outputs [15][16].

2.2 Risk-Based Test Identification and Prioritization
This section deals with techniques that are used for identifying and prioritizing test cases based on risk
analysis results. By technique we mean an algorithm, a language, or an analysis method which can be
used as part of a methodology or an overall process. Most of the approaches to risk-based testing are
based on already existing techniques within the areas of risk analysis (such as HAZOP or fault trees)
and testing. The reader is referred to RASEN deliverable D3.1.1 for further details on these
techniques. In the following we will concentrate on techniques that are specific to risk-based testing.

2.2.1 Motivation for Techniques for Risk-Based Test Identification and
Prioritization

It is impossible to test every execution of most computer systems since there are usually an infinite
number of possible executions. Therefore, when testing a system, we are usually forced to select the
parts/executions of the system that will be tested. For security testing, where it is often difficult to find
an adequate coverage criteria, the tester must choose which parts of the system to test based on
some kind of prioritization of the most “security critical” parts of the system. Often this kind of
prioritization is done informally by the security tester based on the knowledge that she/he has. The
drawbacks of doing this informally are that:

• the decisions on which the prioritization is done are not well-documented;

• the prioritization will be extremely dependent on the security tester;

RASEN - 316853 Page 9 / 43

• the prioritization can be somewhat arbitrary and can be difficult to establish a sense of
coverage.

In sum, these points could result in the testing effort being focused in the wrong directions, which
again may result in the test cases being less likely to identify vulnerabilities in the system.

A structured approach to test prioritization is less likely to suffer from the same drawbacks as a purely
informal approach. One natural way of structuring the prioritization process is to use the risk analysis
to guide the test prioritization. This is natural because test prioritization can always be seen as being
based on some notion of risk (although this notion may be implicit). In addition to providing a
structured approach to prioritizing test cases, risk analysis can also be used as part of a test
identification process. The reason for this is that a risk analysis is often performed by means of fault or
threat modeling, and the results from this modeling can naturally be used as input to the test
identification process.

2.2.2 Techniques for Risk-Based Test Identification and Prioritization
Although there are several approaches that use risk analysis in order to identify and prioritize tests,
most of these approaches are based on already existing techniques from risk analysis and testing. In
other words, very few new techniques are proposed that specifically combine risk analysis and testing.
We will nevertheless give a summary of the existing techniques that are used by risk-based testing
processes, before describing in more detail the techniques proposed that have been specifically
developed in a risk-based testing setting.

Almost all the approaches to risk-based testing use risk analysis in one of two ways. Either the risk
analysis is used to prioritize those parts/features of the system under test that are most risky, or risk
analysis is used as part of a failure/threat identification process. The main steps of the former
approach are:

• Step 1: Break the target of analysis into smaller parts/features.

• Step 2: Estimate a risk value for each part/feature.

• Step 3: Specify tests for the parts/features that have the highest risk.

Clearly, the approaches that follow this process use risk analysis to prioritize the testing. However,
none of the approaches that follow this process use information from the risk analysis to identify
relevant tests, only the test areas are identified. In Table 1 we have listed all the approaches that we
are aware of that follow the process described above, and the techniques used in each step. All of
these approaches use already existing techniques such as HAZOP [50] to identify risks, or code
complexity measures to identify areas of code that are most likely to fail.

RASEN - 316853 Page 10 / 43

Approach Step 1 Step 2 Step 3

Bach [17] No particular support. List of questions used in risk analysis. List
and tables are used to organize risks.

No
particular
support.

Redmill
[34][35][36]

System described as a
set of services and
service functions. No
particular support for
identifying these, but
examples are given.

HAZOP is used to identify risks.
Risk analysis based on likelihood and/or
consequence with tables for documenting
the results is proposed.

No
particular
support.

Souza et al.
[39][40]

System described in
terms of requirements
and features

Risk analysis performed using questioners
and/or checklists. Results are document
using “metrics” which are proposed by the
authors.

No
particular
support.

Bai et al. [18] System described as a
set of web-services.

Risks are calculated based on the
probability of failure of service functions
and so-called data ontologies which are
arguments to service functions. Test cases
are grouped according to the risk of the
target features the tests are aimed at.

No
particular
support.

Felderer et
al. [23]

System is described as a
set of units, components,
and features.

Criteria for how to measure the probability
and impact are specified. Units,
components, and requirements are
estimated/measured according to the
criteria. Finally, risks are calculated based
on the estimated/measured values.

No
particular
support.

Ottevanger
[32]

System is described as a
set of quality
characteristics and
subsystems.

Select and determine relative importance of
quality characteristics. Divide system into
sub-systems and determine relative
importance of these.

No
particular
support.

Rosenberg
et al. [37]

Only object-oriented
source code is
considered, which is
described/broken down
into classes.

For each class, estimate the likelihood of
failure based on a measure its complexity.
Prioritize the classes with highest likelihood
values when testing.

No
particular
support.

Wong et al.
[43]

Only source code is a
considered, which is
broken down into
functions or code blocks.

For each function of code block, estimate
the likelihood of failure on a measure its
complexity. Prioritize the functions/blocks
with highest likelihood values when testing.

No
particular
support.

Table 1 – Summary of approaches that use risk analysis to prioritize test areas

The approaches that use risk analysis as part of a failure or threat identification have the following
main steps:

• Step 1: Perform a risk analysis of the target system.

• Step 2: Perform threat/fault modeling.

• Step 3: Specify tests for the most severe threats/faults.

Many of the approaches that follow this process do not use the risk analysis in order to prioritize tests,
but all of them use results from the fault/threat modeling as input to the test specification step. In Table
2, we have summarized all approaches that we are aware of that follow the above process, and

RASEN - 316853 Page 11 / 43

highlighted the techniques used in each step. Again, most of the approaches are based on already
existing techniques such as fault trees.

Approach Step 1 Step 2 Step 3

Murthy et al
[31]

Risk analysis is based on
the NIST process [48].

Threat modeling activity is
on Microsoft’s Threat
Modeling process from
Microsoft’s security
developer center.

Misuse cases are used to
describe security test
scenarios. No detailed
explanation of how to do
this is given. No description
of how threats are
prioritized is given.

Zech et al.
[44][45][46]

Performed by
transforming the system
model into a risk model.
However, little description
of system model, risk
model, or the
transformation is given.

Performed by
transforming the risk
model into a misuse case
model. Little description of
misuse case model or the
transformation is given.

The misuse cases are seen
as test cases that can be
executed. Little description
of how this is done is given.
No description of how
threats are prioritized is
given.

Casado
et.al [20]

Targets web-service transactions which are
decomposed into properties. Fault trees [49] are used
to describe risks (and threats) for each transaction
property.

Leafs in fault trees
correspond to tests. A test
for a leaf node is a
sequence of transaction
notifications that will reach
the state described by the
leaf node. The details are a
little unclear in the paper.
No description of how tests
are prioritized is given.

Kumar et
al.[30]

Targets faults introduced by aspect oriented
programming. A fault model is proposed (a table with
fault types) and a risk model (a table assigning risk
levels to fault types).

Tests are specified for fault
types that have high risk.
No description of how tests
are prioritized is given.

Gleirscher
[24]

The test model is derived from system requirements
and expressed as a Golog script. Hazards/faults are
specified as logic properties.

The test model is executed
to see if it admits the
specified hazards/faults. No
description of how tests are
prioritized is given.

Erdogan et
al. [47]

Threats are modeled in CORAS [51] threat diagrams
as part of the risk analysis.

Each threat scenario is
prioritized based on three
criteria: severity, testability
and uncertainty. The threat
scenarios with the highest
priority are detailed into test
cases.

Table 2 - Summary of risk-based testing approaches that use threat/fault modeling

The only approach which considers threat prioritization is [47]. In this approach, tests are derived from
so-called threat scenarios that are prioritized according to three criteria:

• Severity: An estimate of the impact that a threat scenario has on the identified risks of the
analysis.

• Testability: An estimate of the time it would take to test a threat scenario and/or whether the
threat scenario could be tested given the tools available.

RASEN - 316853 Page 12 / 43

• Uncertainty: An estimate of the uncertainty related to the severity estimate of a threat
scenario. High uncertainty suggests a need for testing

The only approaches that we are aware of that present novel techniques that are specifically intended
to be used in a risk-based testing setting are [21][22][29][41]. All of these follow a process which differs
slightly from the processes described above. That is, the approaches assume that a test model is
already available at the start of the process, and they have two main steps:

• Step 1: Annotate/update the test model based on risk information.

• Step 2: Generate tests from the test model and use the risk information to prioritize the
tests.

The approach given by Chen et al. [21][22] uses risk analysis for the purpose of prioritizing test cases
in the context of regression testing. The part of the approach that considers the identification and
prioritization of test cases is explained in detail and is motivated by its application on a case study.

The approach uses UML activity diagrams to model system features and then derives test cases from
the activity diagrams. A test case, in this approach, is a path in an activity diagram starting from the
activity diagram’s initial node and ending at its final node. Furthermore, the approach carries out risk
analysis of the test cases in order to prioritize them with respect to their risk exposure values. The risk
analysis process in the approach is a slightly modified version of the risk analysis process given in
Amland [1][16] and is therefore also supported by a table based risk analysis technique. The approach
carries out this risk analysis process to also identify the most important test scenarios. Test scenarios
are basically a collection of test cases that collectively simulate use cases. The approach does not
specifically address security and is also is not supported by a dedicated tool.

The approach given by Stallbaum et al. [41] presents a technique to automate the generation of test
case scenarios based on activity diagrams (which are regarded as test models in this approach), and
to automatically prioritize test case scenarios based on their total risk value.

A test case scenario, in this approach, is a path in an activity diagram starting from the activity
diagram’s initial node and ending at its final node. This is similar to what is referred to as a test case
by Chen et al. [21][22]. Furthermore, each activity in an activity diagram is annotated with a risk value.
In this approach, a risk value is the product of the probability that an activity contains a fault and the
total damage caused by the fault. The risk values that are assigned on the activities are further used to
calculate the total risk value for a test case scenario. The approach does not explain how risk
assessment is carried out, but focuses only on the automation technique.

Kloos et al. [29] present an approach for generating tests based on a set of fault trees (a fault tree
represents one critical failure mode in its root node), and events that may lead to the critical failure
mode in its child nodes and a so-called base model, i.e. a state machine providing information about
the possible stimulations of the system under test. The main idea of the approach is to use the fault
trees together with the base model to derive a test model which includes the event sets of the fault
trees that are sufficient to test the root fault of the tree.

The following are the steps in the approach: (1) classify basic events of the fault tree, (2) select event
sets of the fault trees, (3) build test model, (4) generate test cases and (5) execute test cases. Only
Step 1, 2 and 3 are explained in detail.

The purpose of Step 1 is to match the events described in the fault tree with the abstraction level used
in the base model by classifying all of the events in each fault tree into four different classes;
“controllable”, “observable”, “external” and “internal” events.

In Step 2, the most critical failure modes are considered for further testing. It is mentioned that the
most critical failure modes are identified based on the risk information given in their respective fault
trees, i.e. fault probability and the severity given that the failure occurs, but it is not explained how, and
based on what, these values are identified. All of the events in each fault tree are then grouped into
event sets by making use of, what is referred to as, event set calculation. The purpose of Step 3 is to
construct a test model. The test model is constructed by making use of a test model construction
algorithm provided by the approach. The algorithm makes use of the event classification (Step 1) and
transforms each event in the event sets (identified in Step 2) to state machine transitions. The

RASEN - 316853 Page 13 / 43

transformed events are also integrated into the base model during this process. The final state
machine diagram is then referred to as the test model.

In Step 4, test cases are generated based on the test model constructed in Step 3. The approach
refers to other literature for details on generating the test cases from the test models, but they are
basically generated by considering each path (starting from the initial state and ending at the final
state) in the state machine diagram as a test case. Finally, the test cases are executed in Step 5.

2.3 Risk-Based Testing from Security and Vulnerability Test
Patterns

While risk analysis is on one hand a system-specific task, on the other hand there are also
vulnerabilities and threats common to a set of different systems or certain kinds of systems. E.g.
common vulnerabilities for many systems are buffer overflows, or SQL injection for web applications.
In the context of the ITEA-2 research project DIAMONDS5, a set of templates for risk analysis was
identified [68] based on security incidents [70] and security functional requirements from the Common
Criteria [78]. Seven template diagrams were defined, e.g. “Malfunctions”, “External Intrusions and
Attacks”, and “Malicious Behavior of Users and Administrators”.

The initial set of template diagrams were defined following a four-step process:

1. Selection of vulnerabilities and incidents from a list of 92 proposed security indicators.

2. Mapping of selected vulnerabilities and incidents to vulnerabilities and threat scenarios of the
CORAS [88] risk analysis approach.

3. Enriching the template diagram with specific threats and vulnerabilities mentioned in the
security indicator description selected in Step 1.

4. Completing the template diagram by manually mapping vulnerabilities and threat scenarios
to security functional requirements from the Common Criteria. The security functional
requirements act as treatments to the vulnerabilities and threat scenarios they are mapped to
in Step 2.

An example of such a template diagram is depicted in Figure 1. It shows an excerpt of a “Malfunctions”
diagram comprising several threats, e.g. “Hostile Administrator”, vulnerabilities, e.g. “Unlawful
voluntary stoppage” and a threat scenario “INC21: Downtime or malfunction of the trace production
function” based on a security indicator and two treatments, e.g. “FAU_GEN.1: Audit data generation”,
from the Common Criteria.

Figure 1: Example of a risk template [68]

5 See www.itea2-diamonds.org for more information.

http://www.itea2-diamonds.org/

RASEN - 316853 Page 14 / 43

While these template diagrams are a way to facilitate model-based risk analysis, in addition to these
risk templates a security test pattern catalogue was developed [67].

The SecurityTestPatterns.org group defines security test patterns as follows:

"A software security test pattern is a recurring security problem, and the description of the a test case
that reveals that security problem, that is described such that the test case can be instantiated a
million times over, without ever doing it the same way twice." [103]

The test pattern catalogue [67] comprises 17 security test patterns defined in a generic way and based
on Mitre Corporation and the SecurityTestPatterns.org Group. Each security test pattern definition
follows a tabular template for their description consisting of the following fields:

• Pattern name

• Context: kind of test pattern (e.g. organizational, generic, behavioral, or test data), group of
security approach (planning, prevention, detection, diligence, response)

• Problem/goal: addressed testing problem or goal regarding security testing achieved by the
security test pattern

• Solution: full description of the pattern

• Known uses

• Discussion: pitfalls, impact of the pattern

• Related patterns

• References

Table 3 shows the security test pattern “Verify Audited Event’s Presence” as an example. The fields
“known uses” and “references” are here of interest. They may refer to external resources where the
described pattern is applied or applicable. In this case, there are references to security functional
requirements from the Common Criteria. In combination with the aforementioned approach of a
template library for model-based risk analysis, security functional requirements forms a link between
template diagrams and security test patterns and provide traces between risk analysis and security
testing. This link allows applying security test patterns in order to conduct security testing based on
risk analysis that takes advantage of the template diagrams.

RASEN - 316853 Page 15 / 43

Pattern name Verify audited event’s presence

Context Test Pattern Kind: Behavioral
Testing Approach(es): Detection

Problem/Goal This pattern addresses how to check that a system logs a particular type of
security-relevant event for auditing purpose

Solution Test procedure template
1. Activate the system’s logging functionality
2. Clear all existing log entries
3. Record current system time ts
4. Stimulate the system to generate the expected event type
5. Check that the system’s log contains entries for the expected event / Taking

into account only logs displaying timestamps tl satisfying the following
condition: tl > ts

Known uses Common Criteria SFRs: FAU_GEN.1, FAU_GEN.2

Discussion This pattern assumes that the test framework provides means for tracing and
evaluating the logs produced by the SUT. Evaluation may be performed online
(i.e. quasi simultaneously, while the system is still running) or offline, i.e. after
the system has completed its operation.
An interesting issue to be considered is how to apply this pattern in situations
whereby it may be impossible or too costly to clear the log repository or to
restart the running system.

Related patterns
(optional)

• Sandwich test architecture pattern
• Proxy test architecture pattern
• Verify audited event’s content

References FAU_GEN.1, FAU_GEN.2

Table 3: Example test pattern "verify audited event's presence"

2.4 Fuzzing Based on Security-Annotated Models
Fuzzing is a security testing approach consisting in stressing the interface of a system under test
(SUT) with invalid, random or unexpected inputs [94]. The focus of fuzzing is to find security-relevant
weaknesses in the implementation that may cause denial of service, degradation of service or
undesired behavior [108].

Fuzzing experiences major development. The original fuzzers simply generated input data
randomly. Such data is mostly totally invalid [108] and is therefore rejected by the SUT in most cases
because it does not pass simple sanity checks [94]. To do so, modern fuzzers use knowledge about
the protocol that is used for communicating with the SUT in order to generate input data. It aims at
generating semi-valid input data, which means that it contains mostly valid parts, but also a few invalid
parts, instead of being completely invalid. Hence, such data is called semi-valid [92]. Semi-valid input
data has a significantly better chance to pass possibly faulty sanity checks. Containing only little
invalid data, they may pass the sanity check of the SUT due to a single input validation fault, and
therefore be processed by deeper components of the SUT. Semi-valid input is therefore often able to
reveal security relevant weaknesses in the SUT’s implementation [71][74][112][116].

http://www.cygnacom.com/labs/cc_assurance_index/CCinHTML/PART2/Part23-2-1.htm
http://www.cygnacom.com/labs/cc_assurance_index/CCinHTML/PART2/Part23-2-2.htm

RASEN - 316853 Page 16 / 43

Figure 2: Targets of random-based and model-based fuzzers (cf. [108])

Model-based or smart fuzzers have a complete model of the SUT’s protocol and are able to generate
complex interactions with it by sending a set of valid messages and after reaching a certain state,
stressing it with semi-valid input data. Therefore, while random fuzzers often find just simple bugs,
more complex bugs can be found by model-based fuzzers [108]. Another consequence is that model-
based fuzzers are more efficient because the targeted input space is much smaller than the input
space of all invalid inputs targeted by random-based fuzzers. This is illustrated in Figure 2, which is
adopted from [108].

While fuzzing is typically a black box approach where nearly nothing is known about the internals of
the SUT [109], there are also some gray box and white box approaches where the source code or the
code structure is used to guide the test generation process [71][73].

Determining the test verdict while fuzzing is much more difficult than by functional testing. While in
functional testing the output of the SUT in reaction to a stimulus can be observed and compared to an
expected result, this is not viable for fuzzing. More or less detailed monitoring of the SUT with respect
to the expected faults is necessary. Simple monitoring can be achieved in different ways. One
possibility is a connectivity check to verify if the SUT is still alive [105]. Another is valid case
instrumentation where a functional test case is executed after each fuzz test case in order to
determine if the SUT is not only alive but also working and functional [108]. Other kinds of bugs, e.g.
memory corruption, require more sophisticated monitoring techniques, such as library interception that
enables easier detection of memory bugs by using special libraries such as Guard Malloc [108].

2.4.1 Model-Based Data Fuzzing
As mentioned above model-based fuzzers employ protocol knowledge in order to generate semi-valid
input data. The model can be created by a system engineer or a tester, or it can be inferred by
investigating traces or using machine-learning algorithms. There are many possibilities for what can be
used as a model. Context-free grammars are widely used as a model for protocol messages
[53][84][112]. As a model for the flow of messages, state machines can be employed as in [53][57][59].

Grammars

Many of the early model-based fuzzers use context-free grammars for specification of both message
syntax and the flow of messages. In the PROTOS project on Security Testing of Protocol
Implementations [83][84], Kaksonen, Laakso and Takanen used a Backus-Naur-Form (BNF) based
context-free grammar to describe the message exchange between a client and a server consisting of a
request and a response, as well as the syntactical structure of the request and the response
messages. The context-free grammar acts as a model of the protocol. In the first step, they replace
some rules by explicit valid values. In a second step they insert exceptional elements into the rules of
the grammar, e.g. extremely long or invalid field values. In the third step, they define test cases by
specifying sequences of rules to generate test data.

In [112], Viide et al. introduce the idea of inferring a context-free grammar from training data that is
used for generating fuzzed input data. They used compression algorithms to extract a context free

RASEN - 316853 Page 17 / 43

grammar from the training data following the "Minimum Description Length" principle, in order to avoid
the expensive task of creating a model of the SUT. The quality of the inferred model directly correlates
with the amount and dissimilarity of available traces used for extracting the grammar.

While fuzzing is originally a black-box approach, Godefroid et al. [72] followed a white-box approach.
In order to improve code coverage, they created a grammar from program branches by performing
symbolic execution and constraint solving. For each program path, a path constraint is generated by
combining all path conditions with logical “and”. These generated constraints are called grammar
constraints. In combination with a context-free grammar of the input language, a context-free
constraint solver solves these grammar constraints in order to generate inputs yielding to higher code
coverage.

Kitagawa, Hanaoka and Kono [87] used a language called tsfrule for describing the state machine and
message syntax. Messages are manually specified using regular expressions. They describe different
fuzzing strategies they implemented: long string generation, violation of character restrictions,
erroneous values, format string attacks as well as structural mutations affecting the number of fields or
removing delimiters.

State Machines

In order to model the message flow of a protocol, also state machines can be used. Allen, Dou and
Marin [55] modeled the FTP protocol in combination with block-based analysis. The state machine
was used to generate so called test pattern that represents valid sequences of client/server
interactions. In contrast, fuzzing of the different types of blocks is written manually in Python scripts.

Banks et al. describe in [57] a tool called SNOOZE for developing stateful network protocol fuzzers.
The tool reads an XML-based protocol specification containing, among other things, the syntax of
messages and a state machine representing the flow of messages. A fault injector component allows
modifying integer and string fields to generate invalid messages. SNOOZE can be used to develop
individual fuzzers and provides several primitives for fuzzing several values depending on their type.
Monitoring of the system under test was realized by observing the received messages for their
presence and the correct type.

Non-deterministic finite state machines (NFSM) are used by Jing et al. [82] for describing a protocol.
The rationale for the use of non-deterministic finite state machines is that protocol specifications are
often ambiguous. They focused on the verification of the SUT's state depending on whether a state
transition is defined by a protocol specification for anomalous input. They rely on this differentiating
factor and propose corresponding “normal-verification sequences”. These verification sequences are
used to determine the SUT's current state and compare it to the protocol specification. Anomalous
protocol data units (PDU) are generated by using e.g. boundary values, removing or adding fields
within PDU or generating length and checksum errors. For each anomalous PDU, only one field was
mutated at once called single-field mutation testing. Test cases are generated in TTCN-3 (Testing and
Test Control Notation, version 3) with an extension. This extension consists of a new keyword
loopreplace which allows modification of a template without generating a new one.

Shu, Hsu and Lee [77][104] used partial finite state machine (FSM) reduction to obtain a FSM from a
large set of traces. They proposed to monitor the system to be tested to obtain traces and compute a
tree FSM from these traces. In the next step, they minimized the number of states by calculating a set
of merging constraints and use these to merge corresponding states. This learned FSM was used to
guide the test process. Transition coverage was used to measure the comprehensiveness of the
generated test cases. They implemented fuzzing itself by applying “typical fuzz function”.

For testing the IPv6 Neighbor Discovery Protocol, Becker et al. [59] used a finite state machine as a
behavioral model of the protocol and decomposed the messages of the Neighbor Discovery Protocol.
They applied several fuzzing strategies, e.g. changing field values or duplicating fields like checksums.
They combined their fuzzing approach with reinforcement learning that used two reward functions:
One function that measures the entropy, i.e. the number of different functions called while the SUT is
processing a single message, and the power, i.e. the number of function calls due to processing a
single message.

RASEN - 316853 Page 18 / 43

Taber et al. [107] used fuzzing to test softphones based on the Session Initiation protocol (SIP). For
SIP messages, they used message templates that contain placeholders. These placeholders were
replaced by well-known attack vectors and randomly generated data. A state machine contains the
SIP states and guides a handler that generates the SIP messages. The softphone was controlled via
its graphical user interface (GUI) by executing GUI events in the SUT. In contrast to other fuzzers, the
GUI was also monitored for error messages or conspicuous changes.

Abdelnur, State and Festor [53] developed a fuzzer for the SIP protocol called KiF that uses an
augmented BNF (ABNF) for the syntax of SIP messages and a protocol state machine for the
transitions consisting of incoming and outgoing messages. A second state machine, called test state
machine, was used to describe scenarios by prioritizing or omitting transitions. Syntactical valid and
invalid messages are generated by employing a fuzzer expression grammar. This grammar is based
on the ABNF and contains additionally a fuzzer evaluator. This evaluator allows the construction of
syntactically invalid messages by replacing, repeating and choosing items. The SUT is observed by
comparing received messages with the expected messages specified by the protocol state machine
and checking the syntactical correctness using the context-free grammar. The aliveness of the SUT is
detected by valid case instrumentation.

AutoFuzz is a fuzzer that acts as a proxy server. It was developed by Gorbunov and Rosenbloom [74]
and constructs a FSM by observing incoming and outgoing messages with passive synthesis and
partial FSM reduction. Additionally, the message syntax is captured in generic message sequences by
employing algorithms that are used in bioinformatics for sequence alignment. Here, it was used to
identify message fields for block-based analysis. AutoFuzz's role as a proxy server allows applying
fuzzing functions to message fields depending on the state of the FSM.

Evolutionary Fuzzing

DeMott, Enbody and Punch followed this approach in [66]. They evaluate and evolve pools of
sessions, where each session represents a complete transaction with the SUT, using a fitness function
that determines the code coverage. The generations are created by crossing pools, selecting, crossing
and mutating sessions. After creating a new generation, the SUT is fed with the sessions of the pools
and the fitness of every session and pool is recalculated. This process is stopped after a given number
of generations.

Duchene et al. [69] employed model inference assisted by evolutionary algorithms to evolve malicious
input data in order to fuzz web applications for XSS vulnerabilities. They started by manually writing an
attack grammar for cross-site scripting attacks. Individuals for the first generation are generated by this
attack grammar and by reused input sequences from model inferring. The first generation evolves
using a fitness function that assesses how close individuals are to detect XSS. How close individuals
are to detect XSS vulnerabilities serves as a fitness function and is determined by the number of
classes of the input grammar that are retrieved as output from the SUT and the traversed states.
Successful XSS attacks are detected if the observed output is not confined by an output grammar.

A fuzzing approach that aims at risk-based security testing is presented by Xu et al. [115]. They
understand risk as a relation between use case resources and targeted resources that are necessary
to perform certain functionalities. The targeted resources are annotated in class diagrams. Sequence
diagrams representing use cases are annotated based on the annotated class diagrams. After that,
abstract test cases are generated by traversing the annotated sequence diagram. The process of test
case generation is not described.

2.4.2 Behavioral Fuzzing Based on Security-Annotated Models
Behavioral fuzzing is a complementary approach to traditional data fuzzing. It aims at generating
invalid message sequences instead of invalid input data in order to reveal vulnerabilities. An overview
of behavioral fuzzing approaches, this section is originating from, can be found in [100].

RASEN - 316853 Page 19 / 43

Implicit Behavioral Fuzzing

Inferring a model from traces as performed in [112] leads often to implicit behavioral fuzzing.
Depending on the quality of the traces, there may be substantial differences between the model and
the implementation. Therefore, if the model is not exact, because the available traces have a poor
quality, invalid message sequences may be generated and thus, implicit behavioral fuzzing is done
when using the inferred model.

The evolutionary approach of DeMott, Enbody and Punch [66] in the previous section performs also
implicitly behavioral fuzzing while learning the model. At the beginning of the learning process the
model is mostly incorrect and so invalid messages and data are sent to the SUT. During the process,
the learned model is getting closer to the implemented behavior of the SUT. During this approximation
the fuzzing gets less random-based and gets subtler because the difference between the invalid
generated behavior and the correct use of the SUT gets smaller. Therefore, implicit behavioral fuzzing
performed by dynamic generation and evolution-based is superior to that performed by random-based
fuzzers.

However, there is a crucial drawback of implicit behavioral fuzzing: While vulnerabilities like
performance degradation and crashes can be found, other kinds of vulnerabilities cannot be detected.
That is the case because there is no specification the revealed behavior of the SUT can be compared
to and hence, vulnerabilities, e.g. revealing secret data or enabling code injection, may be perceived
as intended features.

Explicit Behavioral Fuzzing

Behavioral fuzzing is mentioned in [84] where the application of mutations was not only constrained to
the syntax of individual messages but also applied to “the order and the type of messages exchanged”
[84]. Understanding behavioral fuzzing in that way, random-based fuzzing implicitly performs
behavioral fuzzing. Because the protocol is unknown, randomly generated data can be both messages
and data. Hence, in addition to data fuzzing, also behavioral fuzzing is done – but in a random way.

For testing the IPv6 Neighbor Discovery Protocol, Becker et al. in [59] used a finite state machine as a
behavioral model of the protocol and decomposed the messages of the Neighbor Discovery Protocol.
They applied several fuzzing strategies, e.g. changing field values or duplicating fields like checksums,
which all constitute data fuzzing. The different fuzzing strategies mentioned by the authors are not
constrained to fuzzing input data by deleting, inserting or modifying the values of fields. They are also
supplemented by the strategies of inserting, repeating and dropping messages, which are already to
be considered as behavioral fuzzing. Similar strategies are introduced in [77][104] where the type of
individual messages is fuzzed as well as messages are reordered.

The aforementioned framework SNOOZE [57] provides several fuzzing primitives in order to develop a
protocol-specific fuzzer. Among those primitives, there are functions to get valid messages depending
on the state of a session and on the used protocol, but also primitives to get invalid messages. Thus,
SNOOZE both data fuzzing and behavioral fuzzing.

The most explicit approach to behavioral fuzzing is found in [87]. Kitagawa, Hanaoka and Kono
propose to change the order of messages in addition to invalidate the input data and find
vulnerabilities. They employ a protocol specific state machine in order to determine whether a
message shall be changed. Unfortunately, they do not describe how the message order should be
changed to make it invalid.

An approach to model-based behavioral fuzzing using UML sequence diagram was presented in
[100]. UML sequence diagrams, e.g. functional test cases, representing valid message sequences
were modified by employing a set of behavioral fuzzing operators and applying them to model
elements such as combined fragments, state invariants and time/duration constraints in order to
generate an invalid sequence diagram. Fuzzing operators are for instance “Remove Message” that
deletes a message from a sequence diagram, “Change Type of Message” that changes the operation
that is called by a message or “Negate Interaction Constraint” that negates a guard of a combined
fragment in order to activate the enclosed message sequence when it should not be activated. Table 4
shows a list of all fuzzing operators proposed in [100] and their constraints. Several of these fuzzing
operators are being applied to a sequence diagram to generate a single test case.

RASEN - 316853 Page 20 / 43

Behavioral Fuzzing Operators for…

Messages Constraints

Remove Message
Repeat Message
Move Message
Change Type of Message
Insert Message

• not enclosed in a combined fragment
negative

• considered respectively ignored if
enclosed in a combined fragment
consider/ignore

Swap Messages • not enclosed in a combined fragment
negative

• considered respectively ignored if
enclosed in a combined fragment
consider/ignore

Permute Messages Regarding a Single SUT
Lifeline
Rotate Messages Regarding a Single SUT
Lifeline

• applicable for messages within a
combined fragment weak

Permute Messages Regarding a Single SUT
Lifeline
Rotate Messages Regarding a Single SUT
Lifeline

• applicable for messages within a
combined fragment strict

Combined Fragments Constraints

Negate Interaction Constraint

Interchange Interaction Constraints

• applicable to combined fragments option,
break, negative

• applicable to combined fragment
alternatives

Disintegrate Combined Fragment and Distribute
Its Messages

• applicable to combined fragments with
more than one interaction operand

Change Bounds of Loop • applicable to combined fragment loop
with at least one parameter

Insert Combined Fragment
Remove Combined Fragment
Repeat Combined Fragment
Move Combined Fragment

• applicable to all combined fragments
except negative

Change Interaction Operator

Time/Duration Constraints

Change Time/Duration Constraint • applicable to constraints that are on the
lifeline of the test component

Table 4: Behavioral fuzzing operators for UML sequence diagrams [100]

Because the approach generates a large number of test cases – usually too many to execute them all
– a test case selection based on annotations to the model was introduced in [101]. The annotations
were made using the UML profiling mechanism, in this case using the profile UMLsec [4] that provides
a set of security related stereotypes. The UMLsec stereotype for specifying role-based access control
was used and extended for UML sequence diagram and with additional tags for authentication. The
achievement of this approach is twofold. On one hand, it allows focusing on a certain security aspect
and thus allows to substantially reducing the number of test cases. In the presented example, the

RASEN - 316853 Page 21 / 43

number of test cases was reduced from 48 test cases to 8. Another, much more important advantage
is that this approach allows it to combine risk analysis and fuzzing by augmenting a model with
stereotypes that refer to identified threats or vulnerabilities from the risk model.

RASEN - 316853 Page 22 / 43

3 Security Testing Metrics
How to measure security was reported to be a hard problem [80] and quantifying security in an
absolute way is still considered an open question [92]. Savola et al. [99] state that the term security
metric is misleading because security cannot be measured as a universal property. In spite of this,
several definitions were made in the context of security, also by Savola [97]. (An exhaustive overview
of different definitions of metric and measurement can be found in [58].)

The US National Institute of Standards and Technology (NIST) defines metrics as follows [106]:
“Metrics are tools designed to facilitate decision making and improve performance and accountability
through collection, analysis and reporting of relevant performance-related data. The purpose of
measuring performance is to monitor the status of measured activities and facilitate improvement in
those activities by applying corrective actions, based on observed measurements.” In a superseding
document, they use the term measure instead of metrics for the “results of data collection, analysis,
and reporting” and measurement for the process of measuring [64].

Vaughn et al. [110] argue that measures are often mistaken as metrics. They define metric as a
relation of “individual measures to some common terms or framework”. Savola [97] stresses the
difference between the terms "measurement result" and "metrics", and defines a measurement result
as a “single-point-in-time data on a specific factor to be measured", while metrics are "descriptions of
data derived from measurements”. In [80], Wayne Jansen summarizes several definitions of security
metrics by saying that a “metric generally implies a system of measurement based on quantifiable
measures”.

3.1 Measurements
All these understandings of metrics have in common the need for measurements. In order to get
reasonable results from such measurements, they must fulfill some requirements:

• Reliability [86], repeatability [52], stability [61] or consistent measurement [81]: Measurements
must be reliable meaning that different measurements using the same method in the same
context have to be consistent. Reliability for qualitative measures is often difficult to achieve
because certain security properties are intangible and subjective [56][80].

• Validity [86] means that the measurement should measure what it is intended to measure.
According to Kan [86], validity consists of three properties: (a) construct validity means that
actual measurements represent the theoretical construct, thus, it measures what is intended to
be measured; (b) criterion-related/predictive validity describes how the values of
measurements and the actual property to be measured relate and (c) content validity means
the degree to which a measure covers the range of meanings included in a theoretical
concept.

• Easiness [52] and cheap to gather [81], preferably in an automated way. If performing the
measurement is too difficult compared to the information that can be obtained from it, there is
no motivation to incur the measurement. Automated measurements reduce the opportunities
for human error [64].

• Objectivity [52][110] and expression as a cardinal number or percentage [81], not with
qualitative labels like ‘high’, ‘medium’, and ‘low’. Qualitative measurements are usually
subjective [56] and hence, not appropriate. Obviously, subjective measures are interfering with
the property of reliability. As discussed also by [95], in spite of this many security metrics are
subjective.

• Use at least one unit of measure in order to be expressive and to declare what is measured
[81].

• Contextually specific in order to allow decision making [52][81].

• Succinctness for reducing complexity, to remove aspects that are not important and thus,
reducing the uncertainty of a measure [52].

Objective and, associated with it, quantitative security metric is doubted to be a feasible goal. A survey
of quantitative security metrics by Verendel [111] revealed that most quantitative security metrics are

RASEN - 316853 Page 23 / 43

not sufficiently validated by empirical tests. Hence, it is not clear whether they get corroborated or
falsified.

Vaughn et al. [110] classified security metrics and measures along the following properties additional
to objectivity as discussed above:

• Static/dynamic: Dynamic metrics evolve with time and are preferred over static metrics
because the measured property of a system as well as the threats to a system [95] change
over time.

• Absolute/relative: While relative metrics depend on other metrics, absolute metrics do not.
Hence, relative metrics are meaningful only in the given context of the metrics they depend
on.

• Direct/indirect: Direct metrics “are generated from observing the property that they measure”.
This is the preferred way to obtain metrics, while indirect metrics can be used when direct
measurement is not feasible.

3.2 Security Metrics Frameworks
As discussed above, there is an important difference between a measure and a metric. Vaughn et al.
[110] describe the need for relating measures to common terms or a framework in order to obtain a
metric. In the following, different approaches to achieve this goal are discussed. One is a security
scorecard that describes in detail how measuring vulnerabilities can be composed to a security
scorecard. Others are more abstract and describe general ways of composing and decomposing
different metrics.

3.2.1 Security Scorecard
A simple framework was developed by Nichols and Peterson [91] in form of a security scorecard that
summarizes different measurements related to the Open Web Application Security Project (OWASP)
Top Ten Vulnerability Categories [96]. They propose to translate measurement results to a qualitative
traffic light metaphor. For that purpose, they employed principles of the Six-Sigma-Quality Framework
[79] for expressing values in terms of defects divided by opportunities, mapping them to colors and
aggregating all different measures. The different measures, colors, and the aggregated measures
including trends are depicted in an example in Figure 3, which is adopted from [91].

RASEN - 316853 Page 24 / 43

Figure 3: Security scorecard [91]

3.2.2 Composition of Security Metrics
Composition of metrics is a controversially discussed topic. Though there is not much research, there
is doubt if composition of security metrics is feasible. For instance, it is disputed in [80] that in theory
systems can be designed to be predictably composable, while in practice this has never occurred; two
systems can be composed, and in spite of the fact that both system are solely secure, the composition
is not [80][110]. Verendel questions the simple addition of metrics for composed systems. He criticizes
that mutual dependencies of components are neglected by additive composition of different security
metrics. Savola [97] sees the necessity of decomposition of software security by design in order to
evaluate the overall security of a system, but does not propose how this could help for measurement.
Jansen [80] detected a lack of understanding and insight into the composition of security mechanism
that impedes progress in security metrics. Composition approaches of security metrics is proposed
either along the composition of a system, or along the composition of security requirements.

Composition of Security Metrics along Composition of a System

Wang and Wulf [114] propose a decomposition of a system (along physical subsystems or logical
functions). They introduce three different functional relationships in order to determine the security
strength of the composed element: weakest link if the functioning of the composed element is
ultimately bounded by the weakest of its components, weighted weakest link as a generalization of
weakest link with various degrees of impact on the different components to the composed element,
and prioritized siblings where each of a set of components that constitute a composed element
contributes to a different aspect of the composed element. For each of these relationships, Wang and
Wulf provided a way how to calculate the security strength of the composed element from its
components.

RASEN - 316853 Page 25 / 43

Walter and Trinitis [113] provide three different composition operators in order to compose metrics of
different components depending on their interrelation: AND, OR and MEAN. AND is used when two
components can be attacked in parallel where only one needs to be successfully attacked in order to
compromise the system consisting of these two components – meaning that the composition is at
most as secure as the components it is composed from. When two components compose two
successive lines of defense and hence, both have to be attacked to compromise the composed
system (meaning the composition is more secure than its components), the OR operator is used. The
MEAN operator is used for systems where both components must be successfully attacked in order to
compromise the composed system, but successfully attacking only one already compromises the
system partially. Walter and Trinitis discussed the mathematical implications depending on statistical
dependency and the kind of the (random) variable used to determine the security of any component.
They also illustrate how more complex compositions can be achieved using these operators. However,
the paper lacks an application that provides evidence of the approach as well as discussing the
situations in where each of the operators are applicable. This remains unclear in particular for the
MEAN operator.

Composition of Security Metrics along Security Requirements

Savola [95] argues for a taxonomy that enhances the composition of security metrics. He seizes the
idea of Wang and Wulf [114] as discussed above, and applies it to security requirements as depicted
by Figure 4, adopted from [97], in order to identify the basic measureable components. However, he
does not focus on their interplay in order to determine the composition of metrics and measurements.

Figure 4: Decomposition of the security requirement “Authentication” [97]

A similar approach is used by Heymann et al. [75] to analyze the dependencies between security
objectives that originally result from security requirements. They decompose security requirements
and their corresponding security properties into three layers, one for high-level and low-level
objectives, another for security patterns in order to achieve those objectives, and a third layer for the
correspondent metrics. The benefit from this approach is twofold. On one hand, it explains how
security patterns can be used to achieve certain security objectives and, therefore, the security
requirements. On the other hand, it ships metrics with security patterns that facilitates measuring the
corresponding security aspect. The decomposition of security requirements to security objectives is in
turn used for composing the different metrics associated with the applied security patterns. The
introduced decomposition operators are “and” and “or”. Therefore, the decomposition is not as
diversified as the decomposition approach by Walter and Trinitis discussed above.

RASEN - 316853 Page 26 / 43

Figure 5: Composition of metrics along security requirements and patterns [75]

3.3 Metrics for Security Testing
As discussed in the previous sections, several required properties of security metrics have been
identified, but Verendel [111] criticized the lack of validation of metrics. Jansen [80] noted that there
are only few actual metrics that have been reported to be useful in practice. Many of such metrics refer
to organizational measurements, e.g. [60] with metrics for baseline defense coverage, patch latency,
password strength. Of course, some metrics are more general, whereas some are more specific for
certain security testing approaches.

Many metrics regarding testing are coverage criteria. Some coverage criteria used for functional
testing are also suitable for measuring non-functional security testing. Code coverage is a metric often
used for testing and also for fuzzing. For example, Godefroid et al. [72] use instruction coverage,
Abdelnur et al. [54] path coverage and DeMott et al. [66] unique function hits. The same approach is
employed by Becker et al. [59] and by Abdelnur et al. [54] and is called entropy and power as
measures of functions involved in processing a single message.

Another code coverage metric rather related to security is the attack surface [76][89][90]. It measures
the attackability of a system by identifying its resources that constitute the system’s attack surface.
The approach is based on a formal entry point and exit point framework that identifies such points
where (malign) data may enter or leave the system, and may act as basis of an attack [89]. The attack
surface of a system is defined by these entry and exit points, the channels that can be used by an
attacker to connect to the system, and untrusted data items the system reads from or writes to and the
attacker has access to. An estimation of the damage potential of a resource based on its privileges
and the effort the attacker has to spend to gain access to the resource is used to define the attack
surface measurements. A weakness of this approach is that this damage potential-effort ratio is
subjective and thus lacks objectivity as required by [52]. By measuring how test cases cover the attack

RASEN - 316853 Page 27 / 43

surface of a system under test, a simple coverage criterion may be defined that can be used as a
metric.

Nichols and Peterson [91] developed a metrics framework based on the top ten vulnerabilities of the
Open Web Application Security Project [93]. In addition to design-time and deployment-time
measurements, they propose runtime measurements for cross-site scripting, injection flaws and
denial-of-service-vulnerabilities obtained by conducting penetration tests, e.g. fuzzing. This approach
suffers from only respecting the most frequent vulnerabilities, just counting corresponding flaws and
ignoring other aspects that may have a considerable effect on security.

There are also metrics specific for the security testing approach of fuzzing presented in Section 2.4.
Microsoft made an empirical investigation based on Windows Vista file parsers for different file formats
on how many test cases are necessary to cover most of the bugs. Microsoft recommends executing at
least 500,000 test cases and another 250,000 test cases after each found bug. Using another fuzzing
tool is recommended when no bug was found by the initial set of 500,000 test cases or after 250,000
test cases since the last found bug [102]. This poses a traditional rate of found defects that is also
used in functional testing. But it seems questionable if these results are valid for other than the used
tools and kinds of SUTs. Other metrics specific for fuzzing are coverage metrics regarding the
specification. Kaksonen and Takanen [85] measure the ratio of symbols of a specification that were
replaced by anomalies when generating invalid input data, and all symbols of the specification. They
focus on locations of specification (the symbols) and disregard the kinds of anomalies (invalid values)
injected on these locations. The different kinds of anomalies injected on the different locations can be
measured related to the number of all anomalies applicable on the different locations [85].

3.4 Methodologies for Developing Security Metrics
While there are a few security metrics that are employable for security testing, as presented in the
previous section, there are also methodologies for developing security metrics. Such methodologies
may also be helpful for developing metrics for security testing.

One approach was developed by Chandra, Khan and Agrawal [62][63][64] and identified five phases:

1. Identification of security factors in order to find and extract a filtered set of security factors.
Several activities relate to this phase, e.g. security requirements and validation, determining of
security factor selection criteria, verification of security factors, and defining hierarchy and
impact of security factors.

2. Identification or design of a metric suite comprising activities such as identification of
software characteristics, analysis of available security models and metrics and designing
security metrics and metrics suite.

3. Validation of security metric suite based on validation goals, standards, invalidity criteria,
and validation framework. This phase also uses security factors identified in Phase 1 for
validation.

4. Quantification of security factors as basis for the next phase.

5. Estimation of security is the last phase consisting among others of risk analysis, security
ranking and precautionary measures.

The main weakness of the presented approach is insufficient description of how to conduct the the
different phases. However, while they are intended for the estimation of security at design phase and
not for security testing, they can serve as a template of a process of designing metrics for security
testing.

Savola [98] proposes a risk-driven methodology for privacy metrics development consisting of the
following steps:

1. Privacy threat analysis as analysis of risks for privacy.

2. Utilization of privacy taxonomies that help in creation of privacy objectives and
requirements and may support development of metrics collections in a holistic and systematic
way. The taxonomy to be used depends on the use case and on legal context.

RASEN - 316853 Page 28 / 43

3. Development and prioritization of privacy requirements in order to mitigate the threats
identified in the first phase.

4. Identification of basic measureable components by decomposing the requirements
identified in the previous phase. This approach was already discussed in Section 3.2.2.

5. Development of measurement architecture is technically necessary for obtaining and
processing measureable data.

6. Feasibility analysis and integration of metrics from other sources on the basis of the
identified basic measureable components.

7. Balanced and detailed collection of privacy metrics includes definition of

a. their purpose,

b. target description, e.g. using a composition-decomposition approach,

c. formalization in a computable and understandable form,

d. value scale or ordering,

e. possibly needed thresholds.

This approach is focused on privacy along the example of cloud computing. But the risk-driven
approach seems to be also appropriate for developing security testing metrics in the context of the
RASEN project by adapting it to the needs for risk-based security testing. This may include:

• Step 1 and 3 because the CORAS approach used in RASEN also includes what is done in
Step 3

• Step 2 for identification of suitable taxonomies,

• and the composition-decomposition approach used in steps 4 and 7 for target description of
metrics.

RASEN - 316853 Page 29 / 43

4 Testing Approaches for Large-Scale Networked Systems
This section provides a state of the art of approaches that are used to produce security and/or
vulnerability test cases for large-scale networked systems. Networked systems are today crucial
components and often rely on a very high level of complexity since they support many necessary
features from the basic functionality provided by computer networks to the applications executed on
top of these networks. This complexity arises from a variety of causes. These systems are indeed
often designed to address problems that cannot be completely defined: they meet the(rapidly
changing) needs of diverse stakeholders; they must interact with other legacy systems, processes and
policies; they may be critical systems that have to ensure both a high level of performance and
dependability; and finally, they can be affected by political influences in the organizations developing
the system or in the environment of the customer. Since networked systems have become complex
and large-scale to be able to support increasing various needs and requirements, testing techniques
targeting networked systems have to take this complexity into account. While there are many existing
techniques for testing networked systems, each providing unique capabilities and benefits regarding
vulnerability testing, few of them address large-scale features. We now provide an overview of existing
techniques for testing networked systems, and introduce both their advantages and the limitations.

As proposed in [132], we can divide the different approaches into 3 categories: staging infrastructures,
replay systems, and finally modeling and simulation-based approaches. In the following we look at
each of them in turn.

4.1 Lab and Staging Infrastructures
Another technique for evaluating networked systems is deployment at a smaller scale before making
the modified system visible to all users. Using this approach, the goal is to subject the system to an
environment very similar that of the full production environment. Deploying applications at a smaller
scale can be accomplished in multiple ways. The system can then be deployed to a staging
environment that is intended to replicate or approximate the production environment. For example,
Cisco maintains a testing facility called NSite [133] on which network devices and configurations can
be tested before deployment. Infrastructures such as Emulab [134] provide a configurable
environment for networked systems. Another methodology used in practice is deploying changes to a
limited set of users. As instance, the large-scale distributed web infrastructure of Google uses this kind
of approaches [135] in which a portion of users may be included in one or more concurrently-running
experiments.

The primary benefit of lab and staging environments is that the actual networked system is executed
without requiring modeling. In particular, it may be possible to capture bugs or test the system’s
performance under synthetic workloads or workloads captured from production systems. Another
major benefit of staging environments using real users is that they can incorporate actual user
behaviors, thus testing the full end-to-end workflow including the real networking environment.

This kind of approach also has important limitations. First, deploying and maintaining an alternate
staging infrastructure may be costly. Such a staging infrastructure should be consistent with the
production network in terms of not only configuration and topology, but also hardware, operating
system, and software versions, since behavior may change between versions (e.g.[136]). Keeping
such an environment synchronized with a production environment can be a large undertaking.
Second, alternate staging environments may not fully capture the complexities of the production
environment. Finally, allowing the tested system to serve real users may be risky if the system being
tested does not perform as desired. Though it may be possible to reduce exposure by early detection
of such cases, dissatisfied users may abandon use of a product or move to a competitor.

4.2 Logging/Replay Systems
Another useful technique for testing networked systems is logging and replay. Logging and replay
consists of capturing data, typically an execution trace, from a running system in a production or
staging environment, and then processing it offline. In an offline environment, it is possible to analyze
the captured trace (e.g., for a visual display) or even replay the system to replicate the observed
behavior and potentially ease the debugging process.

RASEN - 316853 Page 30 / 43

Replay tools typically strive to ease debugging for parallel and networked systems by providing
deterministic replay. Networked systems are notoriously difficult to debug due to race conditions and
non-deterministic behavior, making it difficult to detect and replicate bugs. Numerous approaches have
been used to capture execution traces, spanning hardware-level (e.g.[137]), OS-level (e.g.[138]), user-
space (e.g.[139]), and even cross-layer designs (e.g.[140]). The various approaches frequently make
trade-offs in terms of logging overhead, types of applications they can support, whether they can
replay a trace deterministically, and even relaxations on the replayed execution trace (e.g. [141]).

Logging and Replay have two primary benefits. First, they focus on using the actual system instead of
a model. This allows developers to use the tools directly with existing systems with little or no
modification. Indeed, some logging/replay tools are even targeted to be of low-enough overhead for
production systems. Second, logging and replay tools typically provide repeatability. When debugging
a complex networked system, the ability to replicate a bug and inspect the exact execution leading to
an error can be extremely useful.

Despite their benefits, logging and replay systems do have limitations for testing large-scale networked
systems. The primary limitation is that they can only consider scenarios that actually occurred; they
are designed to capture execution traces and are not focused on testing alternative scenarios (e.g., by
changing the behavior of the environment of the system itself). The ability to test alternative system
behaviors or environments is important when evaluating a networked system (e.g., to evaluate
behavior under particular failure scenarios).

4.3 Modeling and Simulation
Theoretical modeling and simulation techniques are characterized by capturing key properties of the
full-scale system and creating an analytical model or an implementation focusing on key functionality.
This has been a useful approach in many settings.

First, there are many generic simulation toolkits that have been developed and extended (see [142] for
more details). These toolkits implement common functionality (e.g., network topologies and protocols)
that approximate real-world settings. They frequently also provide interfaces to easily control and
modify test scenarios. Using these toolkits, it is possible to develop a simulated version of a system
and easily change parameters such as network topology, tests with machine failures, etc.

Theoretical modeling and analysis have also been widely applied in many networked systems. Due to
the complexity of many networked systems, it is challenging to develop a tractable model for the
complete system. Thus, many models are developed for specific parts of a system. For example,
models have been developed for network reachability (e.g. [143]), security (e.g. [144]), interdomain
routing (e.g., [145]), and content distribution in an application-layer overlay (e.g., [146]). There are only
several works concerned with model based testing of large software. The bibliography analysis shows
that the most part of model based testing society tends to work with toy and small-size examples (e.g.
[147]), even if complexity and gigantic size of modern systems urgently requires new test development
techniques. There only exists a limited number of works related with the large-scale model-based
testing, but they mainly concern architecture-based testing (e.g. [148]).

By focusing only on key functionalities of a system, modeling and simulation have two primary
benefits. First, since only key characteristics are captured, it can take less time to identify the impacts
of certain changes. Making a change to the full-scale system typically entails details such as designing
test cases, conducting regression tests, and handling error conditions. In addition, for networked
systems in particular, it is typically faster to design, execute and analyze different test scenarios (e.g.
network conditions, failure scenarios, etc.) since the physical infrastructure is not used. Second,
modeling and simulation can be helpful to understand relationships between system components and
parameters. Modeling and simulation also have important limitations. First, it can be difficult to
determine exactly which key properties will affect the behavior of a complete system. The behavior of
a networked system may not only depend on its own behavior, but also on the behavior of external
systems that it uses (e.g., DNS, BGP). Furthermore, even if certain key properties are determined to
be important, one may be forced to make simplifying assumptions to keep the model tractable or
simply because it is not known how to model certain behaviors. For example, measurements studies
(e.g. [149]) have shown that the behavior of certain networks can be very different than previously
assumed. As a result, a model or simulation may miss possibly-unknown interactions with properties
that are not modeled or not modeled accurately [150]. Beyond choosing which properties to model, it

RASEN - 316853 Page 31 / 43

can also be difficult or impossible to keep a simulation or model in sync with a deployed system. As a
networked system evolves, a simulation or model must be kept in sync in order to produce meaningful
results.

4.4 Synthesis
Though existing techniques are useful, they appear to be not sufficient for realistically evaluating
correctness of networked systems at a large scale. In particular, though lab and staging infrastructures
may be able to run a networked system in various testing scenarios, they typically do not scale to the
size and full complexity of the production environment. Logging and replay frameworks are limited to
detecting bugs that have already been observed and are not suitable for testing alternative scenarios
or system behaviors. Finally, abstract models used by simulation and modeling approaches do not
capture the full complexity of many networked systems and the environments in which they run. To
address these challenges within the RASEN project, we notably propose to use model-based
approaches driven by risk assessment to focus the scope of the testing goal, and to adopt a
compositional approach to manage the complexity of such systems. This focus would offer to increase
the risk-relevance of the generated test cases and to propose scalable approaches for large-scale
networked systems. The next section thus introduces the baseline to initiate the proposed RASEN
approach.

RASEN - 316853 Page 32 / 43

5 RASEN Baseline
This section provides an initial assessment of the state of the art by specifying the starting point for the
further development in the RASEN project.

5.1 Baseline for Techniques on Risk-Based Test Identification and
Prioritization

In this section, we identify techniques for risk-based test identification and prioritization that will be
used as a starting point for further research in the RASEN project. In the state of the art overview in
Section 2 we distinguished between approaches that either (A) use the risk analysis to prioritize those
parts/features of the system under test that are most risky, or (B) use risk analysis as part of a
failure/threat identification process. All the approaches in category (A) address test prioritization, but
not test identification. Conversely, all approaches in category (B) consider test identification and not
test prioritization. However, there is one exception that considers both test identification and test
prioritization [47]. The approach will therefore be carefully considered as a starting point for the R&D
work of RASEN WP4. However, in [47], the technique for test prioritization is only described informally.
Within the RASEN project, we aim to formalize the technique and to develop tool support for
automated test prioritization.

As also discussed in Section 2, there are not many novel techniques that are proposed which are
specifically intended to be used in the risk-based testing setting. All the approaches that we have
particularly highlighted ([21][22][29][41]) are based on the assumption that a precise test model (in the
form a UML activity diagram or state machine) is available at the start of the analysis process. This
assumption restricts the applicability of the approaches. Therefore we will not initially consider any of
these approaches as part of the RASEN baseline. It may, however, be the case that we later in the
project consider a process where a precise test model is assumed. In that case, it would be
appropriate to use the techniques proposed by Kloos et al. [29] as a starting point. Out of all the
techniques proposed for risk-based testing, this one seems to be the most comprehensive.

5.2 Baseline for Risk-based Testing from Security Test Pattern
Security test patterns are a relatively new research area. The SecurityTestPatterns.org group
maintains a catalogue of security test patterns with focus on the security problem that should be
revealed by applying the pattern. Within the DIAMONDS project, an extended security test pattern
approach focused on dynamic testing was presented [67]. The approach comprises nine security test
patterns from the SecurityTestPatterns.org group and eight additional security test patterns. These
security test patterns are enriched with known uses by security functional requirements from the
Common Criteria.

On the other hand, a CORAS template library for risk analysis covering risks that are common for a
large number of systems was developed [68]. Its purpose is to facilitate risk analysis using the CORAS
approach. Beside common vulnerabilities and threats, also treatment measures in the form of security
functional requirements from the Common Criteria.

The security functional requirements are the link between risk analysis and security testing when using
templates from the CORAS template library. Thus, using risk templates that contain treatments based
on security functional requirements, risk-based security testing is enabled.

While may serve as a starting point for risk-based security testing within Task 4.1—and thus, initially
addresses the research question on good methods and tools for deriving, selecting, and prioritizing
security test cases from risk assessment results—it provides no support for security testing based on
risks that do not originate from any of the CORAS risk templates. Additionally, not all security test
patterns reference security functional requirements from the Common Criteria. Further, not all security
problems can be mitigated by functional security measures, such as errors in the implementation of
functional security measures that may thwart security functional measures such as weak random
numbers for cryptographic algorithms.

RASEN - 316853 Page 33 / 43

We thus propose to revisit and adapt the traditional approach of Model-Based Testing in order to
generate vulnerability test from risk analysis to address large-scale system. This approach, called
Risk-based Vulnerability Testing (RBVT), is depicted in Figure 6.

Figure 6: Risk-based vulnerability testing process

This process is composed of the four following activities:

1. Test and Risk Purposes activity consists in formalizing test purposes from risk analysis and
vulnerability test patterns that the generated test cases have to cover.

2. Modeling activity aims to produce models that capture the behavioral aspects of the SUT in
order to generate consistent (from a functional point of view) sequences of stimuli. The use of
a composition of models should ease the management of large-scale system and enable the
repeatability of the approach by compositionally reusing some results from sub-components
when addressing a global system.

3. The Test Generation and Adaptation activity consists in automatically producing abstract test
cases from the artifacts defined during the two previous activities;

4. The Concretization, Test Execution and Observation activity aims to (i) translate the generated
abstract test cases into executable scripts, (ii) to execute these scripts on the concrete
system, (iii) to observe its responses and to compare them to the expected results in order to
assign the test verdict and automate the detection of vulnerabilities and risk reporting.

5.3 Baseline for Fuzzing Based on Security-Annotated Models
Fuzzing is an effective approach for finding vulnerabilities in systems. There are several approaches to
guide the fuzz test generation for finding certain vulnerabilities, e.g. cross-site scripting vulnerabilities
[69]. Despite that, there are no universal fuzzing approaches that are able to find different kinds of
vulnerabilities and at the same time have guidance for how to identify specific kinds of vulnerabilities;
fuzzing is still an approach to find different kinds of vulnerabilities without knowing in advance which

Test & Risk
Purposes

Models

Vulnerability
Test

Patterns

Adaptation

Security Test Engineer

Test Execution

1

2

Automated
Test

Generation

3

4

Vulnerability
Tests

SUT

Functional
Specification

Legend :

Risk
Analysis

RASEN - 316853 Page 34 / 43

will be found. Guiding the fuzz test generation process in order to find certain vulnerabilities or to focus
on certain security aspects may be a way to reasonably reduce the number of fuzz test cases [101]

An approach to behavioral fuzzing [100] is presented that guides the test generation in order to find
authentication bypass vulnerabilities [101]. For that purpose, a UML model is enriched with security
annotations using the UMLsec profile with its stereotype for role-based access control. By extending
the tags and applicability of this stereotype for UML sequence diagrams, guidance of the test
generation approach is enabled. This allows testing for certain vulnerabilities and reduces the number
of test cases and thus, improves the efficiency of the behavioral fuzzing approach regarding the tested
vulnerability and enables risk-based fuzzing. In contrast to the risk-based testing approach discussed
in Section 5.2, this approach relies on augmenting the behavior model with security-related information
where testing for these vulnerabilities might be relevant. While the approach constitutes a starting
point for the RASEN project, it has two drawbacks. On the one hand, behavioral fuzzing complements
data fuzzing. It enables finding of new vulnerabilities that cannot be found with data fuzzing, and is a
complementary approach to data fuzzing and should not be used solely. Therefore, the approach of
risk-based testing using security annotations in the model has to be extended to data fuzzing.
Additionally, there is only a single example for role-based access control. A systematic approach to
the use of annotations for test generation guidance is an open issue that constitutes a starting point for
a systematic risk-based fuzzing approach. A prioritization based on risk assessment results is also not
addressed.

While there exists one approach to risk-based data fuzzing [115], its concept of risk as a relation
between use case resources and target resources is different from the general understand of risk as
the probability that a certain event may occur. In addition to this understanding of risk, the test
generation process is not described.

5.4 Baseline for Security Testing Metrics
Task 4.3 in Work Package 4 of RASEN project is related to metrics for security testing results and
addresses the RASEN research question on suitable metrics for quantitative security assessment in
complex environment. Measuring security, and in particular quantitative assessment of security, is
considered as a hard problem [80][92].

Section 3 presents state of the art of security metrics with respect to security testing, and also metrics
frameworks to get an overall picture from a set of measurements and metrics, including composition of
metrics and methodologies for developing security metrics. It can be generally said that there is only
little research about metrics employable for security testing or composition of metrics regarding
security. There exists only few security testing metrics where some of them are specific for fuzzing.
Simplest are just counting the number of found flaws of certain kinds. Most are coverage metrics of
code that does not respect the fact that, depending on the testing approach, the whole code cannot be
covered. Hence, code coverage metrics becomes rather a relative than an absolute metric.

Another kind of metric more related to security is the attack surface metric [89] that uses the different
resources of a systems (such as methods, channel and data) to determine the attack opportunities.
Other metrics that are applied when conducting fuzz testing are related to the symbols of the
specifications and the anomalies that are injected at the different locations of a specification identified
by these symbols [85]. The combination of these two metrics could be a good starting point for the
development of a coverage and completeness metrics that includes aspects regarding the results of
the risk analysis that shall drive the security testing process. Additionally to security metrics, there are
also a few methodologies for developing security metrics. One of these approaches is a risk-driven
approach [99][98] (cf. Section 3.4) that seems to be a starting point for the development of such
metrics as required by the RASEN project. For that purpose, that methodology has to be customized
to the needs of the RASEN project.

Task 4.3 is furthermore about a dashboard for presenting the security testing results based on risk
assessment. The security scorecard by Nichols and Peterson [91] as discussed in Section 3.2.1 goes
in the direction of such a dashboard. While it focuses rather on found vulnerabilities than on security
testing metrics in the sense of coverage and completeness as required by Task 4.3, the employed
traffic light metaphor could be used for the dashboard for ease of use of use but requires definition of
appropriate thresholds for the illustrated metrics.

RASEN - 316853 Page 35 / 43

6 Summary
RASEN WP4 addresses compositional security testing guided by risk assessment. This deliverable
describes the state of the art of methodologies that provide guidance for security testing techniques
from risk assessment. Section 2 provides an overview of risk-related security approaches, with a
particular focus on risk-based testing techniques driven by vulnerability test patterns and security-
annotated models. Section 3 provides an overview of security testing metrics and their composition
along security requirements. The section also describes methodologies used to develop security
metrics, which could be helpful for developing metrics for security testing within RASEN project.
Section 4 gives an overview over existing security testing approaches that may be utilized to address
large-scale networked systems. The section shows that, even if useful techniques exist, they mainly
appear to be insufficient for realistically networked systems at a large scale.

The main lesson learned is that there is a lack of approaches of risk-based testing techniques (and
associated tools) targeting security and vulnerability in the context of large-scale networked systems.
However, all the related existing principles, mixed with the expertise of the project partners, permit to
define a baseline for the RASEN methodology, as exposed in Section 5. For the further development
in the RASEN project, this baseline proposes, as starting point, the following research topics in relation
with the research questions enounced in the summary of the document:

• To use techniques addressing both risk-based test identification and test prioritization to drive
the overall testing generation process. For this purpose, we propose to extend CORAS
capabilities to allow the guidance of security test generation techniques on the basis of risk
assessment results.

• To drive model-based testing generation using risk assessment results in order to generate
vulnerability test purposes and test cases. This novel approach is called risk-based
vulnerability testing (RBVT).

• To drive behavioral fuzzing testing approaches using models annotated by security
information coming from risk assessment results. This novel approach is called risk-based
fuzzing.

• To define a dedicated methodology for security testing metrics and to elaborate a dashboard
for presenting the security testing results based on risk assessment.

• To propose a compositional security testing process enabling to deal with large scale
networks systems in complex environments. This compositional approach leads to re-use
results from sub-components when addressing a global module.

These baselines will be used within WP4 to elaborate a tool-based integrated compositional process
for guiding security testing deployment by means of reasonable risk coverage and probability metrics.

RASEN - 316853 Page 36 / 43

References
[1] I. Schieferdecker, J.Grossmann, M. Schneider, "Model-Based Security Testing," in 7th

Workshop on Model-Based Testing, vol. EPTCS 80 (2012)
[2] Shi Yin-sheng, Yuan F. Y. Gu, Tian-yang, "Research on Software Security," Testing World

Academy of Science Engineering and Technology, vol. 69 (2010)
[3] Jürgen Doser, Torsten Lodderstedt, David Basin, "Model driven security: From UML models

to access control infrastructures," ACM Trans. Soft. Eng. Methodol., vol. 15, pp. 39-91
(2006)

[4] J. Jürjens, Secure Systems Development with UML. Springer (2005)
[5] Zhen Ru Dai, Jens Grabowski, Ystein Haugen, Ina Schieferdecker, Clay Williams Paul

Baker, Model-Driven Testing: Using the UML Testing Profile, 1st edition. Berlin: Springer
(2007)

[6] R. Kaksonen, "A functional method for assessing protocol implementation security," VTT
Technical Research Center of Finland, 448 (2001)

[7] J. Jürjens, Guido Wimmel, "Specification-Based Test Generation for Security-Critical
Systems Using Mutations," in 4th Int. Conf. on Formal Engineering Methods (2002)

[8] E. Wong, Dianxiang Xu, Linzhang Wang, "A Threat Model Driven Approach for Security
Testing," in Third Int. Workshop on Software Engineering for Secure Systems (2007)

[9] B. K. Aichernig, F. Wotawa, M. Weiglhofer, "Fault-Based Conformance Testing in Practice,"
Journal of Software and Informatics, vol. 3, pp. 375-411 (2009)

[10] P.-C. Heam, R. Kheddam, F. Dadeau, "Mutation Based Testing of Security Protocols in
HLPSL," in Int. Conf. on Sofware Testing Verification and Validation (2011)

[11] J. Oudinet, A. Pretschner, M. Büchler, "Semi-Automatic Security Testing of Web
Applications from a Secure Model," in 6th Int. Conf. on Software Security and Reliability,
(2012)

[12] L. Fredriksen, B. So Barton, P. Miller, "An Empirical Study of the Reliability of UNIX
Utilities," in Workshop of Parallel and Distributed Debugging (1990)

[13] J. DeMott, C. Miller, A. Takanen, "Fuzzing for software security testing and quality
assurance," Artech House (2008)

[14] L. L. Pollock, H. Esquivel, B. Hazelwood, S. Ecott S. Sprenkle, "Automated Oracle
Comparators for Testing Web Applications," in 18th IEEE Int. Symp. on Software Reliability,
(2007)

[15] S. Amland. Risk based testing and metrics. In 5th International Conference EuroSTAR,
volume 99, pages 8–12 (1999)

[16] S. Amland. Risk-based testing: Risk analysis fundamentals and metrics for software testing
including a financial application case study. Journal of Systems and Software, 53(3):287–
295 (2000)

[17] J. Bach. Heuristic risk-based testing. Software Testing and Quality Engineering Magazine,
11:99 (1999)

[18] X. Bai and R.S. Kenett. Risk-based adaptive group testing of semantic web services. In
Computer Software and Applications Conference, 2009. COMPSAC'09. 33rd Annual IEEE
International, volume 2, pages 485–490. IEEE (2009)

[19] A.F. Benet. A risk driven approach to testing medical device software. Advances in Systems
Safety, pages 157–168 (2011)

[20] R. Casado, J. Tuya, and M. Younas. Testing long-lived web services transactions using a
risk-based approach. In Quality Software (QSIC), 2010 10th International Conference on,
pages 337–340. IEEE (2010)

[21] Y. Chen and R.L. Probert. A risk-based regression test selection strategy. In Proceeding of
the 14th IEEE International Symposium on Software Reliability Engineering (ISSRE'03),
Fast Abstract, pp. 305–306 (2003)

RASEN - 316853 Page 37 / 43

[22] Y. Chen, R.L. Probert, and D.P. Sims. Specification-based regression test selection with risk
analysis. In Proceedings of the 2002 conference of the Centre for Advanced Studies on
Collaborative research, pages 1–14. IBM Press (2002)

[23] M. Felderer, C. Haisjackl, R. Breu, and J. Motz. Integrating manual and automatic risk
assessment for risk-based testing. Software Quality. Process Automation in Software
Development, pages 159–180 (2012)

[24] M. Gleirscher. Hazard-based selection of test cases. In Proceeding of the 6th international
workshop on Automation of software test, pages 64–70. ACM (2011)

[25] International Standards Organization. ISO 31000:2009(E), Risk management Principles and
guidelines (2009)

[26] International Standards Organization. ISO 29119 Software and system engineering -
Software Testing-Part 2 : Test process (draft) (2012)

[27] D.W. Karolak. Software Engineering Risk Management (Practitioners). Wiley-IEEE
Computer Society (1995)

[28] B. Kitchenham and S. Charters. Guidelines for performing systematic literature reviews in
software engineering. EBSE 2007-001, vol. 2 (2007)

[29] J. Kloos, T. Hussain, and R. Eschbach. Risk-based testing of safety-critical embedded
systems driven by fault tree analysis. In Software Testing, Verication and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Conference on, pages 26–33. IEEE
(2011)

[30] N. Kumar, D. Sosale, S.N. Konuganti, and A. Rathi. Enabling the adoption of aspects-testing
aspects: A risk model, fault model and patterns. In Proceedings of the 8th ACM international
conference on Aspect-oriented software development, pages 197–206. ACM (2009)

[31] K.K. Murthy, K.R. Thakkar, and S. Laxminarayan. Leveraging Risk Based Testing in
Enterprise Systems Security Validation. In 2009 First International Conference on Emerging
Network Intelligence, pages 111–116. IEEE (2009)

[32] I. Ottevanger. A risk-based test strategy. IQUIP Informatica B. V, pages 1–13 (1999)
[33] Z. Qin, Y. An, and Y. Chen. Research of risk-based testing for web applications. Computer

Engineering and Applications, 39(1):157–159 (2003)
[34] F. Redmill. Exploring risk-based testing and its implications. Software Testing, Verification

and Reliability, 14(1):3–15 (2004)
[35] F. Redmill. Risk-based test planning during system development. In Proceedings of the 6th

National Software Engineering Conference (2004)
[36] F. Redmill. Theory and practice of risk-based testing. Software Testing, Verification and

Reliability, 15(1):3–20 (2005)
[37] L. Rosenberg, R. Stapko, and A. Gallo. Risk-based object oriented testing. In Proceedings

of the 24 th annual Software Engineering Workshop, NASA, Software Engineering
Laboratory. (1999)

[38] N.F. Schneidewind. Risk-driven software testing and reliability. International Journal of
Reliability Quality and Safety Engineering, 14(2):99–132 (2007)

[39] E. Souza, C. Gusmao, K. Alves, J. Venancio, and R. Melo. Measurement and control for
risk-based test cases and activities. In Test Workshop, 2009. LATW'09. 10th Latin
American, pages 1–6. IEEE (2009)

[40] E. Souza, C. Gusm˜ao, and J. Venˆancio. Risk-based testing: A case study. In Information
Technology: New Generations (ITNG), 2010 Seventh International Conference on, pages
1032–1037. IEEE (2010)

[41] H. Stallbaum, A. Metzger, and K. Pohl. An automated technique for risk-based test case
generation and prioritization. In Proceedings of the 3rd international workshop on Automation
of software test, pages 67–70. ACM (2008)

[42] E. van Veenendaal. Practical Risk-Based Testing{Product RISk MAnagement: the PRISMA
method. Improve Quality Services BV (2009)

RASEN - 316853 Page 38 / 43

[43] W.E. Wong, Y. Qi, and K. Cooper. Source code-based software risk assessing. In
Proceedings of the 2005 ACM symposium on Applied computing, pages 1485–1490. ACM
(2005)

[44] P. Zech. Risk-based security testing in cloud computing environments. In Software Testing,
Verification and Validation (ICST), 2011 IEEE Fourth International Conference on, pages
411–414. IEEE (2011)

[45] P. Zech, M. Felderer, and R. Breu. Towards risk–driven security testing of service centric
systems.

[46] P. Zech, M. Felderer, and R. Breu. Towards a model based security testing approach of
cloud computing environments. In Software Security and Reliability Companion (SERE-C),
2012 IEEE Sixth International Conference, pages 47–56. IEEE (2012)

[47] G. Erdogan, F. Seehusen, K. Stølen, J. Aagedal. Assessing the usefulness of testing for
validating the correctness of security risk models based on an industrial case study. To
appear in Proc. International Workshop on Quantitative Aspects in Security Assurance
(QASA'12).

[48] RTI, Health, Social and Economics Research, The Economic Impacts of Inadequate
Infrastructure for Software Testing, NC 27709 (2002)

[49] International Electrotechnical Commission: IEC 61025 Fault Tree Analysis (FTA) (1990)
[50] International Electrotechnical Commission: IEC 61882 Hazard and Operability studies

(HAZOP studies) – Application guide (2001)
[51] M. S. Lund, B. Solhaug, and K. Stølen. Model Driven Risk Analysis - The CORAS

Approach. Springer (2011)
[52] A. Atzeni, A. Lioy: Why to adopt a security metric? A brief survey. In: Quality of Protection.

Security Measurements and Metrics. Advances in Information Security, vol. 23, pp. 1–12.
Springer (2006)

[53] H. J. Abdelnur, R. State, O. Festor: KiF: a stateful SIP fuzzer. In: Proceedings of the 1st
international conference on principles, systems and applications of IP telecommunications
(IPTComm'07), pp. 47–56. ACM (2007)

[54] H. Abdelnur, R. State, J. Lucángeli, O. Festor: Spectral fuzzing: evaluation & feedback.
INRIA, vol 7193 (2010)

[55] W. H. Allen, C. Dou, G. A. Marin: A model-based approach to the security testing of network
protocol implementations. In: Proceedings of 31st IEEE Conference on Local Computer
Networks, pp. 1008–1015. IEEE (2006)

[56] C. W. Axelrod: Accounting for value and uncertainty in security metrics. Information
Systems Control Journal (6), (2008)

[57] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, G. Vigna: SNOOZE: toward
a stateful network protocol fuzZEr. In: Proceedings of the 9th international conference on
Information Security (ISC'06), pp. 343–358. Springer (2006)

[58] N. Bartol, B. Bates, K. M. Goertzel, T. Winograd: Measuring cyber security and information
assurance, State-of-the-Art Report (SOAR). Information Assurance Technology Analysis
Center (2009)

[59] S. Becker, H. Abdelnur, R. State, T. Engel: An autonomic testing framework for IPv6
configuration protocols. In: Proceedings of the Mechanisms for autonomous management of
networks and services, and 4th international conference on Autonomous infrastructure,
management and security (AIMS'10), pp. 65–76. Springer (2010)

[60] S. Berinato: A few good information security metrics (2005). [ONLINE] Available at:
http://www.csoonline.com/article/220462/a-few-good-information-security-metrics [Accessed
10 December 2012]

[61] R. Böhme, F. C. Freiling: On metrics and measurements. In: Dependability Metrics. LNCS,
vol. 4909, pp. 7–13. Springer (2008)

[62] S. Chandra, R. A. Khan: Software security metric identification framework (SSM). In:
Proceedings of the International Conference on Advances in Computing, Communication
and Control (ICAC3 '09).pp. 725–731, ACM (2009)

http://www.csoonline.com/article/220462/a-few-good-information-security-metrics

RASEN - 316853 Page 39 / 43

[63] S. Chandra, R.A. Khan, A. Agrawal: Security estimation framework: Design phase
perspective. In: Information Technology: Sixth International Conference on New
Generations (ITNG '09), pp. 254–259 (2009)

[64] E. Chew, M. Swanson, K. Stine, N. Bartol, A. Brown, W. Robinson: Performance
measurement guide for information security. NIST Special Publication 800-55 Revision 1,
National Institute of Standards and Technology (2008)

[65] H. Dai, C. Murphy, G. Kaiser: Configuration fuzzing for software vulnerability detection.
International Conference on Availability, Reliability, and Security (ARES'10), pp. 525–530
(2010)

[66] J. D. DeMott, R. J. Enbody, W. F. Punch: Revolutionizing the field of grey-box attack surface
testing with evolutionary fuzzing. Black Hat USA and DefCon 2007 [ONLINE] Available at:
https://www.blackhat.com/presentations/bh-usa-
07/DeMott_Enbody_and_Punch/Whitepaper/bh-usa-07-demott_enbody_and_punch-WP.pdf
[Accessed 11 December 2012]

[67] DIAMONDS: Initial security test patterns catalogue. DIAMONDS project deliverable
D3.WP4.T1

[68] DIAMONDS: Initial methodologies for model-based security testing and risk-based security
testing. DIAMONDS project deliverable D3.WP4.T2-T3

[69] F. Duchene, R. Groz, S. Rawat, J. Richier: XSS vulnerability detection using model
inference assisted evolutionary fuzzing. In: IEEE Fifth International Conference on Software
Testing, Verification and Validation (ICST’12), pp.815–817. IEEE (2012)

[70] European Telecommunications Standards Institute (ETSI): Information Security Indicators
(ISI), Part 1.1: A full set of operational indicators for organizations to use to benchmark their
security posture, Version 0.1.5, November 2012

[71] V. Ganesh, T. Leek, M. Rinard: Taint-based directed whitebox fuzzing. In: 31st International
Conference on Software Engineering (ICSE’09), pp.474–484. IEEE (2009)

[72] P. Godefroid, A. Kiezun, M. Y. Levin: Grammar-based whitebox fuzzing. In: Proceedings of
the 2008 ACM SIGPLAN conference on Programming language design and implementation
(PLDI '08), pp. 206–215. ACM (2008)

[73] P. Godefroid, M. Y. Levin, D. Molnar: SAGE: Whitebox fuzzing for security testing, ACM
Queue 10, 20-27 (2012)

[74] S. Gorbunov, A. Rosenbloom: AutoFuzz: automated network protocol fuzzing framework.
Computer Science and Network Security, 10 pp. 239–245 (2010)

[75] T. Heyman, R. Scandariato, C. Huygens, W. Joosen: Using security patterns to combine
security metrics. In: Third International Conference on Availability, Reliability and Security,
ARES 08), pp.1156-1163, 4-7 (2008)

[76] M. Howard, J. Pincus, J. M. Wing: Measuring relative attack surfaces. Technical report
CMU-CS-03-169, Carnegie Mellon University (2003)

[77] Y. Hsu G. Shu, D. Lee: A model-based approach to security flaw detection of network
protocol implementations. In: IEEE International Conference on Network Protocols
(ICNP’08). pp. 114–123. IEEE (2008)

[78] International Organization for Standardization: ISO/IEC 15408 – Information technology --
Security techniques – Evaluation criteria for IT security, Version 3.1R3 (2009)

[79] iSixSigma: iSixSigma (2013). [ONLINE] Available at: http://www.isixsigma.com/ [Accessed
25 January 2013]

[80] W. Jansen: Directions in security metrics research. National Institute of Standards and
Technology Interagency Report 7564, National Institute of Standards and Technology
(2009)

[81] A. Jaquith: Security Metrics: replacing fear, uncertainty, and doubt. Pearson Education
(2007)

[82] C. Jing, Z. Wang, X. Shi; X. Yin, J. Wu: Mutation testing of protocol messages based on
extended TTCN-3. In: 22nd International Conference on Advanced Information Networking
and Applications (AINA’08), pp. 667–674. IEEE (2008)

https://www.blackhat.com/presentations/bh-usa-07/DeMott_Enbody_and_Punch/Whitepaper/bh-usa-07-demott_enbody_and_punch-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/DeMott_Enbody_and_Punch/Whitepaper/bh-usa-07-demott_enbody_and_punch-WP.pdf
http://www.isixsigma.com/

RASEN - 316853 Page 40 / 43

[83] R. Kaksonen: A functional method for assessing protocol implementation security (licentiate
thesis). VTT Publications 448, Technical Research Centre of Finland (2001)

[84] R. Kaksonen, M. Laakso, A. Takanen: System security assessment through specification
mutations and fault injection. In: Proceedings of the IFIP TC6/TC11 International
Conference on Communications and Multimedia Security Issues of the New Century, p. 27
(2001)

[85] R. Kaksonen, A. Takanen: Test coverage in model-based fuzz testing. MBT User
Conference (2012)

[86] S. Kan: Metrics and models in software quality engineering, second edition. Addison-Wesley
Professional (2003)

[87] T. Kitagawa, M. Hanaoka, K. Kono: AspFuzz: A state-aware protocol fuzzer based on
application-layer protocols. In: Symposium on Computers and Communications (ISCC’10),
pp. 202–208. IEEE (2010)

[88] M. S. Lund, B. Solhaug, K. Stølen: Model-Driven Risk Analysis: The CORAS Approach.
Springer (2011)

[89] P. Manadhata, J. M. Wing: An attack surface metric. Technical report CMU-CS-05-155,
Carnegie Mellon University (2005)

[90] P. K. Manadhata, K. M. C. Tan, R. A. Maxion, J. M. Wing: An approach to measuring a
system’s attack surface. Technical report CMU-CS-07-146, Carnegie Mellon University
(2007)

[91] E. A. Nichols, G. Peterson: A metrics framework to drive application security improvement,
Security & Privacy, 5(2), pp. 88–91 (2007)

[92] C. Patsakis: Measuring security with SecQua (2012). [ONLINE] Available at:
http://securitymetrics.org/content/attach/Metricon7.0/Metricon_7_secqua_presentation.pdf
[Accessed 10 December 2012]

[93] Open Web Application Security Project: OWASP top ten project (2010). [ONLINE] Available
at: https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project [Accessed 10
December 2012]

[94] P. Oehlert: Violating assumptions with fuzzing, IEEE Security & Privacy, 3(2), 58–62 (2005)
[95] R. Savola: Towards a security metrics taxonomy for the information and communication

technology industry. In: International Conference on Software Engineering Advances
(ICSEA 2007)

[96] The Open Web Application Security Project: OWASP Top 10: The ten most critical web
application security vulnerabilities, 2007 update (2007). [ONLINE] Available at:
https://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf [Accessed 13 January
2013]

[97] R. M. Savola: A security metrics taxonomization model for software-intensive systems.
Information Processing Systems 5(4), 197–206 (2009)

[98] R. M. Savola: Towards a risk-driven methodology for privacy metrics development. In:
Second International Conference on Social Computing (SocialCom), pp.1086–1092 (2010)

[99] R. M. Savola, C. Frühwirth, A. Pietikäinen: Risk-driven security metrics in agile software
development – an industrial pilot study. Journal of Universal Computer Science, 18(12),
1679-1702 (2012)

[100] M. Schneider, J. Großmann, N. Tcholtchev, I. Schieferdecker, A. Pietschker: Behavioral
fuzzing operators for UML sequence diagrams. In: 7th Workshop on System Analysis and
Modelling 2012 (SAMWkshp’12). LNCS, vol. 7744, pp. 87–103. Springer (2012)

[101] M. Schneider: Model-based behavioural fuzzing. In: Proceedings of the 9th Workshop on
Systems Testing and Validation (STV'12), pp. 39‒48. Fraunhofer FOKUS (2012) [ONLINE]
Available at: http://publica.fraunhofer.de/documents/N-217135.html [Accessed 11 December
2012]

[102] J. Shirk, D. Weinstein, L. Opstad: Fuzzed enough? When it’s OK to put the shears away,
BlueHat v8 (2008) [ONLINE] Available at: http://technet.microsoft.com/en-
us/security/dd285263.aspx [Accessed 11 January 2013]

http://securitymetrics.org/content/attach/Metricon7.0/Metricon_7_secqua_presentation.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://publica.fraunhofer.de/documents/N-217135.html
http://technet.microsoft.com/en-us/security/dd285263.aspx
http://technet.microsoft.com/en-us/security/dd285263.aspx

RASEN - 316853 Page 41 / 43

[103] Ben Smith: Security Test Patterns (2008). [ONLINE] Available
at: http://www.securitytestpatterns.org/doku.php [Accessed 25 January 2013]

[104] G. Shu, Y. Hsu, D. Lee: Detecting communication protocol security flaws by formal fuzz
testing and machine learning. In: Proceedings of the 28th IFIP WG 6.1 international
conference on Formal Techniques for Networked and Distributed Systems (FORTE'08), pp.
299–304. Springer (2008)

[105] M. Sutton, A. Greene, P. Amini: Fuzzing: Brute Force Vulnerability Discovery. Addison-
Wesley (2007)

[106] M. Swanson, N. Bartol, J. Sabato, J. Hash, L. Graffo: Security metrics guide for information
technology systems. NIST Special Publication 800-55, National Institute of Standards and
Technology (2005)

[107] S. Taber, C. Schanes, C. Hlauschek, F. Fankhauser, T. Grechenig: Automated security test
approach for SIP-based VoIP softphones. In: Second International Conference on Advances
in System Testing and Validation Lifecycle (VALID’10), pp.114–119. IEEE (2010)

[108] A. Takanen, J. DeMott, C. Miller: Fuzzing for Software Security Testing and Quality
Assurance. Artech House (2008)

[109] A. Takanen: Fuzzing: the past, the present and the future. In: Actes du 7ème symposium
sur la sécurité des technologies de l'information et des communications (SSTIC’09), pp.
202–212 (2009)

[110] R. B. Vaughn, Jr., R. Henning, A. Siraj: Information assurance measures and metrics - state
of practice and proposed taxonomy. In: Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03). IEEE (2002)

[111] V. Verendel: Quantified security is a weak hypothesis: a critical survey of results and
assumptions. In: Proceedings of the 2009 workshop on new security paradigms workshop
(NSPW '09), pp. 37‒50. ACM (2009)

[112] J. Viide, A. Helin, M. Laakso, P. Pietikäinen, M. Seppänen, K. Halunen, R. Puuperä, J.
Röning: Experiences with model inference assisted fuzzing. In: Proceedings of the 2nd
conference on USENIX Workshop on offensive technologies (WOOT'08), article no. 2.
USENIX Association (2008)

[113] M. Walter, C. Trinitis: Quantifying the security of composed systems. In: Proceeding of Sixth
International Conference on Parallel Processing and Applied Mathematics. LNCS, vol. 3911,
pp. 1026–1033. Springer (2006)

[114] C. Wang, W. A. Wulf: Towards a framework for security measurement. In: Proceedings of
the 20th National Information Systems Security Conference (NISSC’97), pp. 522–533
(1997)

[115] W. Xu, L. Deng, Q. Zhen: Annotating resources in sequence diagrams for testing web
security. In: Ninth International Conference on Information Technology: New Generations
(ITNG’12), pp.873–874. IEEE (2012)

[116] Y. Yang, H. Zhang, M. Pan, J. Yang, F. He, Z. Li, Z.: A model-based fuzz framework to the
security testing of TCG software stack implementations. In: International Conference on
Multimedia Information Networking and Security (MINES'09), pp.149–152. IEEE (2009)

[117] I. Schieferdecker, J.Grossmann, M. Schneider, "Model-Based Security Testing," in 7th
Workshop on Model-Based Testing, vol. EPTCS 80 (2012)

[118] Shi Yin-sheng, Yuan F. Y. Gu, Tian-yang, "Research on Software Security," Testing World
Academy of Science Engineering and Technology, vol. 69 (2010)

[119] Jürgen Doser, Torsten Lodderstedt, David Basin, "Model driven security: From UML models
to access control infrastructures," ACM Trans. Soft. Eng. Methodol., vol. 15, pp. 39-91
(2006)

[120] J. Jürjens, Secure Systems Development with UML. Springer (2005)
[121] Z. R. Dai, J. Grabowski, Ø. Haugen, I. Schieferdecker, C. Williams, P. Baker, Model-Driven

Testing: Using the UML Testing Profile, 1st edition. Berlin: Springer (2007)
[122] R. Kaksonen, "A functional method for assessing protocol implementation security," VTT

Technical Research Center of Finland, 448 (2001)

http://www.securitytestpatterns.org/doku.php

RASEN - 316853 Page 42 / 43

[123] J. Jürjens, Guido Wimmel, "Specification-Based Test Generation for Security-Critical
Systems Using Mutations," in 4th Int. Conf. on Formal Engineering Methods (2002)

[124] E. Wong, D. Xu, L. Wang, "A Threat Model Driven Approach for Security Testing," in Third
Int. Workshop on Software Engineering for Secure Systems (2007)

[125] B. K. Aichernig, F. Wotawa, M. Weiglhofer, "Fault-Based Conformance Testing in Practice,"
Journal of Software and Informatics, vol. 3, pp. 375-411 (2009)

[126] P.-C. Heam, R. Kheddam, F. Dadeau, "Mutation Based Testing of Security Protocols in
HLPSL," in Int. Conf. on Sofware Testing Verification and Validation (2011)

[127] J. Oudinet, A. Pretschner, M. Büchler, "Semi-Automatic Security Testing of Web
Applications from a Secure Model," in 6th Int. Conf. on Software Security and Reliability,
(2012)

[128] L. Fredriksen, B. So Barton, P. Miller, "An Empirical Study of the Reliability of UNIX
Utilities," in Workshop of Parallel and Distributed Debugging (1990)

[129] J. DeMott, C. Miller, A. Takanen, "Fuzzing for software security testing and quality
assurance," Artech House (2008)

[130] L. L. Pollock, H. Esquivel, B. Hazelwood, S. Ecott S. Sprenkle, "Automated Oracle
Comparators for Testing Web Applications," in 18th IEEE Int. Symp. on Software Reliability,
(2007)

[131] T. Mouelhi, Y. Le Traon, E. Abgrall, B. Baudry, S. Gombault: Tailored Shielding and Bypass
Testing of Web Applications. ICST 2011: 210-219 (2011)

[132] R. Allan Alimi. A Dual-System Approach to Realistic Evaluation of Large-Scale Networked
Systems. Ph.D. Dissertation. Yale University, New Haven, CT, USA. (2011)

[133] Cisco Systems. Network Solutions Integrated Test Environment:
http://www.cisco.com/en/US/solutions/ns341/ns522/networking_solutions_products_generic
content0900aecd80458f98.pdf, 2006.

[134] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,
and A. Joglekar. An Integrated Experimental Environment for Distributed Systems and
Networks. In 5th Symposium on Operating System Design and Implementation (OSDI
2002). USENIX Association (2002)

[135] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer. Overlapping Experiment Infrastructure:
More, Better, Faster Experimentation. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM (2010)

[136] Cisco Systems. Common Routing Problem with OSPF Forwarding
Address. http://www.cisco.com/warp/public/104/10.pdf (2005)

[137] D. F. Bacon and S. C. Goldstein. Hardware-assisted Replay of Multiprocessor Programs. In
Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging. ACM
(1991)

[138] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution Replay of
Multiprocessor Virtual Machines. In Proceedings of the 4th International Conference on
Virtual Execution Environments. ACM (2008)

[139] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay Debugging for Distributed
Applications. In Proceedings of the 2006 USENIX Annual Technical Conference. USENIX
(2006)

[140] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan,
and C. Shanbhag. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure.
Technical Report dapper-2010-1, Google (2010)

[141] G. Altekar and I. Stoica. ODR: Output-Deterministic Replay for Multicore Debugging. In
Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009. ACM
(2009)

[142] Scalable Network Technologies. QualNet Developer. http://www.scalable-networks.com.
[143] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and J. Rexford. On

Static Reachability Analysis of IP Networks. In INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies. IEEE (2005)

http://www.cisco.com/warp/public/104/10.pdf
http://www.scalable-networks.com/

RASEN - 316853 Page 43 / 43

[144] H. Hamed, E. Al-Shaer, and W. Marrero. Modeling and Verification of IPSec and VPN
Security Policies. In 13th IEEE International Conference on Network Protocols (ICNP 2005).
IEEE Computer Society (2005)

[145] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with Static Analysis.
In 2nd Symposium on Networked Systems Design and Implementation (NSDI 2005).
USENIX Association (2005)

[146] B. Q. Zhao, J. C. Lui, and D.-M. Chiu. Exploring the Optimal Chunk Selection Selection
Policy for Data-Driven P2P Streaming Systems. In Proceedings P2P 2009, Ninth
International Conference on Peer-to-Peer Computing. IEEE (2009)

[147] A. Bertolino, P. Inverardi, and H. Muccini. Formal methods in testing software architectures.
In Formal Methods for Software Architectures: Third International School on Formal
Methods for the Design of Computer, Communication and Software Systems: Software
Architectures (SFM'03), LNCS 2804, pp. 122–147. Springer (2003)

[148] H. Muccini, M. S. Dias, D. J. Richardson. Towards software architecture-based regression
testing. SIGSOFT Softw. Eng. Notes 30(4), 1-7 (2005)

[149] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Characterizing Residential
Broadband Networks. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement 2007. ACM (2007)

[150] K. V. Vishwanath and A. Vahdat. Evaluating Distributed Systems: Does Background Traffic
Matter? In Proceedings of the USENIX Annual Technical Conference. USENIX Association
(2008)

	1 Introduction
	2 Risk-Related Security Testing Approaches
	2.1 Dynamic Application Security Testing
	2.2 Risk-Based Test Identification and Prioritization
	2.2.1 Motivation for Techniques for Risk-Based Test Identification and Prioritization
	2.2.2 Techniques for Risk-Based Test Identification and Prioritization

	2.3 Risk-Based Testing from Security and Vulnerability Test Patterns
	2.4 Fuzzing Based on Security-Annotated Models
	2.4.1 Model-Based Data Fuzzing
	2.4.2 Behavioral Fuzzing Based on Security-Annotated Models

	3 Security Testing Metrics
	3.1 Measurements
	3.2 Security Metrics Frameworks
	3.2.1 Security Scorecard
	3.2.2 Composition of Security Metrics

	3.3 Metrics for Security Testing
	3.4 Methodologies for Developing Security Metrics

	4 Testing Approaches for Large-Scale Networked Systems
	4.1 Lab and Staging Infrastructures
	4.2 Logging/Replay Systems
	4.3 Modeling and Simulation
	4.4 Synthesis

	5 RASEN Baseline
	5.1 Baseline for Techniques on Risk-Based Test Identification and Prioritization
	5.2 Baseline for Risk-based Testing from Security Test Pattern
	5.3 Baseline for Fuzzing Based on Security-Annotated Models
	5.4 Baseline for Security Testing Metrics

	6 Summary
	References

