Online Model-Based Behavioral Fuzzing

Martin Schneider, Jirgen Gro3mann,
Ina Schieferdecker
Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany
Email: {martin.schneider, juergen.grossmann,
ina.schieferdecker} @fokus.fraunhofer.de

Abstract—Fuzz testing or fuzzing is interface robustness
testing by stressing the interface of a system under test (SUT) with
invalid input data. It aims at finding security-relevant weaknesses
in the implementation that may result in a crash of the system-
under-test or anomalous behavior. Fuzzing means sending invalid
input data to the SUT, the input space is usually huge. This is
also true for behavioral fuzzing where invalid message sequences
are submitted to the SUT.

Because systems are getting more and more complex, testing
a single invalid message sequence becomes more and more time
consuming due to startup and initialization of the SUT. We
present an approach to make the test execution for behavioral
fuzz testing more efficient by generating test cases at runtime
instead of before execution, focusing on interesting regions of a
message sequence based on a previously conducted risk analysis
and reducing the test space by integrating already retrieved test
results in the test generation process.

Keywords—Model-based Testing; Security Testing; Test Gener-
ation; Test Execution; Behavioral Fuzzing

I. INTRODUCTION

Fuzz testing or fuzzing is a security testing approach where
invalid input data are sent to the SUT. The goal is to find
bugs in the implementation of the SUT that lead to processing
instead of rejecting invalid input data. This way, weaknesses in
the implementation may be revealed that might be exploited
in order to crash the SUT or to modify its behavior in an
unintended way. Because the interface of the SUT is stressed
with invalid input data, fuzzing is a kind of interface robustness
testing and negative testing.

Fuzzing dated back from Barton Miller who used UNIX
command line utilities over a noisy dial-up line ([1], foreword
by Barton Miller). Due to that noise, spurious characters were
induced that caused the command line utilities to crash. A
systematic investigation [2] revealed that software is generally
susceptible to invalid inputs that lead to security-relevant
weaknesses. The kind of fuzzing that was originally conducted
by Miller is referred to as random fuzzing because the input
data is randomly generated without protocol knowledge. While
this approach is even today a way to find vulnerabilities in
current software [3], [4], [5], random fuzzing suffers from a
number of disadvantages. One is caused by its randomness:
when input data is randomly generated, it is usually invalid
([11, p- 27). This means it contains invalid input data in all
or nearly all parts. Such totally invalid input data is usually
easy to detect and rejected by a SUT even if it is faulty

Andrej Pietschker
Giesecke & Devrient GmbH
Prinzregentenstr. 159
81677 Munich, Germany
Email: andrej.pietschker@gi-de.com

because if one input validation mechanism fails, another may
detect another invalid part of the input. Hence, the chance to
detect errors in the input validation mechanism of the SUT’s
interface that lead to processing invalid input data is very small
[6]. Another disadvantage results from the lack of protocol
knowledge that is used to communicate with the SUT. This
leads to input data that is in fact able to find simple bugs.
But there is only little chance to reveal bugs that are hidden
by complex interaction with the SUT. For instance, generating
a bunch of valid messages and then sending a message that
carries invalid input data is less likely to be created by a
random-based fuzzer than by fuzzers with protocol knowledge.
Hence, random-based fuzzers mostly find just simple bugs ([1],
p. 27).

Therefore, more sophisticated fuzzers have protocol knowl-
edge in order to generate input data that is not totally invalid
but only invalid in small parts. Such input data is called semi-
valid because it is mostly valid and invalid only in those
small parts. Depending of the amount of protocol knowledge,
different categories of fuzzers can be distinguished. Block-
based fuzzers split messages into static and dynamic parts
where only the dynamic parts get fuzzed. Model-based fuzzers
or smart fuzzers have a complete model of the SUT’s protocol
and hence, are able to find more complex bugs by creating
complex interactions with the SUT.

While fuzzing of input data is an already well-established
approach for security testing, behavioral fuzzing is quite new.
It consists of generating invalid message sequences instead of
invalid input data and hence, generally leads to test cases that
are as long as or even longer than valid message sequences. As
protocols are getting more complex, such message sequences
grow further and, with it, its execution time. This is a serious
problem if the initialization of the SUT as well as the test
execution itself is time-consuming.

We refer to test case generation before execution as offline
generation and in contrast to test case generation at test runtime
as online generation. Online generation of test cases has two
advantages: it avoids generation of all test cases before execu-
tion and thus, reduces resources required to generate a possibly
large number of test cases before the first one is executed. On
the other hand enables online generation of test cases to include
results from already executed test cases to guide the test case
generation. This allows to achieve certain goals dynamically,
e.g. a certain code coverage that is measured at test runtime or
to avoid generating test cases which all reveal the same fault



because they contain a common preamble.

In this paper, we present a way to reduce the test execution
time by (a) generating test cases by employing model-based
behavioral fuzzing [7] stepwise during test execution, (b)
respecting the results from the previous test executions for
generation of further test cases, and (c) focusing on message
subsequences based on a previous conducted risk analysis. The
rest of this paper is organized as follows: Section 2 introduces
a motivating case study from the banking domain provided
by Giesecke & Devrient for the ITEA-2 research project
DIAMONDS, in Section 3 we explain in short the behavioral
fuzzing approach applied to the case study. The approach
for combining test generation and execution including an
algorithm is presented in Section 4. Section 5 discusses related
work regarding behavioral fuzzing. The paper closes with
conclusions and future work.

II. MOTIVATING CASE STUDY

The motivation for the idea of combining test case genera-
tion and execution came from applying behavioral fuzzing to a
case study from the ITEA-2 research project DIAMONDS. It
is a banknote processing machine from Giesecke & Devrient
that is able to sort banknotes by its currency, denomination,
condition and authenticity. Banknotes run through the machine
and are scanned by sensors. The sensor data is evaluated by
the software and causes the correct sorting of the banknotes.
The software is running on a Machine PC that is part of the
banknote processing machine. Giesecke & Devrient provides
the software on the machine PC as a virtual machine and
additionally a set of functional test cases. These test cases
constitute our basis for model-based security testing of the
software.

On an abstract level, using the banknote processing system
consists of four steps. At the beginning, an operator has to
authenticate himself in order to get access to the machine.
In the second step, the operator configures the machine for
counting certain kinds of banknotes, e.g. by selecting the
currency and the denomination of the banknotes. After that,
he starts the counting process and the machine automatically
counts all the banknotes. This process takes several minutes. If
that is done, the operator performs a logout from the machine.
Before a functional test case is started, the SUT is initialized
by starting the virtual machine using a certain snapshot that
ensures a consistent state.

The execution of a functional test case takes considerable
time, in our test bed at Fraunhofer FOKUS about 9 minutes.
Figure 1 illustrates how execution time is distributed to the
different phases of a functional test case. Login and logout are
instantaneous events in time after the startup phase and at the
end of the test case. The phase startup includes starting the
virtual machine, its operating system and the software of the
Machine PC. The phases startup and counting (white blocks
in Figure 1) run automatically where no messages are received
from or sent to the SUT. Only the gray and black phases (login,
logout, and configuration) are the focus of these security-
related tests. Obviously, only little execution time is useful
for testing (about 1/6 of the whole execution time). Therefore,
our goal is to avoid or reduce the useless (white) phases that
are not usable for security testing and to keep the system in

the black and gray phases. In order to achieve this goal, we
could omit the counting phase, should reduce the number of
startup phases and remain in the black or gray phases (login
and configuration).

III. MODEL-BASED BEHAVIORAL FUZZING

Behavioral fuzzing is a security testing approach comple-
mentary to traditional data fuzzing. Data fuzzing consists of
sending invalid input data in order to reveal weaknesses due
to faulty input validation mechanism. In contrast, behavioral
fuzzing consists of submitting invalid message sequences to
a system under test in order to reveal weaknesses in the
implementation. In contrast to most behavioral fuzzing ap-
proaches that use finite state machines for test case generation,
we generate behavioral fuzz test cases from UML sequence
diagrams (as explained in detail in [7]). We apply a set of
fuzzing operators to a valid UML sequence diagram. The result
is an invalid message sequence that represents a behavioral
fuzz test case. The fuzzing operators can be divided in six
categories based on their usage of protocol knowledge and the
generated deviation to a valid sequence [7]. A fuzzing operator
modifies one or more elements of a sequence diagram, e.g. a
single message, a set of messages or the guard of a combined
fragment. Examples of fuzzing operators are Remove Message,
Move Message, Negate Interaction Constraint, and Change
Bounds of Loop. A complete list can be found in [7].

Applying behavioral fuzzing to UML sequence diagrams
instead of to state machines has the advantage that the ap-
proach could be applied even if no state machine is available.
Behavioral fuzzing of UML sequence diagrams allows using
other information, e.g. using a general conformance test suite
for a protocol or functional test cases developed for a certain
SUT as in our case. We use the functional test cases of the
case study as a basis for our behavioral fuzz tests.

Giesecke & Devrient provided the case study by delivering
a virtual machine of the banknote processing system as well
as a set of functional test cases written in TTCN-3. Behavioral
fuzzing of UML sequence diagrams allows us to re-use their
functional test cases for security testing. In order to apply
model-based behavioral fuzzing, we first generated a model
of these functional test cases using sequence diagrams. In a
second step, we applied our behavior fuzz test case generator
to these functional test cases in order to generate behavioral
fuzz test cases.

IV. ONLINE MODEL-BASED BEHAVIORAL FUZZING

As discussed in [7], the number of security test cases that
can be generated by applying behavioral fuzzing to a single
UML sequence diagram can be approximated by

= o'
@) —_ 1
<Z (o — z)') M
i=1
with
o =o0-é" 2)
The number of available fuzzing operators that can be applied

to a sequence diagram is denoted by o. e is the number
of elements in the sequence diagram that can be fuzzed.



startup

counting

counting

login

Fig. 1. Execution Time of a Functional Test Case

Depending on the applicable fuzzing operators, this could be
the number of messages, or the number of messages plus the
number of guards within interaction operands, for instance. n
is the maximal number of fuzzing operators to be applied to a
sequence diagram to generate a single test case. k is a constant
representing the number of different modifications that can be
applied to an element by a single fuzzing operator. E.g., k is
1 for fuzzing operators that remove or repeat a message, and
2 for fuzzing operators that move messages.

Obviously, the number of test cases is too large to execute
them all, especially when considering systems as the banknote
processing machine presented in Section II.

Traditional test case generation before execution is not
always sufficient. On one hand, when a weakness is found
while executing a test case, this is mostly not the case after
a test case is completely executed. Therefore, the message
subsequence that follows that part of the test case that revealed
a weakness was generated and executed gratuitously. On the
other hand, when a test case found no weakness, this might
be possible when further invalid messages would be sent to
the SUT after the sequence of invalid messages. In this case,
executing a single test case does not serve the goal to find
weaknesses in the implementation of the SUT, and further test
cases could be executed without restarting the SUT.

Moreover, the execution of all test cases and hence, their
generation before execution is not useful. The reason is that test
cases may contain message subsequences of other test cases.
If these subsequences already revealed a weakness within the
SUT, it does not make sense to execute further test cases
that contain these subsequences because it is already known
that they will reveal a certain weakness and therefore not find
weaknesses related to the unexecuted part of the test case.

In the context of the case study presented in Section II,
these are serious disadvantages. Startup for executing test cases
that do not reveal weaknesses consumes a lot of time, as well
as test cases that contain message sequences that are already
known to reveal a weakness. In the following, we present a
combined approach that seems to be able to overcome these
issues.

A. Online Test Case Generation

One building block of our proposed solution is online test
case generation. It means that test generation and execution are
taking place at the same time having a mutual impact. In the
context of behavioral fuzzing of UML sequence diagrams as
presented in [7], this means that fuzzing operators are applied
to a valid UML sequence diagram in order to determine the
messages to be sent to the SUT.

Our basic idea is to execute test cases as long as the SUT
is healthy. Obviously, we don’t need to restart our SUT as long
as it behaves normally. Thus, we can avoid long startup times.
This helps in our case study where startup of the SUT takes

logout

considerable time. One benefit of this procedure is that more
test cases can be executed in the same time in comparison
with offline generation. Another is that more complex weak-
nesses can be found that may be revealed when long message
sequences are executed that consists of more than those of
a single test case. When considering our behavioral fuzzing
approach and our case study, we reuse functional test cases
for non-functional security testing. These functional test cases
contain a limited set of functionality (a single user session)
that is called when executing the test case. Executing a large
number of fuzzed test cases one after another as long as
the SUT is (or seems to be) healthy means that several user
sessions are executed without restarting the SUT. That way,
weaknesses may be revealed that cannot be detected by an
invalid message sequence generated by fuzzing and executing
a single user session.

We generate a single test case by applying one or more
fuzzing operators to a valid sequence diagram [7].

We distinguish fuzzing operators on two levels:

e  Fuzzing operator instances are fuzzing operators
whose parameters are all having assigned values. In
case of the fuzzing operator Remove Message that
means the message to be removed is already deter-
mined, and for the fuzzing operator Move Message the
message to be moved as well as the position where it
will be moved to is determined.

e  Fuzzing operators’ parameters don’t have any values
assigned to them. When speaking about fuzzing op-
erators in the context of a certain sequence diagram,
this term comprises all fuzzing operator instances that
can be created by assigning all possible values valid
for this sequence diagram.

In the first step, all operators are determined that are
applicable to a given, valid sequence diagram. This results in
a set of fuzzing operators. After that, all instances of fuzzing
operators are created by assigning values to the parameters
of these fuzzing operators. After that step, a single test case
is generated by applying one fuzzing operator instances to
the valid sequence diagram. This is done for all fuzzing
operator instances. In the next cycle, all combinations of two
fuzzing operator instances are applied in order to generate
test cases. This is done up to a certain number of fuzzing
operator instances generating a single test case. This ensures
that the process of test case generation terminates and limits
the number of test cases to be generated. In case of offline
generation, the executable test code is generated and executed
after all behavioral fuzz test cases are generated.

In our online generation approach, we generate test cases
on demand. This means, when a test case is requested by the
test execution environment, a single test case is generated by
applying a certain number of fuzzing operator instances to
a valid message sequence. In the next step, the test execution



environment requests one message from the test case generator,
submits it to the SUT. After that, the health status of the SUT
is determined. In case of fuzzing, this could be done using
connectivity checks in order to detect a crash, or monitoring
the internal state of the SUT to find more subtle bugs [1].

If the SUT is still healthy after submitting a fuzzed
message, the next message is submitted. If no more messages
are available for the test case being executed, the next test case
is generated and executed. For doing so, we need to bring the
SUT in a state that is expected when starting execution of
the next test case. Hence, some kind of reset message or a
sequence of reset messages is necessary that could be sent
to reach such a state. If, for example, a test case expects a
system where no user is logged in, and the logout message
at the end of behavioral fuzz test case is removed by the
fuzzing operator Remove Message, in order to bring the SUT
in the expected state, logout would be an appropriate reset
message. Determining an appropriate reset message depends
on the SUT’s behavior and state after receiving an invalid
message.

If the SUT reveals any weakness during the execution of
a test case, its execution has to be stopped because the SUT
may be in an inconsistent state or simply crashed. First, the
already sent message sequence is saved for later analysis. This
comprises all messages sent since the startup the SUT. As a
result of our approach, this message sequence is usually much
longer than a single test case because we restart our SUT only
if necessary. In the case of a revealed weakness, our SUT
requires to be brought in a consistent state in order to enable
execution of further test cases. This means for our case study
that the virtual machine that runs the Machine PC software is
restarted using a certain snapshot.

The approach of online generation avoids generating and
saving all the behavioral fuzz test cases whose number is really
huge as shown by Formula 1. Instead, only message sequences
that revealed weaknesses are saved for later analysis.

B. Integrating Previous Test Results

After sending a (possibly invalid) message from the test
execution environment to the SUT, its impact on the SUT is
determined. If the SUT remains healthy, the next message is
sent to the SUT as described in the previous section.

If the SUT behaves anomalously, a weakness in the SUT
was found. This leads to actions described before: The com-
plete message sequence that was sent to the SUT is persisted
for later analysis. If the complete message sequence or the last
sent message has caused the anomalous behavior of the SUT,
is not clear. A detailed analysis may be necessary to find the
causative message sequence. Persisting the complete message
sequence enables this analysis.

Generating test cases by increasing the number of fuzzing
operator instances to be used for generating a single test case
may lead to test cases that contain complete other test cases
generated by a smaller number of fuzzing operator instances.
Executing these larger message sequences would result in
revealing the same weakness that was already revealed by
another test case whose message sequence is contained. Hence,
generating message sequences within a test case that already

revealed weaknesses has to be prevented. This is realized by
keeping the message sequence of the current test case up to
the last message that revealed the weakness. If a new test case
is generated, it is compared with these message sequences in
order to avoid generating as part of a new test case. This
improves efficiency because this also avoids restarting the SUT
when no new weakness was found.

Indeed, this slows the test generation down a little bit. But
this is on one hand limited by the number of already revealed
weaknesses which would be relatively small. On the other
hand, restarting the SUT takes so much time that avoiding
it seems to be reasonable.

For enabling the execution of further test cases, it is
necessary to get the SUT back in a consistent, healthy state.
Hence, if a weakness in the implementation was found, a
snapshot of the SUT is restored and it is restarted using it.

C. Focusing on Message Subsequences

The behavioral fuzzing approach presented in [7] fuzzes
a complete sequence diagram that represents e.g. a functional
test case. However, some parts of the sequence may contain
preamble and postamble steps which set the SUT into the
correct mode and are not part of the test itself. Moreover, the
focus of security tests is more narrowed to potential threats
and vulnerabilities that result from a previously conducted risk
analysis. For example, a result from a risk analysis could be
that the SUT might be vulnerable in a certain state. Therefore,
testing for that vulnerability is only useful if the SUT is in
that state.

When considering Figure 1, obviously we would like
to avoid the time-consuming counting phase. This could be
achieved by defining a region around all the messages from
login and configuration phase. Defining such a region causes
only messages within that region to be fuzzed. This has two
benefits:

e It may reduce test execution time by defining re-
gions that avoid time-consuming messages. While
this reduces the execution time of a test case, some
weaknesses would be missed when excluding some
messages. Therefore, the definition of regions has to
be done by experts.

e  Considering Formula 1, using regions has a decreasing
impact on e, the number of elements fuzzing operators
can be applied to. Thus, the overall number of test
cases may be reduced.

Another example is an authentication bypass vulnerability.
Testing for that vulnerability is only useful if the SUT is in
a state where no user is logged in. The implications depend
on the kind of fuzzing that is performed. While this results in
a region comprising just the login message when performing
data fuzzing, for behavioral fuzzing the region of interest
comprises the messages login and logout that should be moved
after respectively before messages that require authentication.
How such behavioral fuzz tests for certain vulnerabilities can
be generated using security annotations is discussed in [8].
Such testing requires to adapt the test generation process
presented in [7] by selecting an appropriate subset of fuzzing
operators and fuzzing operator instances. For example, fuzzing



operators such as Repeat Message do generate sequences
which are out of scope and hence, should be left out from
the test generation process.

The shorter such message sequences that shall be fuzzed,
the larger is the benefit regarding the time necessary to execute
all test cases. However, how long such a sequence should
be depends strongly on the SUT and the functions that are
fuzzed. In order to find authentication bypass vulnerabilities
as discussed above, it could be sufficient to define a message
sequence comprising a login message, a logout message and
a message that shall be protected by login or logout. Other
kinds of functions to be tested may consist of a larger set of
messages, which results in larger message subsequences. Ex-
cluding a preamble and a postamble from message sequences
reduces the number of messages that should be behavioral
fuzzed. This is done for the purpose of focusing on the actual
functionality to be security tested and to avoid testing parts of
the SUT that may not be security-relevant.

In this paper, we focus on behavioral fuzzing of regions
employing all applicable fuzzing operators that modify only
messages within that region. Hence, all fuzzing operators are
applicable that suffice the following conditions:

e The element (a message, a combined fragment or
one of its interaction operands or guards) must be
contained by such a region.

o  The elements that are affected by applying the fuzzing
operator instance are all contained in such a region.

D. Algorithm

Combining these building blocks — online test case gen-
eration, integration of previous test results, and focusing on
message subsequences — leads to the algorithm in Figure 2 we
describe in the following.

The inputs to the algorithms are:

e region: The region to be fuzzed that is a subsequence
of the sequence diagram. It results from runtime obser-
vations by defining regions that avoid long execution
times or from a previously conducted risk analysis
that identified that region to be susceptible for certain
threats.

e All combinations of fuzzing operator instances
(allFuzzOpCombs) that are applicable to region and
affect only messages within it.

e A kind of reset message or a sequence of messages
that brings the SUT to a state expected at the begin-
ning of a test case.

The algorithm simply returns a set of message sequences
revSeq that revealed a weakness. It works as long as remaining
combinations of fuzzing operators are available for generating
test cases (line 2). When running the first iteration or after
revealing a weakness, the SUT is restarted (line 3). The
variable currSeqM sgs stores the messages sent to the SUT
since its last startup.

The outer while loop (lines 2 to 27) ensures that each
combination of fuzzing operator instances is used for test
generation.

The body of the inner while loop (lines 5 to 26) constitutes
the whole test generation and execution process. In the first
step, the SUT is initialized. This is done by sending all
messages until region is reached (line 7). These messages
constitute a valid message sequence and thus, it could be
assumed that the SUT is in the desired state if all these
messages were sent to the SUT. Lines 7 to 11 determine
the next combination of fuzzing operator instances (line 8)
for generating the next test case by applying them to region
(line 9) as discussed in [7]. The resulting fuzzed region is
compared with all test cases that revealed a weakness and
the result is stored in avoid (line 10). It indicates whether
the fuzzed region contains any message sequence that already
revealed a weakness (consider that this comprises not the
whole message sequence since the last SUT startup but only
those messages that are generated by the currently executed
test case, i.e. fuzzed region). This is done until such a region
was generated or no further fuzzed regions can be generated
due to no further fuzzing operator combinations are available
(line 11). This seems to be a point where efficiency seems to be
relevant. Actually, it depends on how much vulnerabilities are
found during security testing. For mature systems, this number
could be pretty small and hence, this part does not affect the
efficiency of the approach that much. However, using special
data structures may improve the performance of this part of
the algorithm when testing systems where a large number of
vulnerabilities were found. If no further fuzzed regions can
be generated (line 12), all message sequences that revealed
a weakness are returned (line 13). Otherwise, a new fuzzed
region representing a single test case for that region is found
and can be sent to the SUT. The combination of fuzzing
operators is then applied to region in order to generate an
invalid message sequence (line 16).

This is done message-wise (for each-loop in lines 16 to
23). The message is sent to the SUT (line 17) and this
message is added to the list of messages sent since the last
startup (currSeqM sgs, line 18). In the next step, it is checked
whether the SUT is healthy (line 19). How this is done depends
strongly on the SUT and which monitoring techniques can be
used. A few monitoring approaches are given in [1]. If the SUT
is not healthy, a message sequence that revealed a weakness
was found. The whole message sequence since last startup
of the SUT is saved for later analysis (line 20). If the SUT
remains healthy, execution proceeds with the next message
until all messages of the fuzzed region are sent to the SUT.
If no weakness was revealed after all messages were sent, the
next combination of fuzzing operator instances is tried by the
outer while loop after sending a reset message (line 24). If all
combinations are tested, all message sequences that revealed
a weakness are returned for analysis (line 27).

V. RELATED WORK

In the following, behavioral fuzzing approaches are pre-
sented as well as their integration of a feedback mechanism.
While behavioral fuzzing is implicitly performed by several
approaches, including random-based fuzzing as discussed in
[7] and fuzzing using evolutionary algorithms for learning the
model [9] or model inference [10], explicit behavioral fuzzing
approaches are seldom.

Becker et al. [11] tested the IPv6 Neighbor Discovery



Input: region (region to be fuzzed)
all FuzzOpCombs (all combinations of fuzzing operator
instances applicable to region as a stack)
resetMsg (brings the SUT back to the beginning of or
before region)
Output: revSeq (all messages sequences that revealed a
weakness)
1: revSeq == @
2: while (allFuzzOpCombs # &) do
3: startupSUT()
4 currSeqM sgs = emptyList
5:  while (SUT is healthy) do
6 initSUT (region)
7: repeat
8 nextComb := allFuzzOpCombs.pop()
9 fuzzedRegion := nextComb.apply(region)
0 avoid := ({seq € revSeq |
fuzzedRegion.contains(seq)} = @)

11: until (not avoid or allFuzzOpCombs = &)
12: if (avoid) then

13: return revSeq

14: end if

15: currRegionM sgs := nextComb.applyTo(region)
16: for each (msg in fuzzedRegion) do

17: msg.send|()

18: currSeqM sgs.add(msg)

19: if (not SUT is healthy) then

20: revSeq = revSeq U {currSeqMsgs}
21: break

22: end if

23: end for

24: resetM sg.send()

25:  end while
26: end while
27: return revSeq

Fig. 2. Algorithm for Online MBBF

Protocol using fuzzing. They employed a finite state machine
as a behavioral model. They used a second state machine,
called strategical state machine. The different states represent
different combination of fuzzing strategies. These fuzzing
strategies are equivalent to our fuzzing operators. They com-
prise beside traditional data fuzzing also behavioral fuzzing
strategies by inserting, repeating and dropping messages. They
included a feedback mechanism comprising the number of
functions (power) as well as the number of different functions
(entropy) involved processing a single message, if an error
or if a corrupt or delayed message was monitored. Hsu et
al. [12] used similar fuzzing strategies that changes the type
of a message or reorders messages. However, their feedback
mechanism was focused on finding messages that might reveal
weakness by improving code coverage and anomalous message
(corrupt or delayed), it does not focus on avoiding already
sent message sequences. The implementation of a Neighbor
Discovery Protocol also consists not of a large number of
messages, and their combination of fuzzing strategies seems to
comprise at most 2. Hence, they do not have the problem of test
execution time and message sequences occurring in different
test cases. Their approach does not provide possibilities to
focus on message subsequences to be fuzzed. Their goal

focuses on reducing the number of test cases by the feedback
of the SUT. However, they do not describe their strategy in
detail.

Banks et al. [13] presented a tool called SNOOZE that
allows developing stateful network protocol fuzzers. It uses
an XML-based specification of the protocol that contains a
finite state machine for describing the flow of messages. A
fault injector component is used to generate messages carrying
invalid parameters. SNOOZE provides several primitives, for
instance to fuzz several values depending on their type. It pro-
vides also primitives to get invalid messages and thus, enables
development of behavioral fuzzers. However, SNOOZE is a
framework for developing a fuzzer and provides means for
determining the SUT’s state at runtime. Using the information
for guiding the test case generation is the responsibility of a
developer of fuzzer who uses the SNOOZE framework.

Another approach of behavioral fuzzing is presented by
Kitagawa et al. [14]. It focuses on behavioral fuzzing and pre-
sented some vulnerabilities found by behavioral fuzzing. These
vulnerabilities show that behavioral fuzzing does actually find
vulnerabilities that could not be found by employing data
fuzzing. They found a vulnerability in Apache web server that
results from sending messages of a HTTP GET-request several
times when it is allows only once. Thus, an input validation
mechanism was bypassed and allowed memory corruption.
However, online generation of test cases was not part of their
work.

VI. CONCLUSIONS AND FUTURE WORK

We presented an online behavioral fuzzing approach that
allows runtime-efficient model-based behavioral fuzzing by
avoiding unnecessary restarts of the SUT and reducing the
number of different test cases to be executed by focusing on
message subsequences defined by regions. These regions may
be the results from a previously conducted risk analysis or
by observing the execution time of messages and excluding
messages that are time-consuming while having little chance
of revealing weaknesses. Additionally, results from previously
executed test cases are integrated by avoiding subsequences
that already revealed a weakness. This also reduces the number
of different test cases to be executed.

The approach allows systematic fuzz testing by executing
each behavioral fuzz test case in an automated manner. It
reduces the test execution time significantly by decreasing the
number of time-consuming restarts of the SUT. The number of
restarts using online model-based behavioral fuzzing depends
only on the number of found weaknesses while offline test
generation restarts the SUT for each test case.

However, the approach can be improved. It seems to be
crucial to find an appropriate reset message in order to avoid
as many restarts of the SUT as possible. As shortly discussed,
this could be difficult. After sending message sequence to the
SUT that contains a one or more invalid messages, it may be
unclear which state the SUT reached. The appropriate reset
message or reset message sequence depends on that state. If
possible, monitoring the internal state of the SUT would help
to determine the state in order to determine a reset message.
If this is not possible, finding the reset sequence is more
difficult. Additionally, different SUTs could react differently



on an invalid message. While one could ignore this message
and would process valid messages after an invalid message,
another SUT would reset to an initial state automatically after
receiving an invalid message. While the latter case requires no
reset message, for the first case the reset message is required
to avoid a restart of the SUT.

Another issue is to determine the actual message sequences
that revealed a weakness. Our proposed algorithms uses the
whole message sequence of a region, in the worst case since
startup of the SUT, to determine test cases to be avoided
in future executions. In fact, the message sequence could be
much shorter. Knowing the actual, shortest message sequence
that would reveal a weakness would improve the efficiency by
excluding more test cases from execution. An idea to determine
this message sequence could be to try out different message
sequences from beginning with just the last sent message
up to the whole message sequence since last startup. While
this would find the shortest message sequence that reveals a
weakness, it could also be very time consuming, especially
if the shortest message sequence is as long as the initially
persisted message sequence.

We are currently implementing this approach for the pre-
sented case study by Giesecke & Devrient and look forward
to first results.

ACKNOWLEDGMENT

This work was funded by the ITEA-2 research project
DIAMONDS. Please see www.itea2-diamonds.org for more
information.

The research leading to these results has also received
funding from the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no 316853.

REFERENCES

[1] A. Takanen, J. DeMott, and C. Miller, Fuzzing for software security
testing and quality assurance, ser. Artech House information security
and privacy series. Artech House, 2008.

[2] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, no. 12, pp. 32-44,
Dec. 1990. [Online]. Available: http://doi.acm.org/10.1145/96267.96279

[31 B. Miller, D. Koski, C. Lee, V. Maganty, R. Murphy, A.Natarajan, and
J. Steidl, “Fuzz revisited: a re-examination of the reliability of Unix
utilities and services,” U. Wisconsin, Techn. report CS-TR-95-1268,
1995.

[4] 1. E. Forrester and B. P. Miller, “An empirical study of the robustness
of Windows NT applications using random testing,” in Proceedings of
the 4th conference on USENIX Windows Systems Symposium - Volume
4. Berkeley, CA, USA: USENIX Association, 2000, pp. 6-6.

[5]1 B. P. Miller, G. Cooksey, and F. Moore, “An empirical study of the
robustness of MacOS applications using random testing,” in Proceed-
ings of the Ist international workshop on Random testing, ser. RT *06.
New York, NY, USA: ACM, 2006, pp. 46-54.

[6] 1. V. Sprundel, “Fuzzing: Breaking software in an automated fashion,”
Talk at: 22nd Chaos Communication Congress: Private Investigations,
2005. [Online]. Available: http://events.ccc.de/congress/2005/fahrplan/
attachments/582-paper_fuzzing.pdf

[71 M. Schneider, J. GroBmann, N. Tcholtchev, 1. Schieferdecker, and
A. Pietschker, “Behavioral fuzzing operators for UML sequence di-
agrams,” in 7th Workshop on System Analysis and Modelling 2012
(SAMWkshp 2012), ser. LNCS, O. Haugen, R. Reed, and R. Gotzhein,
Eds., vol. 7744. Springer, 2013, pp. 88-104.

(8]

(9]

[10]

(11]

[12]

[13]

[14]

M. Schneider, “Behavioral fuzzing operators for UML sequence
diagrams,” in 9th Workshop on Systems Testing and Validation,
STV’12. Proceedings, J. Garbajosa, J. Boegh, and A. Rennoch,
Eds., vol. 7744. Fraunhofer, 2012, pp. 39-48. [Online]. Available:
http://publica.fraunhofer.de/documents/N-217135.html

J. DeMott, R. Enbody, and W. Punch, “Revolutionizing the
field of grey-box attack surface testing with evolutionary
fuzzing,” BlackHat and Defcon, 2007. [Online]. Available:

https://www.blackhat.com/presentations/bh-usa-07/DeMott_Enbody _
and_Punch/Whitepaper/bh-usa-07-demott_enbody_and_punch- WP.pdf

J. Viide, A. Helin, M. Laakso, P. Pietikéinen, M. Seppinen, K. Halunen,
R. Puuperi, and J. Roning, “Experiences with model inference assisted
fuzzing,” in Proceedings of the 2nd conference on USENIX Workshop
on offensive technologies. Berkeley, CA, USA: USENIX Association,
2008, pp. 2:1-2:6.

S. Becker, H. Abdelnur, R. State, and T. Engel, “An autonomic
testing framework for IPv6 configuration protocols,” in Mechanisms
for Autonomous Management of Networks and Services, ser. Lecture
Notes in Computer Science, B. Stiller and F. De Turck, Eds. Springer
Berlin,Heidelberg, 2010, vol. 6155, pp. 65-76.

Y. Hsu, G. Shu, and D. Lee, “A model-based approach to security flaw
detection of network protocol implementations,” in Network Protocols,
2008. ICNP 2008. IEEE International Conference on, oct. 2008, pp.
114 —123.

G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr,”
in Information Security, ser. Lecture Notes in Computer Science,
S. Katsikas, J. Lopez, M. Backes, S. Gritzalis, and B. Preneel, Eds.
Springer Berlin,Heidelberg, 2006, vol. 4176, pp. 343-358.

T. Kitagawa, M. Hanaoka, and K. Kono, “Aspfuzz: A state-aware
protocol fuzzer based on application-layer protocols,” in Computers and
Communications (ISCC), 2010 IEEE Symposium on, june 2010, pp. 202
—208.



