
A Trace Management Platform for Risk-Based

Security Testing

Juergen Grossmann1, Michael Berger1, and Johannes Viehmann1

Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, D-10589 Berlin,
juergen.grossmann | michael.berger

| johannes.viehmann@fokus.fraunhofer.de

Abstract The goal of risk-based security testing is to improve the se-
curity testing process in order to cover especially risky areas of the ap-
plication under test and at the same time minimize the time to market
and to improve the use of resources by focusing testing work on areas
with the highest risks. In RBST risk factors are identi�ed and risk-based
security test cases are created and prioritized according to an applicable
selection strategy. One of the challenges in RBST is to keep track of the
di�erent artifacts that are often managed by di�erent tools. Traceability
is the key to manage complex systems in development and testing. This
paper introduces RISKTest, a trace management platform on the basis of
Eclipse that supports the creation and documentation of cross-tool rela-
tions during test development and test execution. RISKTest is dedicated
to risk-based security testing. Thus, we concentrate on the management
of traces between the artifacts from risk assessment and testing and the
de�nitions of services that automatically analyze the related artifacts for
security and testing related aspects. RISKTest has been developed in the
DIAMONDS project and evaluated within the project's case studies.

1 Introduction

Today, increasingly complex systems are developed. Several developers create
di�erent parts of models and artifacts that represent the system under devel-
opment. Each developer has speci�c views on the system with respect to his
role in the development process. For instance, the requirement engineer devel-
ops the requirement model while the tester creates a test model on basis of the
requirements and the system model. Test runs and test results are often sum-
marized by means of a test management tool. There are speci�c constraints for
creating and visualizing the artifacts that are created and managed by di�erent
tools. For instance, a test management tool provides an overview of test cases
and test runs e.g. in a tree hierarchy. The test results like verdict information
are attached in a way that a manager can easily derive the current state of
the test process. In contrast, a requirement tool will manage the requirements
in a table format that allows to manage the requirements in a hierarchically
structure. Therefore the requirements are arranged in rows and the requirement
parameters like description, links or technical aspects in columns. Both tools



and perspectives are necessary and important. However, to assess the coverage
between requirements and tests or test results, artifacts from both tools need
to be set in relation. For this, the concept of cross tool traceability has been
developed [11,1]. Traceability in general de�nes relationships between di�erent
artifacts or models. Such a relationship consists of at least a tuple of elements
and is called trace. For example, a trace can refer to a test case in a test model
and a requirement in a requirements model, meaning that the test case validates
the realization of the requirement. Also, we can distinguish between typed and
untyped traceability approaches. While untyped traceability allows the creation
of arbitrary traces between every kind of element, typed traceability requires
the de�nition of a trace metamodel to restrict speci�c traces to speci�c element
types. Untyped traceability approaches are easier to realize but lack information
for a detailed analysis of the underlying traceability graph. Typed traceability
provides a richer set of information (i.e. the type of a trace and the types of the
elements that are in the trace). This extra information helps to distinguish dif-
ferent kind of relationships (e.g. the relationship between requirements and tests
from the relationship between requirements and the code or the system model)
and thus provides a stronger basis for correctness checks and the analysis of the
traceability graph.

All traces constitute the trace model that can be used by analytic tools
to evaluate such relationships. Such analytic tools can traverse not only a sin-
gle model but several models that are connected via traces, also transitively
through di�erent models. Cross tool traceability emphasizes the fact that the
artifacts are managed by di�erent development tools. A traceability platform,
especially a cross-tool traceability platform must meet a set of requirements in
order to enable the e�cient use by developers. This article introduces RISKTest,
a plattform for risk-based security testing that provides extensive support for
cross-tool traceability between risk assessment artifacts, requirements, test cases
and test results. Section 2 motivates our platform and Section 3 provides an
overview on our approach to risk-based security testing, which de�nes the appli-
cation context for RISKTest. Section 4 introduces RISKTest, Section 5 describes
its application to cases studies and Section 6 summarizes the paper.

2 Motivation

Traceability was originally established for requirements engineering, i.e. Doors
with Rhapsody gateway [5] and Reqtify1. These trace tools relate requirements
from di�erent sources to the implementation code. The goal is to validate the
compliance of a system to a set of requirements, to check if only the required
functionality is realized and to be able to make impact analysis if requirements
are changed. In software development, traceability is mostly used in the area
of safety critical systems [7] [9]. In this area safety requirements will be traced
with software requirements and the code. So called slices can be used to �lter
out not necessary parts to verify relevant fragments. In the area of security,

1 http://www.3ds.com/products-services/catia/portfolio/geensoft/reqtify/

2



traceability tools are very rare and mostly in a research state. For example in the
JESSIE project [2] a tool for security assurance has been developed that provides
support for traceability. Traces are created between the (security) requirements,
UML models of the security protocols and the respective implementation. The
traces are used to generate a dynamic monitoring component for monitoring the
software during run-time. Like in the JESSIE project, the focus of most research
projects is the methodology of the handling of the trace model (in JESSIE the
dynamic monitor generation), but the trace management itself is only handled
parenthetically.

Traceability tools are often realized as separate tools that import the infor-
mation to be traced. One of the largest problems is the maintenance of the trace
model during product development. Often, the establishment of trace informa-
tion is done in the latest development steps with high e�ort. Online synchro-
nization, that allow the continuous update of changes in the underlying artifacts
is often missing. Moreover, these tools often use their own speci�c visualization
of the imported artifacts, which are di�erent from the original tools and thus
unfamiliar to the developer.

Since we think, that one of the main features of a traceability platform is to
continuously support the developer in creating and navigating traces while de-
veloping the elements to be traced, we prefer a traceability solution with directly
integration in the development tools. Such a traceability platform must provide
an interface to support the creation and deletion of traces and the navigation
along selected traces, and it must provide a set of services and analysis functions
to ful�ll the analysis requirements of the respective development and quality
assurance tasks. Also, it must handle the technical gap between the di�erent
tools in use. Preferably, the trace creation and navigation is integrated in the
development tools directly.

In the ITEA project DIAMONDS [3] we have introduced the idea of trace-
ability to support risk-based security testing. The basic idea behind risk-based
security testing is to use artifacts from the risk-assessment to support the secu-
rity testing process. Currently there is no method or framework that allows for
the systematically capture security risks (i.e. threat scenarios, vulnerabilities,
countermeasures) and risk values and relate them with testing artifacts so that
test identi�cation and test selection is e�ectively supported. We are interested
in establishing and documenting traces from the risk assessment to the testing
artifacts. These traces need to be persistent and operational so that we can nav-
igate along the traces and use the traces as basis for our test evaluation, e.g for
calculating the coverage of risk assessment artifacts by tests and test results.
Considering this background, the key requirements for our traceability platform
are:

� The trace management (the creation, deletion of traces) is directly integrated
in each of the development tools. This becomes necessary to support rapid,
convenient and continuous usage of the traceability functions while creat-
ing the development artifacts (e.g. the risk assessment and security testing
artifacts).

3



� The traceability platform allows for bidirectional navigation between related
elements. Navigation source and target should be visualized directly within
and by means of the original development tools.

� The creation of traces can be done manually or automatically. The latter is
needed to e�ectively integrate the platform in model-based test generation
approaches.

� The traces are de�ned on basis of a trace metamodel that distinguishes the
individual elements that are part of a trace and allows for distinguishing
di�erent trace types.

� The trace metamodel de�nes a service interface that allows for introducing
services that query the trace model for information (e.g. services for coverage
analysis or impact analysis).

� The traceability platform is extensible. That is, it provides a well-de�ned
interface to easily integrate other development tools that are based on Java
and Eclipse.

In the following we give a more concise overview of our approach to risk-based
security testing, which yield the concrete application context for the traceability
platform. Afterwards we introduce RISKTest, our approach to traceability in
the area of risk-based security testing.

3 Risk-based security testing

Risk-based security testing (RBST) can be generally introduced with two dif-
ferent goals in mind. On the one hand risk based-testing approaches can help
to optimize the overall test process: First, the results of the risk assessment, i.e.
vulnerabilities, threat scenarios and unwanted incidents, are used to guide the
test identi�cation and may complement requirements engineering results with
systematic information concerning threats and vulnerabilities of a system. A
comprehensive risk assessment additionally introduces the notion of risk values,
that is the estimation of probabilities and consequences for certain threat sce-
narios. These risk values can be additionally used to weight threat scenarios and
thus help identifying which threat scenarios are more relevant and thus identi-
fying the threat scenarios that are the ones that need to be treated and tested
more carefully.

Second, risk-based testing approaches can help to optimize the risk assess-
ment itself. Risk assessment, similar to other development activities that start in
the early phases of a development project, are mainly based on assumptions on
the system to be developed. Testing is one of the most relevant means to do real
experiments on real systems and thus be able to gain empirical evidence on the
existence or likelihood of vulnerabilities, the applicability and consequences of
threat scenarios and the quality of countermeasures. Thus, a test-based risk as-
sessment makes use of risk-based testing results to gain arguments or evidence for
the assumptions that have been made during the initial risk assessment phases.
In particular risk based testing may help in

4



� providing arguments or evidence on functional correctness of countermea-
sures,

� determining the likelihood of exploiting vulnerabilities as described by threat
scenarios will lead to unwanted incidents, and

� discovering unknown risk factors (i.e. new vulnerabilities).

In summary, RBST approaches makes use of risk assessment results to focus,
optimize, and prioritize the security testing, and the test-based risk assessment
is empirically grounded by security testing results. To this end we have identi�ed
three distinct activities that constitutes our basis of a risk-based security testing
approaches:

� Risk-based security test planning: The goal of risk-based security test
planning is to improve the testing process systematically: High-risk areas of
the application under test can be covered and in same time it can achieve a
reduction in the expenses and the resources used by the test work. This will
be focused on areas with the highest risks. Moreover, selected test strategies
and approaches are identi�ed to address the most critical vulnerabilities.

� Risk-based security test identi�cation and selection: Finding an opti-
mal set of security test cases requires an appropriate selection strategy. Such
a strategy takes the available test budget into account and also provides, as
far as possible, the necessary test coverage. In functional testing, coverage
is often described by the coverage of requirements or the coverage of model
elements such as states, transitions or decisions. In risk-based testing we aim
for the coverage of identi�ed risks of a system. Risk-based security test selec-
tion criteria can be used to control the selection or the selected generation
of test cases. The criteria are designed by taking the risk values from the
risk assessment to set priorities for the test case generation as well as for the
order of test execution.

� Security risk control: The decision how extensive testing should be is
always a question of the remaining test budget, the remaining time and the
probability to discover even more critical errors, vulnerabilities or design
�aws. In RBST risk analysis gives a good guidance where to �nd critical
errors and which kind of risks have to be addressed (see above). On the other
hand, the test results can be used to verify the assumptions that have been
made during risk analysis. Newly discovered �aws or vulnerabilities need to
be integrated in the risk analysis. The number of errors in the implementation
of a countermeasure hints at the maturity of it and allows to assess their
adequacy in the security context. In order to allow such an assessment, a
su�cient degree of test coverage is required. In this sense, the test results
can be used to adjust risk assessment results by introducing new or revised
vulnerabilities or revised risk estimations based on the errors or �aws that
have been found. Test results, test coverage information and a revised or
a�rmed risk assessment may provide a solid argument that can be used to
e�ectively verify the level of security of a system.

5



Figure 1. Risk-based security testing approach

In the following, we outline our approach to RBST. The approach has been
developed in the DIAMONDS project [3] and the development is currently con-
tinued in the RASEN project [12]. Figure 1 shows the overall interaction be-
tween risk analysis and testing depicting both approaches, the optimization of
the testing approach by means of risk assessment results and the control and
optimization of the risk assessment results by means of test results.

Figure 2. Excerpt of a CORAS-risk-analysis

� From risk assessment artifacts to test pattern: Security risk assess-
ment is conducted using CORAS [8]. The CORAS method is performed un-
til we have a �rst risk estimation. The results of this analysis are expressed

6



by means of threat diagrams containing a quali�ed description of potential
vulnerabilities, threat scenarios and unwanted incidents annotated with like-
lihood and consequence values (see Figure 2). This initial analysis is based
on literature, vulnerability databases and the system model. Its results are
highly dependent on the experience and the skills of the risk analysis team.
Important aspects might have been missed completely and the just guessed
likelihood values are eventually very uncertain.

� Selecting elements to test: While the threat diagram immediately can
be interpreted as a guide telling the analysts what should be tested, it is
not obvious which tests are the most critical and which tests will probably
not have a signi�cant impact on the overall risk picture. Since, security
testing can be expensive and since, often both time and resources available
for testing are rather limited, it would be most helpful to identify the most
relevant test cases and to test these in the �rst place. Within our approach,
the CORAS threat diagram is used to identify nothing but the most critical
threat scenario that has not yet been tested.

� Map security test patterns to threat scenarios: Knowing what should
be tested next is �ne. However, it can be challenging to create e�ective test
cases and create appropriate metrics that allow sound conclusions for the
likelihood values in the threat diagrams. It makes sense to create and to use a
catalogue of test patterns [13]. Security test patterns typically consist at least
of a name, a context, a problem and a solution description. In our approach,
the threat scenario is a direct counterpart to the problem description of a
test pattern. Hence, it is easy to identify a �tting test pattern for the most
critical threat scenario that needs to be tested if such a pattern already
exists in some database. Eventually the same test pattern will have to be
instantiated multiple times for a single threat scenario because there are
di�erent vulnerabilities and unwanted incidents it can be mapped to.

� From test patterns to test implementation and execution: A test
pattern contains at least a brief description how the test should be imple-
mented and thereby eventually helps to prevent some potential implemen-
tation errors. Test patterns can contain generic template code that can be
instantiated into executable code. Our speci�c model-based security testing
methodology uses TTCN-3 [4] to describe the test cases in a �exible and
implementation independent way. Test patterns can be described in a �exi-
ble way using TTCN-3 notation [15]. For e�ective security testing, often lots
of di�erent test cases have to be generated that are close to the limits of
valid input sequences. Typically, in such a case not all test cases are created
manually. Instead, model based fuzzing can be used to generate appropriate
random test sequences. There is already tool support available for automatic
test-case generation producing TTCN-3 code, e.g. for model-based fuzz test-
ing the library developed within the DIAMONDS project [3]. To apply the
test cases once TTCN-3 code is generated, any compatible test execution
environment may be used. Within the DIAMONDS project, the commercial
TTworkbench from Testing Technologies has been used successfully as the

7



test development and execution environment for the model-based security
testing methodology described here.

� From test results back to risk assessment: The test results are summa-
rized and evaluated. For each vulnerability we clearly discover the number
of executed test cases and their test verdicts. On the basis of these results,
the testing as well as the risk assessment is adjusted. If the test results are
unclear or the number of the test cases and thus the coverage is insu�cient
to make a clear security statement, further tests may be initiated. If the tests
allow for a security statement the likelihood values in the risk assessment
can be adjusted if necessary. In case, new vulnerabilities are discovered by
testing, they have to be additionally integrated into the risk assessment.

4 RISKTest trace management platform

The RISKTest trace management platform is based on a provisional version
of the trace management tool CReMa [14] developed by Itemis in the research
project VERDE. It is integrated in the desktop development environment of the
Eclipse workbench and runs with the modeling tools Eclipse con�guration in
the versions JUNO and INDIGO. The trace management capabilities, i.e. the
creation of trace links, the navigation of trace links and the evaluation trace links,
are restricted to a set of integrated tools. These tools are the risk modeling tool
CORAS, the Eclipse UML modeling editor Papyrus, the requirement modeling
tool ProR, based on the ReqIf model, and the test managing tool TTworkbench.
Additionally, interfaces to integrate other modeling tools are developed.

� CORAS has been used for security risk assessment,
� ProR has been used for security requirements engineering and as a data base
for the security test pattern catalog,

� Papyrus has been used for security test speci�cation and modeling, and
� TTworkbench has been used for security test execution.

4.1 Domain model abstraction

For a risk driven traceability tool the bulk of tools are the most important
part of interest. Each tool has to be integrated into the tool landscape and the
interaction between such tools has to be speci�ed. We need tools for risk as-
sessment, for test de�nition and also for system modeling. We do not want to
create a single tool for all modeling parts but want to use speci�c tools for each
part of risk driven development to get the bene�t of each of speci�ed tool. We
de�ned di�erent domains the tools are related to: the risk domain for develop-
ing risk assessment models, the test domain for test cases simulating attacks
on detected vulnerabilities, the system domain for specifying system compo-
nents and interface interactions between them, and as the fourth domain the
requirement domain to specify requirements for test cases and for a test pattern
catalog. To synchronize each tool in a domain, a domain-metamodel is speci-
�ed on basis of some general terms and artifacts given by standards. The table

8



below provide the basic terms for the domains of risk assessment and testing.

Artifact Description

Security Risk Security risk is a risk caused by a threat of exploiting a vulner-
ability and thereby violating a security requirement.

Unwanted In-
cident

Unwanted incident is an event representing a security risk.

Threat Threat is potential cause of an unwanted incident [10].

Vulnerability Vulnerability is weakness of an asset or control that can be ex-
ploited by a threat [10].

Test Case A set of input values, execution preconditions, expected results
and execution postconditions, developed for a particular objec-
tive or test condition, such as to exercise a particular program
path or to verify compliance with a speci�c requirement [6]

Test Result The consequence/outcome of the execution of a test. It includes
outputs to screens, changes to data, reports and communication
messages sent out [6].

Test Pattern An artifact that speci�es a set of best practices to achieve dedi-
cated test objectives in the context of a certain testing problem.
Just as design patterns capture design knowledge into a reusable
medium, test patterns capture testing knowledge into a reusable
medium.

These terms and artifacts form the basis of our domain speci�c models.
Traces and services are working with the domain elements instead of the ele-
ments that come from the data models of the concrete development tool. This
introduces a level of abstraction that eases the integration of new development
tools. For this purpose only a mapping between the development tool and the
domain metamodel has to speci�ed. The interactions of the di�erent domains
are already given by the trace-metamodel and thus managed by the trace man-
agement framework. Figure 3 shows the trace model that has been used as basis
to enable the traceability support for risk-based security testing.

Figure 3. Trace metamodel for the testing and risk domain

9



4.2 Improved user interaction directly from within the tools

To support the user with an easy interaction we integrated the trace adminis-
tration directly in the model development editor views. The user can

� create new traces between selected elements in all supported editors,
� navigate to a traced element from a selected element,
� delete a trace between the selected element and a traced element, and
� edit one of the traces of a selected element.

The main advantage over most other traceability tools is the complete inte-
gration of the interaction triggers in the user interfaces of original tools, so that
the user can develop the model and de�ne traces with the same tool interface.

Figure 4. Traceability management embedded in Eclipse (based on CReMa)

All traced elements can be administrated with the trace explorer. The ex-
plorer visualizes all traces and enables navigating through the trace model and
focusing on traced elements using the corresponding editor view. Also, a �lter
mechanism is provided to hide non-relevant element types. Figure 4 shows an
exemplary screenshot of our current implementation.

4.3 High level architecture

The architecture for RISKTest can be divided into three layers: The service layer
contains all services operating on the models. The traceability layer constitutes

10



the core of the trace management tool and implements query handling. The
domain layer contains all domains and editor tools including their metamodels
(see Figure 5). In the following we describe the concept of our trace management
framework layer by layer and component by component.

Figure 5. Trace management framework in multi-layer diagram

� Traceability Platform Layer: All trace handling components are speci�ed
in the middle layer. These components manage the creation and modi�cation
of traces, use the information of the trace metamodel and process query
requests.

� Domain Platform Layer: In order to enable the development of services
for the traceability managing tool, it is necessary to provide a uni�ed meta-
model of each domain. This uni�ed domain metamodel allows services to
access elements from editors using di�erent metamodels. Therefore, it is
necessary that the editor dependent metamodel is mapped to the uni�ed
domain metamodel. This is done with an editor-speci�c extension to the
domain platform layer.

� Service Layer: The whole trace management framework is useless without
the services. Each service uses parts of information from the models. By using
the domain metamodels and the trace metamodel, queries will be de�ned to
get this information. The queries are sent from the services to the query
dispatcher and answered with a set of elements and relations. A service is
triggered by traceability management component e.g. when a user invokes
corresponding functionality within an editor. For example, a service has to
analyse the coverage of test cases and the related system components. The
results may then be highlighted within the editor.

The Traceability Platform Layer consists of a number of components for
creating and analyzing the trace links:

11



� Traceability Management: All user interactions for editing, viewing and
deleting traces are implemented in the trace management component. The
traceability editing functions consists of a trace editor and the trace explorer.
The trace editor enables setting the trace type, assigning elements to a trace
selected within a model editor, and obtaining other trace information like
source model or name of each involved element. In the trace explorer all
traces are shown. It allows navigating and creating �lter to hide non-relevant
traces.

� Trace Metamodel: The trace metamodel de�nes the di�erent types of
traces and speci�es between which kind of elements these traces can be cre-
ated. The traceability management uses the trace metamodel in order to
constrain the creation of traces. The trace types as well as domain-speci�c
elements, their attributes and relationships within a domain can be refer-
enced within a query. The query dispatcher uses the trace metamodel to
manage the query processing. In order to support new services, it is easy to
extend the trace metamodel.

� Trace Storage: The trace storage stores all traces. This store may be lo-
cated on a local disk. While this is su�cient in a single-user environment,
teams require to access and modify traces from di�erent workstations. For
that purpose, the trace metamodel can be stored in a network repository and
version control system. The project EMFStore provides such a distributed
storage.

� Model Query Dispatcher: In this component the strategy to collect in-
formation from the models depending on a querying service is speci�ed. The
dispatcher service distributes queries or parts of queries to the di�erent query
interpreter components and collects the result information.

� Trace Query Interpreter: The task of the trace query interpreter it to
solve the submitted queries. The trace query interpreter can only resolve
requests speci�ed for the trace model but cannot process queries speci�ed
on elements without a trace relation in the trace meta-model.

The Domain Platform Layer allows services to access elements from the
individual tools or editors by mapping the uni�ed domain metamodel to the
editor models of the tools:

� Domain Metamodel: The domain metamodel is an abstract model and
de�nes the artifacts and their relations for a certain domain. Since all frame-
work services are based on the domain metamodels without knowledge of
the underlying tools, the domain metamodel must be rich enough to provide
all the information that are needed by the services.

� Domain Query Interpreter: The domain query interpreter is comparable
to the trace query interpreter with the only di�erence that it is dedicated to
process queries on the level of the domain metamodel and not on the level of
the trace metamodel. The domain query interpreter processes information
that relate to instances of the domain metamodel and a dedicated mapper
can associate the domain elements to the elements of the underlying editor

12



model. That reduces the complexity of queries by working on domain meta-
models that are often less complex than editor metamodels because they are
designed to �t only certain use cases.

� Editor Metamodel: The editor metamodel is the metamodel that describes
the data managed by the individual tools or editors. For example, Papyrus
belongs to the system domain and uses UML2 as metamodel. The require-
ments domain belonging editor ProR uses ReqIF, and the risk model editor
CORAS uses the CORAS metamodel. Such models will not be queried di-
rectly but by using the mapping to the domain metamodel.

� Model Mapper: The model mapper de�nes a mapping between the domain
metamodel and a metamodel of a certain editor.

5 Application to case studies

RISKTest had been used in two case studies. The Giesecke & Devrient (G&D)
case study deals with the security testing of a banknote processing machine
and the Dornier Consulting case studies deals with the security testing of a head
unit from the automotive domain. During the security test development the trace
management platform had been used to create and maintain trace links between
risk assessment artifacts (i.e. vulnerabilities, threat scenarios, and treatment sce-
narios), test pattern and test speci�cation. The test developer starts with the
risk assessment tool CORAS and identi�es security test objectives and security
testing approaches by relating test pattern from the test pattern library in ProR
to risk assessment results in CORAS. Based on these initial assignments the test
developer starts specifying the test cases in Papyrus following the ideas given
by the test pattern. Each of the test models are again linked to the correspond-
ing test pattern, so that we get a transitive trace link to our initial test basis
(i.e. risk assessment results). As DIAMONDS provides model-based testing ap-
proaches we normally use test generators to generate the test cases from the
test models. The test generator had been integrated in that way, that it adds
and updates traceability links from the test models to the generated test cases.
Thus, during the whole security test development process the test developer has
full control over all dependencies that are made persistent by means of the trace
management platform. The developer can manually navigate along the links and
actively switch between the di�erent models, artifacts and perspectives. He can
easily control the current status of the test development process by analyzing
the coverage of the risk assessment elements with test pattern, test models and
test cases.

The testing process in the Giesecke & Devrient case study had started with a
concise security risk assessment revealing threat scenarios and associated poten-
tial vulnerabilities like, e.g., the �authentication bypass of the Message Router�
or the �SQL injection into the database�. The potential vulnerabilities identi�ed
during the risk assessment were related with test patterns and the initial test
models manually. The RISKTest trace management framework supports the user
with an easy way to create such manual relationships. Afterwards, a model-based

13



test generation approach had been used to generate a large number of test cases
on basis of the initial test model. To be able to capture the relations between
the initial test model and the executable tests, we had developed an interface
that allows an automatic generation of traces during the test generation process.
Finally, the user has the possibility to relate test results automatically to the
appropriate test cases so that the complete traces from the initial vulnerabilities
to the related test results are de�ned. RISKTest is now able to calculate the
coverage of the initial vulnerabilities by associated test results.

Figure 6. Traceability from risk assessment artifacts to test results

Figure 6 provides an overview over the classes of artifacts that are to be
related. The red arrows visualize traceability links. The dashed shapes represent
the scopes of the di�erent tools.

Based on the risk models, 30 behavioural fuzz test cases were executed on
the SUT regarding an authentication bypass. Additionally, an initial set of 24
test cases using SQL injection to bypass the authentication were executed. No
security-related issues were found. The RISKTest framework provides a view
that shows the test coverage of selected vulnerabilities and updates them on
basis of the traceability information in the RISKTest framework (See below).

While the initial traces between vulnerabilities from the risk model, the be-
havioural model of the SUT and the chosen security test patterns have to be
created manually, most traces that results from test case generation and execu-

14



tion are generated automatically. This allows a semi-automatic measurement of
risk coverage.

The second use case gives attention to the test documentation and test re-
sult aggregation. The use case partner Dornier executed 1836 test cases with an
test manager developed by dornier itself. Because the test tool was not based on
eclipse, it was not integrated in our trace framework. But the test documentation
and test results are exported as XML �les and imported into the framework. The
test results are automatically traced to the related test pattern or directly to the
analyzed vulnerabilities. Based on the traces we were able to calculate the cov-
erage of vulnerabilities by security test cases. Figure 7 shows the aggregated test
results for a set of vulnerabilities from the Dornier case study. It shows in each
line for a vulnerability from the risk model the test verdict of the test cases that
are linked back to the vulnerabilities from the risk model. All vulnerabilities with
direct or transitive relations to test cases are listed and shown with their related
test cases and test results. Measured by means of the vulnerability coverage, we
could detect the coverage over all risks and that no risk was untested.

Figure 7. Potential vulnerabilities and related tests and test results

6 Summary and outlook

The introduced combination of risk analysis and security testing shows a high
potential to improve the systematic quality assurance of security critical systems.
On the one hand, risk analysis provides a proper guidance for a systematic test
identi�cation and test prioritization. On the other hand, security testing and
the analysis of security testing results can provide evidence on assumptions that
have been made during risk analysis. With su�cient tool support, traceability
between risk analysis artifacts and testing artifacts can be operationalized and
monitored during the system development. This paper has introduced RISKTest,
a trace management platform that supports the main activities of risk-based

15



security testing. It supports the development of security test cases and helps
understanding the test results by re�ecting their relationship to risk assessment.
The RISKTest framework is set up in a way that it completely integrates with the
development tools and allows the security test developer to create and manage
cross-tool relations and traces directly from within the original development
tools. For the next iteration the framework is planned to improve the capabilities
of the query interface and enhance and to develop dedicated algorithm for risk-
based test selection and prioritization. Further development of the framework
will be done in the FP7 project RASEN [12].

References

[1] Altheide, Frank ; Schuerr, Andy ;Doerr, Dr. H.: Requirements to a Framework
for Sustainable Integration of System Development Tools. In: Proc. of the 3rd
European Systems Engineering Conference (EuSEC), 2002, S. 53�57

[2] Andreas Bauer, Jan J. ; Yu, Yijun: Run-Time Security Traceability for Evolving
Systems. 2008. � Forschungsbericht

[3] DIAMONDS: Website of the ITEA project DIAMONDS (Development
and Industrial Application of Multi-Domain-Security Testing Technologies).
http://www.itea2-diamonds.org/, 2013

[4] ETSI: Methods for Testing and Speci�cation (MTS). The Testing and Test Control
Notation Version 3, Part 1: TTCN-3 Core Language (ETSI Std. ES 201 873-1
V4.3.1). Sophia Antipolis, France, Febr. 2011

[5] IBM Corporation: IBM Rational Rhapsody Gateway Add on User Manual. 2001-
2010

[6] ISTQB: ISTQB Glossary of testing terms version 2.2.
http://www.istqb.org/downloads/�nish/20/101.html, 2013

[7] Katta, V. ; Stalhane: A Conceptual Model of Traceability for Safety Systems
[8] Lund, M. ; Solhaug, B ; StÃ�len, K.: The CORAS Approach. 1st Edition.

Springer-Verlag, 2011 (ISBN 978-3-642-12322-1)
[9] Nejati, Shiva ; Sabetzadeh, Mehrdad ; Falessi, Davide ; Briand, Lionel ; Coq,

Thierry: A SysML-Based Approach to Traceability Management and Design Slicing
in Support of Safety Certi�cation: Framework, Tool Support, and Case Studies /
Simula Research Lab. 2011 (2011-01). � Forschungsbericht

[10] Organization, International S.: ISO 27000:2009 (E), Information technology -
Security techniques - Information security management systems - Overview and
vocabulary. 2009

[11] R, Freude ; A., Koenigs: Tool integration with consistency relations and their
visualization. Helsinki. In: Proceedings of the ESEC/FSE 2003 workshop on tool
integration in system development, Helsinki, 2003

[12] RASEN: Website of the FP7 project RASEN (Compositional Risk Assessment
and Security Testing of Networked Systems). http://www.rasen-project.eu/, 2013

[13] Smith, Ben H. ;Williams, Laurie: On the E�ective Use of Security Test Patterns.
In: SERE, IEEE, 2012. � ISBN 978�0�7695�4742�8, S. 108�117

[14] VERDE: Yakindu CReMa - the nice thing on top of eclipse.
http://www.guersoy.net/knowledge/crema, 2011

[15] Vouffo-Feudjio, Alain ; Schieferdecker, Ina: Test Patterns with TTCN-3.
In:Grabowski, Jens (Hrsg.) ;Nielsen, Brian (Hrsg.): FATES Bd. 3395, Springer,
2004. � ISBN 3�540�25109�X, S. 170�179

16


