
The CORAS Language – Why it is Designed the Way it is

Bjørnar Solhaug
SINTEF ICT, Norway

Ketil Stølen
SINTEF ICT & Dep. of Informatics, University of Oslo, Norway

1 INTRODUCTION

CORAS1 [6] is an approach to risk analysis based on
the ISO 31000 international standard on risk manage-
ment [4]. The approach is model-driven in the sense
that graphical models are actively used throughout
the whole risk analysis process to support the various
analysis tasks and activities, and to document the re-
sults. It is defensive, which means that the risk analy-
sis is concerned with protecting existing assets, rather
than balancing potential gain against risk of invest-
ment loss (as, for example, within gambling or stock
trading). It is asset-driven in the sense that the as-
sets to be defended and protected are identified during
the very initial phases of the process; all subsequent
tasks, such as risk identification and risk treatment,
are driven by these assets to ensure that the analysis
focuses on what the risk analysis should help to de-
fend.

CORAS is a self-contained approach to risk analy-
sis in the sense that it comes with all guidelines, tech-
niques and tool-support that are needed throughout
the whole process. In particular, CORAS consists of
the three tightly interwoven artifacts of a language, a
tool and a method. The tool supports the CORAS lan-
guage, and hence all steps of the method. The method
is divided into eight steps with clearly defined objec-
tives. Each step is decomposed into specific analy-
sis tasks supported by practical guidelines for how to
conduct the tasks in practice using the tool and the
language.

Clearly, when developing any such approach to risk
analysis, it is necessary to make a number of design
choices. The choices are obviously determined by the
kind of approach we aim for, and what we wish the
users of the approach should be able to accomplish.
At the same time, different objectives may pull in dif-
ferent directions and therefore need to be balanced. In
this paper we present the most important features of
the CORAS language and motivate some of the major
design choices we did. More precisely, in Section 2

1See the web site for resources on CORAS, includ-
ing the CORAS tool for free download: http://coras.
sourceforge.net/

we give an overview of the language and the different
kinds of diagrams that are supported. In Section 3 we
give examples of two CORAS diagrams and explain
their main features and uses. In Section 4 we moti-
vate some of the major design decision concerning
issues such as comprehensibility, expressiveness, for-
mality, scalability and change management. In Sec-
tion 5 we focus on the analysis and documentation of
likelihood, which is a core part of any risk analysis.
Finally, in Section 6, we conclude.

2 OVERVIEW OF THE CORAS LANGUAGE

The CORAS language is designed to facilitate and
support the reasoning about and the documentation
of different aspects of risks. These are aspects that
are needed in order to identify and understand risks,
the risk sources, and the adequate means for miti-
gating unacceptable risk. The language therefore has
syntactical constructs for capturing precisely such as-
pects. As much as possible, the language has been de-
signed to express concepts and terms as they are com-
monly used within existing risk management frame-
works and international standards [4, 5]. To this end,
the CORAS approach is built on a conceptual frame-
work of precisely defined terms, and the CORAS lan-
guage is in turn designed to make expressions in these
terms and with a semantics that captures their defini-
tions.

The language offers different kinds of diagrams
that each supports specific tasks and phases of the risk
analysis process. The basic CORAS language con-
sists of the five kinds of diagrams that are most typi-
cal in CORAS risk analyses, namely asset diagrams,
threat diagrams, risk diagrams, treatment diagrams,
and treatment overview diagrams. The diagrams are
usually used in this order, and one kind of diagram
serves as input to the step that makes use of the next
kind of diagram.

Asset diagrams are employed during context estab-
lishment as part of the documentation of the target of
analysis. As the name indicates, an asset diagram is
mainly used for the purpose of defining the assets of
relevance for the analysis. The diagram specifies the



party that assigns value to the assets in question, as
well as the relations between the assets.

Threat diagrams are used during risk identification
and risk estimation. A threat diagram expresses how
threats exploit vulnerabilities to initiate threat scenar-
ios that lead to unwanted incidents that harm the iden-
tified assets. Threat diagrams also support the specifi-
cation of and reasoning about likelihoods and conse-
quences.

Risk diagrams provide an overview of the identified
risks, where each risk is assigned a risk level as de-
rived from likelihood and consequence estimates. Es-
sentially, a risk diagram gives a compressed overview
of the findings documented in the threat diagrams,
making each risk explicit and showing only the threats
that initiate them and the assets that are harmed. Risk
diagrams give a basis for deciding which risks should
be considered for risk treatment.

Treatment diagrams are a kind of extended threat
diagrams that are used to identify and document mit-
igation options for unacceptable risks. Treatment di-
agrams come with a specific risk treatment construct
to document how treatments can be applied to threats,
vulnerabilities, threat scenarios or unwanted incidents
to reduce the likelihood and/or consequence or risks.

A treatment overview diagram is similar to a risk
diagram. It gives an overview of the risks and the
identified treatments to highlight which risks are mit-
igated by which treatments.

In addition to these five kinds of diagrams of ba-
sic CORAS, further modeling and analysis support
is provided by three extensions, namely high-level
CORAS, dependent CORAS and legal CORAS. High-
level CORAS is for hierarchical modeling at different
levels of abstraction, and is a means for providing a
comprehensible overview of large risk models. De-
pendent CORAS is designed to support the explicit
documentation of analysis assumptions and analysis
dependencies, and to support modular reasoning. Le-
gal CORAS supports the identification and documen-
tation of legal aspects that may affect risks, as well as
the level of impact of legal aspects on risk.

3 SMALL EXAMPLE

In this section we illustrate the CORAS language with
two diagrams from an example of an information se-
curity risk analysis. The diagrams present some of the
most important constructs of the language, they illus-
trate the graphical appearance of CORAS diagrams,
and they show how the language supports key aspects
of the documentation of and reasoning about risk. The
assumed target of analysis in the example is an online
store that customers can access via the Internet by us-
ing a web application. The client of the risk analysis is
the service provider, i.e. the owner of the online store.

Figure 1 depicts an asset diagram. The party in this
diagram is the service provider. Three of the assets

Service

provisioning
ComplianceSecurity

Reputation

Service

provider

Figure 1: Example of a CORAS asset diagram

are so-called direct assets. Compliance denotes com-
pliance with data protection laws and regulations, (in-
formation) security is the preservation of confidential-
ity, integrity and availability of information, whereas
service provisioning is the availability and quality of
the online store services. The fourth asset, namely the
company reputation, is a so-called indirect asset. The
latter is an asset that, with respect to the target of anal-
ysis, is harmed only via harm to other assets. The risk
identification is conducted with respect to the direct
assets only, so the use of this distinction between as-
sets is a means to keep the risk analysis focused. Once
risks have been identified for the direct assets, the pos-
sible further consequences with respect to the indirect
assets can be analyzed. The implications of risks to
one asset for other assets are captured by the so-called
harm relations.

When conducting risk identification using CORAS
threat diagrams, we start with the identified assets.
In the example shown in Figure 2, these are depicted
to the right. In threat diagrams risks are identified by
the identification of threats, vulnerabilities, threat sce-
narios and unwanted incidents. In the example there
are two threats, namely hacker and employee. Both
of these threats are human, but the former is a de-
liberate threat and the latter is accidental. Addition-
ally the CORAS language offers a separate construct
for modeling non-human threats (such as virus, fire,
flood, etc.), but this is not exemplified here. A threat
can initiate threat scenarios and unwanted incidents.
In the example diagram hacker initiates the threat sce-
nario malcode introduced by hacker via web applica-
tion. The diagram also documents a vulnerability that
this threat may exploit, namely the use of web appli-
cation. A threat scenario can lead to other threat sce-
narios and to unwanted incidents. For example, the
threat scenario disclosure of customer data can lead
to the unwanted incident leakage of personally identi-
fiable information. The unwanted incidents constitute
the risks, and each incident is documented with its
likelihood, the assets it harms, and its consequence for
each asset. For example, leakage of personally iden-
tifiable information harms both compliance and secu-
rity; it therefore constitutes two risks, one for each
asset it harms.

The example also shows the estimation and docu-



Hacker

Employee

Malcode

introduced by

hacker via web

application

[unlikely]

Malcode

introduced by

adversary via

email

[20:1y]

Disclosure of

customer data

[rare]

Leakage of

personally

identifiable

information

[rare]

Virus attack

on DBs

[2:1y]

Online store

down due to

virus attack

on DBs

[5:10y]
Service

provisioning

Compliance

Security

Use of web

application

5:1y

Policy

breach

Insufficient

virus

protection

0.2

0.5

major

high

high

Figure 2: Example of a CORAS threat diagram

mentation of likelihoods and consequences, both of
which can be qualitative or quantitative. In CORAS,
the likelihoods and consequences can also be speci-
fied as exact values or using intervals. In the example
there is a mix of exact frequency values and intervals;
20 : 1y denotes the frequency of 20 times per year,
whereas rare and unlikely are defined as the intervals
[0,2⟩ and [2,5⟩ per year, respectively.

The frequency on the relation from a threat is the
estimate of the threat to initiate the following scenario
or incident. For example, employee initiates malcode
introduced by adversary via email five times per year.

The documented likelihoods serve as a basis for
calculating unknown likelihoods or for checking con-
sistency of existing estimates in the diagrams. In any
case, when reasoning about likelihoods we need to de-
termine whether a diagram is complete. For example,
if the diagram in Figure 2 is complete, virus attack on
DBs is the only scenario that can lead to the incident
online store down due to virus attack on DBs. Due to
the conditional likelihood of 0.2, we can calculate the
likelihood of the incident to (2 : 1y) · 0.2 = 0.4 : 1y =
4 : 10y. This is inconsistent with the likelihood 5 : 10y
already assigned to this incident.

As another example, consider the likelihood 20 : 1y
of the threat scenario malcode introduced by adver-
sary via email. According to the diagram, employee
initiates this scenario five times a year. Therefore, if
the diagram is complete the estimates are inconsis-
tent. However, if there may be other occurrences of
infected emails than policy breaches and sloppy em-
ployees, the frequency of the scenario can be higher.
Hence, if the diagram is incomplete the estimates are
consistent.

Systematically detecting inconsistencies using the
CORAS calculus and guidelines is an important part
of validating or correcting the risk analysis results.
The calculus can be applied to single relations in the
diagrams, but also to calculate or consistency check
combined scenarios. For example, the likelihood of
virus attack on DBs can be checked by combining the
likelihoods of the two preceding threat scenarios.

4 MAJOR DESIGN DECISIONS

Creating a modeling language involves making many
design decisions. Such decisions are often not well-
documented and can be difficult to trace. In the fol-
lowing we shed light on why the CORAS language
has become as it is.

4.1 Comprehensibility

The CORAS method makes use of structured brain-
storming as a technique for risk identification and es-
timation. During such sessions the results are doc-
umented on-the-fly by risk modeling. To capture as
many viewpoints as possible and to gather comple-
mentary knowledge and experience, the brainstorm-
ing involves personnel with different roles and differ-
ent experiences with respect to the target of analysis.
In the setting of a CORAS risk analysis, the CORAS
language is a key facilitator for communication and to
ensure a common understanding.

For this purpose the CORAS language has been de-
veloped and designed with comprehensibility as the
guiding principle. Some of the important characteris-
tics of the language in this respect are the following.

First, the language is based on established risk
terminology. The CORAS approach includes a con-
ceptual framework of relevant terms that are closely
based on common practices and international stan-
dards. The CORAS language is built on top of
these concepts with separate language constructs for
the different terms. When involving personnel in a
CORAS risk analysis, the underlying concepts are
carefully explained with systematic associations to
the graphical constructs. The explicit traceability to
the underlying risk concepts is intended to further in-
crease the comprehensibility of the CORAS language.

Second, the graphical icons are designed to match
intuition [2, 3]. During the development of the lan-
guage, many different design options were proposed
and evaluated empirically in trials and experiments in
relevant user groups. These empirical studies investi-



gated the extent to which the intuitive interpretation
of the meaning of the icons matched their intended
meaning, and also which kinds of shapes, sizes and
colors most efficiently facilitated the intended under-
standing and communication.

Third, the language is diagrammatic with a simple
syntax and few constructs. As an alternative to a di-
agrammatic language, risks can be documented, for
example, using tables or other more prose-based for-
mats. However, prose and tables are less suitable for
capturing relations between different threats, vulner-
abilities, unwanted incidents, etc. in the simple and
straightforward fashion that is required during brain-
storming. Moreover, by keeping the CORAS syntax
simple, people involved in a risk analysis are more
likely to grasp which risks are expressed and due to
which threats and vulnerabilities, without having to
do tedious parsing or carefully check what the differ-
ent constructs denote. There is of course no limit on
the size of the diagrams, but in our pragmatic guide-
lines for how to best model using CORAS we recom-
mend making diagrams that fit on a standard sheet of
paper or is readable on a canvas.

Fourth, the diagrams hide subtleties that only the
analysts need to consider. For example, most rela-
tions are expressed with the same kind of arrow al-
though they in reality may be different both syntac-
tically and semantically. The differences are, how-
ever, mostly relevant for the analysts when conduct-
ing more thorough analyses outside the brainstorming
sessions and workshops. Furthermore, the soundness
of the CORAS calculus, that applies to the diagrams,
depends on an underlying formality that brainstorm-
ing participants and other stakeholders do not need to
relate to or understand while making their contribu-
tion to the risk identification and estimation.

4.2 Expressiveness

A model of the reality is always an abstraction. That
a model is an abstraction means that there are as-
pects and features of reality that are not present in
the model. What parts or ingredients of reality you
can express in a model depend to a large extent on
the modeling language you use. Some modeling lan-
guages are more expressive than others in the sense
that they can model reality at a finer level of granular-
ity. Some modeling languages are specialized towards
certain domains, while others are more general pur-
pose. For example, predicate logic is a modeling lan-
guage that can be used within almost any area. Model-
ing languages designed for very specific domains are
often referred to as domain specific, and the CORAS
language is clearly a domain specific language.

To select which features of reality that a model-
ing language should support is a major decision for
a language designer. The CORAS language has been
designed to support risk modeling based on brain-
storming conducted during a risk analysis. However,

this does not mean that the CORAS language is suited
to model anything of relevance for a risk analysis. To
make the CORAS language more expressive is easy,
but more expressiveness is costly in the sense that it
tends to increase complexity and reduce comprehen-
sibility. The result might be a CORAS language that is
no longer suited as a medium for communication dur-
ing brainstorming sessions; i.e., a language no longer
usable for its original purpose.

One highly relevant aspect of risk analysis that the
CORAS language is not intended to model is the tar-
get of analysis. More precisely, the CORAS language
is a language for describing the risky behavior of rel-
evance for the target of analysis; it is not a language
for describing the target’s intended behavior and de-
sign. There are several reasons for this. One reason is
the already mentioned need to maintain comprehensi-
bility and simplicity. Another reason is that there are
already many languages well-suited for this purpose,
such as UML [8] and BPMN [9]. A third reason is that
some clients have their own target models expressed
in languages they are familiar with, and it might be
counterproductive to force them to discuss their sys-
tems and processes in notations that they are not used
to.

Although CORAS has been used within many dif-
ferent fields it is nevertheless the case that CORAS
has mainly been designed for defensive risk analy-
sis with particular focus on security. By defensive we
mean risk analysis where the main purpose is to de-
fend the assets that you are already in possession of as
is normally the case within security risk analysis. The
focus on security is mainly reflected in the language
through reserved terms like “threat”, “threat scenario”
and “vulnerability”. The focus on security is rather
shallow. Since it is up the user to define the assets to
be protected, the CORAS language may for example
just as well be used within the safety field, although
some safety experts may find the above mentioned
terms too security oriented. The focus on defensive
risk analysis is more fundamental.

4.3 Formality

Within modern science the interpretation of phrases
like “formal”, “formal model” and “formal language”
varies from one area or specialized field of interest to
another. For example, some use “formal” in the mean-
ing of “mathematical”. But this conflicts with tradi-
tions within mathematics and logic. Elementary ge-
ometry was formalized by Euclid in the form of an ax-
iomatic system, but geometry as a mathematical field
is much older than Euclidean geometry. Moreover, the
axiomatic system of Euclid had several deficiencies
and flaws some of which were discovered fairly re-
cently. Nevertheless, the flaws of Euclidean geometry
have not had any effect on the success of geometry
in science and engineering. Hence, formal is not nec-
essarily the same as mathematical, and a correct for-



malization is not a pre-condition for the success of
mathematics.

In this paper we use the term “formal” in the fol-
lowing interpretation: a language is formal if there is
an algorithm capable of deciding whether an expres-
sion in the syntax of the language is grammatically
correct. In this respect the CORAS language is for-
mal, and this has many advantages:

• Formality makes it possible to provide a seman-
tics allowing models to be understood indepen-
dently of the analyst or those involved in making
them.

• Formality facilitates the development of general
rules and techniques for reasoning and mathe-
matical analysis of models expressed in the lan-
guage.

By a semantics for a language we mean a transla-
tion of the grammatically correct expressions of the
language into a notation that is well-understood for
the intended users of the semantics. The CORAS lan-
guage comes with two kinds of semantics intended for
two different purposes. The first kind is a schematic
translation of any grammatically correct expression
in the CORAS language into English prose [6]. This
is the semantics intended for the everyday CORAS
users. It may be referred to during a CORAS anal-
ysis to decide what some fragment of the CORAS
language actually denotes, and it may be used by
third parties reading the report from a CORAS anal-
ysis to determine the meaning of the CORAS dia-
grams in the report. The second kind of semantics
is a schematic translation of any grammatically cor-
rect expression into mathematics [1]. This semantics
is mainly intended for the developers of the CORAS
method and tools, and provides the foundation for the
general rules and techniques for reasoning and math-
ematical analysis. For example, the soundness proof
of the CORAS calculus is based on this semantics.

When we claim that CORAS is formal we have
basically interpreted the text decorating the icons for
threats, vulnerabilities, threat scenarios etc. as strings
of text that are translated one-to-one by the above
mentioned semantic mappings. This is of course a
considerable simplification. This text is normally ex-
pressed in some natural language. In this paper we
have used English, but it could equally well be Chi-
nese or Arabic. This part of the CORAS language is
highly informal. It could of course be formalized, for
example by requiring the use of predicate logic in-
stead. This would facilitate a much more advanced
mathematical analysis, but we would at the same time
make the language unsuitable for its intended purpose
since very few of those involved in a risk analysis are
trained logicians.

i2 o1

Malcode introduced by hacker via web application

o2

Insufficient

input validation

Cross-site scripting

attack

[possible]

SQL injection

[unlikely]

Virus injection

[unlikely]

Figure 3: Decomposed threat scenario using high-level CORAS

4.4 Scalability

In risk modeling and risk analysis, scalability is the
ability of the modeling and analysis techniques to ef-
ficiently cope with large-scale systems. The CORAS
language includes two kinds of diagrams to deal with
the scalability problem, namely high-level CORAS
and dependent CORAS.

High-level CORAS is essentially a means for hi-
erarchical risk modeling that supports both detailing
and abstraction. Detailing means to decompose an el-
ement of a CORAS diagram in order to analyze this
element at a lower level of abstraction. For example,
the threat scenario malcode introduced by hacker via
web application depicted in Figure 2 does not docu-
ment exactly how a hacker may go by to do this at-
tack, and which vulnerabilities of the web application
that may be exploited. Using high-level CORAS, this
threat scenario can be decomposed in a separate di-
agram where a more detailed analysis and modeling
is conducted. This is illustrated in Figure 3 where dif-
ferent kinds of attacks are specified, and how they can
lead to other scenarios. If further detailing is needed,
all of these scenarios can be further decomposed in
new diagrams. Note also that high-level CORAS uses
gates on the outline of the constructs to keep track of
the decomposition. In the example i2 is a so-called
in-gate and o1 is an out-gate.

The CORAS diagram elements that can be decom-
posed using high-level CORAS are threat scenarios,
unwanted incidents, risks and treatments. In the op-
posite direction, high-level CORAS can be used to
combine several diagrams at a higher level of abstrac-
tion to provide an overview of the broader risk picture
while maintaining traceability to the low-level details.

Dependent CORAS is an extension of the CORAS
language to facilitate the explicit modeling and rea-
soning about risk analysis assumptions. The diagrams
are divided into two, namely the target T and the as-
sumptions A, both of which are threat diagrams or
fragments thereof. Basically, T is a threat diagram re-
garding the chosen target of analysis, and A are threat
diagrams on which T depends. For large systems or
mutually dependent systems (such as systems of sys-
tems), dependent CORAS allows the target to be split



into several sub-systems that are analyzed separately
in a modular way. Because the risks in one sub-system
may depend on the risks in another, these dependen-
cies must be taken into account, and this is precisely
what dependent CORAS is designed for. In particu-
lar, what makes the assumptions with respect to one
sub-system may be part of the target in another, and
vice versa. Dependent CORAS comes with modeling
support to capture this, as well as a calculus with rules
for how to reason about the assumptions and deduce
the valid risk picture for the different sub-systems.

4.5 Change

Traditional approaches to risk analysis typically focus
on a particular configuration of the target at a partic-
ular point in time, and is valid under the assumptions
made in the analysis. However, the target of analy-
sis, its environment and the assumptions we make will
change and evolve over time. Such changes may ren-
der previous risk analyses invalid and require them to
be conducted again from scratch.

In order to systematically handle change, CORAS
offers support for modeling and analyzing evolving
risks [7, 12]. The objective is to maintain the validity
of the risk model and the risk analysis results while
systems change. Moreover, when risks are changing
and evolving they should be analyzed and understood
as such. In other words, the analysis of evolving risks
should be supported by techniques for modeling and
reasoning about risk changes. Such techniques will al-
low planning and proactive decisions regarding poten-
tial planned or foreseen changes.

Specifically, the CORAS language allows the spec-
ification of risk elements that become obsolete after
change, risk elements that emerge, and risk elements
that are modified. For this purpose, all language con-
structs can be assigned one of the modes before, after
and before-after, respectively.

As illustrated in Figure 4, each such mode has its
own graphical design to ensure that the changes are
explicitly visualized in the diagrams. In this exam-
ple we assume that the web application has just been
launched, and that previously customers could place
orders by email only after browsing the assortment
on the company web site. Hence, the threat scenario
malcode introduced by hacker via web application
emerges and is assigned the mode after. Elements
of this mode are depicted by two layered icons with
black background. Note that also the asset compliance
has mode after, which shows that the issue of data
protection was considered only after the launch of the
web application.

The threat scenario customer data accidentally sent
to third party is an example of the mode before. These
elements are depicted by one layered icons as in stan-
dard CORAS. In the example we assume that security
training and routines have improved to the extent that
this source of risk is insignificant and can be ignored.

The threat scenario malcode introduced by adver-
sary via email is an example of the mode before-
after. These elements are depicted by two layered
icons with white background. Moreover, before-after
elements with likelihoods are assign a pair of like-
lihoods. The former specifies the likelihood before
change, and the latter the likelihood after change. For
example, the likelihood of the unwanted incident on-
line store down due to virus attack on DBs increases
from 5 : 10y to 20 : 10y.

Although not illustrated here, the language also
supports relating the CORAS diagram elements to el-
ements of the target model. The specification of these
relations is referred to as the trace model, as it fa-
cilitates systematic traceability of changes from the
target model to the risk model. This is an important
feature, since it allows analyses to be updated by con-
sidering only the CORAS diagrams that may be af-
fected by the changes. Hence, the CORAS diagrams
with change, as exemplified in Figure 4, are not built
from scratch; instead, CORAS diagrams from previ-
ous analyses serve as input and are systematically up-
dated and revised in order to analyze the risk changes.

A challenge with introducing change as a dimen-
sion of its own in the diagrams is that it may be at the
cost of comprehensibility and intuitive understanding.
The extension was therefore as modest as possible,
both at the level of syntax and semantics.

5 DOCUMENTING AND ANALYZING
LIKELIHOOD

An essential aspect of any risk modeling language
is the representation of likelihood. In CORAS it is
up to the analyst to define the likelihood scale. You
may use purely qualitative values or you may work
with quantitative values. In the latter case, you may
freely choose between frequencies and probabilities.
Furthermore, you may employ a continuous scale or
a discrete scale; you may also operate with intervals.
There are two main reasons for this flexibility:

1. The likelihood data available varies considerably
from client to client and between different targets
of analysis.

2. Large clients often have predefined scales that
any risk analysis must be conducted according
to.

Hence, without this flexibility we would basically put
ourselves out of business.

Taking this as given there are of course nevertheless
many ways to support likelihood documentation as
well as analysis and reasoning based upon this docu-
mentation. In the following we will motivate the treat-
ment of likelihood in the CORAS language.



Virus attack

on DBs

[2:1y]/[6:1y]

Malcode

introduced by

hacker via web

application

[unlikely]

5:1y/5:1y 0.2/0.3

0.5/0.5

major

high/high

high/high

Employee

Customer data

accidentally sent to

third party

[possible]Insufficient

security

training

Hacker
Use of web

application

Online store

down due to

virus attack on

DBs

[5:10y]/[20:10y]
Policy

breach
Employee

Malcode

introduced by

adversary via

email

[20:1y]/[20:1y]
Insufficient

virus

protection

Service

provisioning

Disclosure of

customer data

[possible]/[rare]

Leakage of

personally

identifiable

information

[unlikely]/[rare]

Security

Compliance

0.9

Figure 4: CORAS diagram with change

5.1 Aleatory versus epistemic uncertainty

Uncertainty is often classified into two kinds [10].
On the one hand we may be uncertain about the fu-
ture due to ignorance and lack of evidence. On the
other hand uncertainty may be due to the inherent ran-
domness of systems. The latter kind of uncertainty is
commonly referred to as aleatory uncertainty and per-
tains to chance. Typical examples are the outcomes of
the tossing of a coin, or the hands players of a game
of poker receives. Aleatory uncertainty is the inher-
ent randomness that cannot be removed from systems
(without redesigning the systems). The former kind of
uncertainty is commonly referred to as epistemic un-
certainty and pertains to our knowledge about the sys-
tem at hand. When making predictions about future
behavior, the epistemic uncertainty is something we
actively seek to reduce by gathering more information
and evidence. In CORAS we do not distinguish be-
tween aleatory and epistemic uncertainty; the reason
is quite simply that we do not think such a distinction
is feasible in practice. In CORAS, epistemic uncer-
tainty is normally captured only implicitly by the use
of intervals. In this respect we are very much in line
with the conclusions in [11]. Reducing epistemic un-
certainty would then correspond to introducing a scale
with finer likelihood intervals.

5.2 State-full versus state-free

A CORAS threat diagram is basically a set of finite
paths starting from threats and ending in assets. Along
these paths there are nodes in the form of threat sce-
narios and unwanted incidents, and relations between
them. The relations may be decorated with vulnerabil-
ities. This is about as simple as a threat model can be-
come, and keeping things simple has been a major ob-
jective in the design of the CORAS language. When
it comes to likelihoods our main emphasis has been to
maintain this simplicity. Likelihood values may be as-

signed to relations and nodes already presents in the
paths, but we have refrained from introducing more
complex annotations, like the state-dependent anno-
tations of a general Bayesian network. Of course this
additional expressiveness could be nice and useful in
certain situations, but our experience as risk analysts
is that the data it requires is very seldom available in
practice.

5.3 Consistency versus inconsistency

As already mentioned, likelihoods may freely be as-
signed to relations and nodes in a CORAS threat dia-
gram. As a result, one may easily end up with incon-
sistencies. Based on the already mentioned emphasis
on simplicity some might expect the likelihood anno-
tations to be constrained in such a way that inconsis-
tencies cannot occur. But this would reduce the value
of the CORAS language because as a risk analyst you
actually hunt for inconsistencies. That things appear
nice and polished is a good indication that the rele-
vant aspect is well understood, and that the analyst
should look elsewhere for hidden risks. On the other
hand, when the analysis team provides inconsistent
estimates things are obviously not as they appear, and
in such cases there may be hidden risks involved. In
other words, inconsistencies may indicate the need for
further investigation and a more thorough analysis.

5.4 Crisp versus fuzzy

Fuzzy logic provides a simple way to draw definite
conclusions from vague, ambiguous or imprecise in-
formation, and allows partial membership in a set. It
allows modeling complex systems using higher levels
of abstraction originating from the analyst’s knowl-
edge and experience [14]. A fuzzy set is a class of
objects with a continuum of grades of membership.
Such a set is characterized by a membership func-
tion, which assigns to each object a grade of mem-



bership ranging between zero and one [15]. Using the
fuzzy membership functions, a parameter in a model
can be represented as a crisp number, a crisp inter-
val, a fuzzy number or a fuzzy interval. In the fuzzy
logic approach the algebraic operations are easy and
straightforward, as argued and elaborated in [13]. The
interval scales we use in CORAS is a special case of
the fuzzy approach, where only the crisp intervals are
used as membership functions. Whether and to what
extent CORAS would benefit from fuzzy reasoning is
an open question that we intend to study in further
detail in the future.

6 CONCLUSIONS

In this paper we have given a brief overview of the
CORAS language and motivated some of the ma-
jor design decisions on which it builds. In particu-
lar, we have emphasized the importance of simplicity.
A major challenge for a language designer is to find
the right balance between expressiveness and com-
prehensibility. We have also briefly outlined how the
CORAS language copes with difficult challenges like
scalability and change, and why there is such a strong
focus on assets in all kinds of CORAS diagrams. We
have also motivated the CORAS approach to cap-
turing and reasoning about likelihoods. In particular,
we have explained why the CORAS language does
not distinguish between different kinds of uncertainty,
why there are no states and why the possibility of ex-
pressing inconsistencies is a feature.

Acknowledgments: The research leading to these
results has received funding from the Research
Council of Norway via the DIAMONDS project
(201579/S10), and from the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) via the
NESSoS network of excellence (256980) and the
RASEN project (316853).

REFERENCES

[1] G. Brændeland, A. Refsdal, and K. Stølen. Mod-
ular analysis and modelling of risk scenarios
with dependencies. Journal of Systems and Soft-
ware, 83(10):1995–2013, 2010.

[2] I. Hogganvik. A Graphical Approach to Security
Risk Analysis. PhD thesis, University of Oslo,
2007.

[3] I. Hogganvik and K. Stølen. A graphical
approach to risk identification, motivated by
empirical investigations. In Model Driven
Engineering Languages and Systems (MoD-
ELS’06), volume 4199 of LNCS, pages 574–
588. Springer, 2006.

[4] International Organization for Standardization.
ISO 31000 – Risk management – Principles and
guidelines, 2009.

[5] International Organization for Standardization.
ISO Guide 73 – Risk management – Vocabulary,
2009.

[6] M. S. Lund, B. Solhaug, and K. Stølen. Model-
Driven Risk Analysis – The CORAS Approach.
Springer, 2011.

[7] M. S. Lund, B. Solhaug, and K. Stølen. Risk
analysis of changing and evolving systems us-
ing CORAS. In Foundations of Security Analy-
sis and Design VI (FOSAD’VI), volume 6858 of
LNCS, pages 231–274. Springer, 2011.

[8] Object Management Group. OMG Unified
Modeling Language (OMG UML), Superstruc-
ture. Version 2.2, 2009. OMG Document:
formal/2009-02-02.

[9] Object Management Group. Business Process
Model and Notation (BPMN). Version 2.0, 2011.
OMG Document: formal/2011-01-03.

[10] T. O’Hagan. Dicing with the unknown. Signifi-
cance, 1(3):132–133, 2004.

[11] A. Omerovic and K. Stølen. A practical ap-
proach to uncertainty handling and estimate ac-
quisition in model-based prediction of system
quality. International Journal on Advances in
Systems and Measurements, 4:55–70, 2011.

[12] B. Solhaug and F. Seehusen. Model-driven
risk analysis of evolving critical infrastructures.
Journal of Ambient Intelligence and Humanized
Computing, 2013. To appear. Available electron-
ically, DOI 10.1007/s12652-013-0179-6.

[13] P. V. Suresh, A. K. Babar, and V. Venkat Raj.
Uncertainty in fault tree analysis: A fuzzy ap-
proach. Fuzzy Sets and Systems, 83(2):135–141,
1996.

[14] D. P. Weber. Fuzzy fault tree analysis. In Proc.
3rd IEEE Conference on Fuzzy Systems, 1994.
IEEE World Congress on Computational Intelli-
gence., pages 1899–1904. IEEE, 1994.

[15] L. A. Zadeh. Fuzzy sets. Information and Con-
trol, 8:338–353, 1926.


