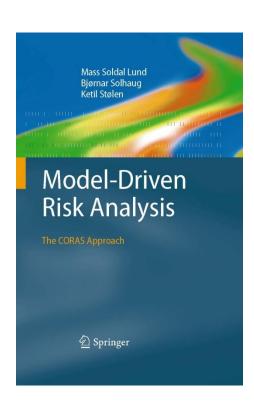


# Tutorial on Risk Management

International Symposium on Engineering Secure Software and Systems (ESSoS'14)

Bjørnar Solhaug Munich, February 26, 2014










### Me

- Bjørnar Solhaug
  - <u>Bjornar.Solhaug@sintef.no</u>
  - www.solhaugb.byethost11.com
- Research scientist at SINTEF ICT since 2010
  - www.sintef.no
- MSc in Logic, Language and Information, University of Oslo, 2004
- PhD in Information Science, University of Bergen, 2009
- Coauthor of the book on Model-Driven Risk Analysis





### Overview

- Part I Background
  - Risk management
  - Information security risk management
  - Standards, definitions and terminology
- Part II Risk assessment process
  - Exemplified presentation of activities, challenges and techniques
- Part III Selected issues
  - Risk estimation
  - Uncertainty
  - Reasoning about likelihoods



## Part I Background



## Risk Management



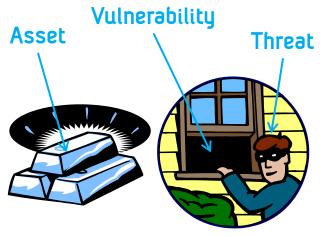
### What is Risk?

- Health
- Safety
- Security
- Compliance (legal and regulatory)
- Environmental protection
- Product quality
- Reputation
- Defense
- Finance
- •



### Risk - General Definition

- Risk is the effect of uncertainty on objectives [ISO Guide 73]
  - An effect is a deviation from the expected positive and/or negative
  - Objectives can have different aspects (financial, health, safety, security)
  - Uncertainty is the state of deficiency of information related to understanding or knowledge of an event, its consequence or likelihood
- This definition is general and covers both offensive and defensive management of risk

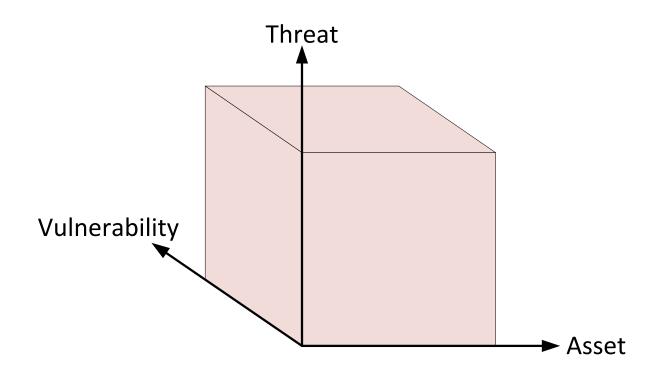



### Risk - Specific Definition

- A **risk** is the combination of the consequences of an event and the associated likelihood of occurrence [ISO Guide 73]
- The consequence is in terms of degree of harm to an asset
- The likelihood is the chance of something happening, e.g. in terms of probability or frequency
- Risk level is the magnitude of risk in terms of the combination of consequence and likelihood

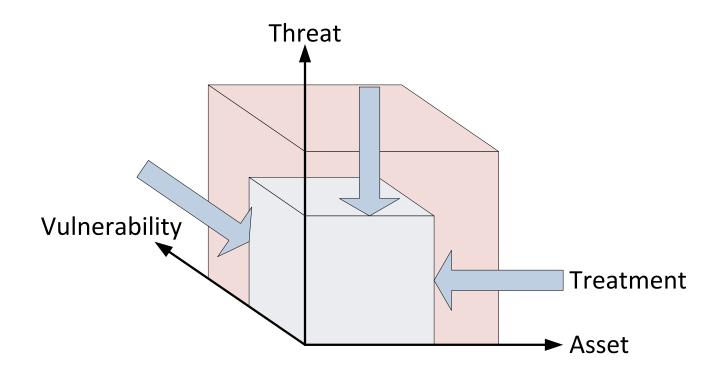


## Risk Ingredients



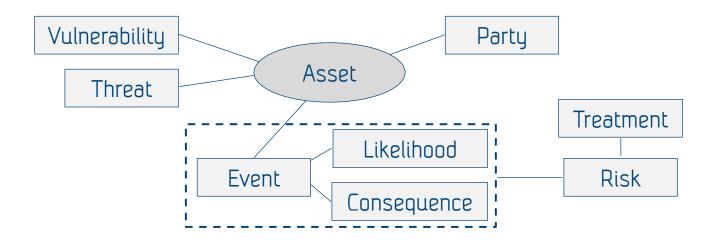

What is needed for risks to occur?

- A **threat** is an initial cause of a risk
  - Cf. risk source [ISO Guide 73]
- A **vulnerability** is a property that opens for a threat to cause an event with a consequence
- An asset is something of value and that requires protection
  - Cf. objective [ISO Guide 73]
  - Without all these three ingredients there is no risk
- A treatment is a means to reduce (modify) risk



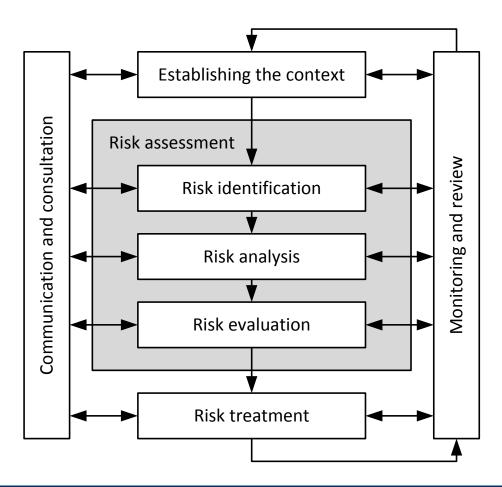

## Risk Ingredients






## Risk Ingredients






### Main Concepts of Risk Analysis



- A party is an entity on whose behalf a risk analysis is conducted
  - Note: "Party" is not the same as "stakeholder" and "asset owner" in ISO Guide 73
- An asset is something to which a party assigns value and hence for which the party requires protection
- We often use the term unwanted incident instead of event





ISO 31000



## Information Security Risk Management



### Security Risk

- Security
  - Security risks relate to events that compromises assets, operations or objectives
  - The events comprise those undertaken by actors with intentions (adversaries)
- Information security [ISO/IEC 27000]
  - Information security risk is the potential that a threat will exploit a vulnerability of an asset and thereby cause harm
  - Information security is the preservation of confidentiality, integrity and availability of information
  - An information asset is knowledge or data of value
  - Risk is the combination of the probability of an event and its consequence



### Security Risk - Definitions

- Properties of information security:
  - **Confidentiality:** Property that information is not made available or disclosed to unauthorized individuals, entities or processes
  - Integrity: Property of protecting the accuracy and completeness of assets
  - Availability: Property of being accessible and usable upon demand by an authorized entity
- Further properties that are often considered:
  - Authenticity: Property that an entity is what it claims to be
  - Accountability: Responsibility of an entity for its actions and decisions
  - Non-repudiation: Ability to prove the (non-)occurrence of a claimed event or action and its originating entities
  - **Reliability:** Property of intended behavior and results



### Threats to Information Security

- Threats may be deliberate, accidental or environmental
- Threats may be internal or external
- Examples
  - Physical damage (fire, destruction of equipment, corrosion,...)
  - Natural events (flood, seismic phenomena,...)
  - Loss of essential services (cooling, power,...)
  - Compromise of information (remote spying, eavesdropping, theft of media, disclosure, tampering with HW/SW,...)
  - Technical failure (equipment failure, software malfunction,...)
  - Unauthorized actions (use of equipment, copying of software, corruption of data,...)
  - Compromise of functions (abuse of rights, forging of rights,...)



### Human Threat Sources

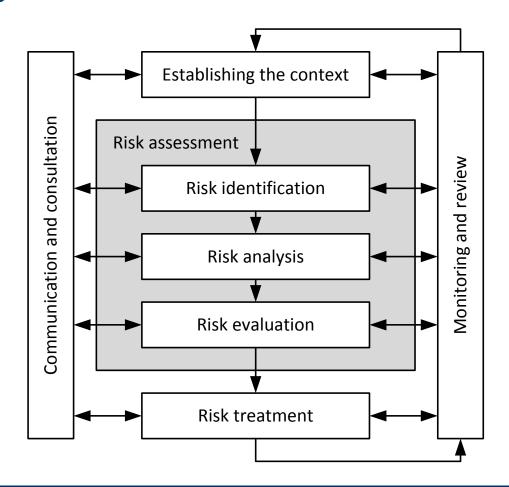
- Hacker
- Computer criminal
- Terrorist
- Industrial espionage
- Insiders (including accidental, e.g. poorly trained or negligence)
  - 58% of information security incidents attributed to insider threat [Infosecurity, 3 May 2013]
  - The BYOD phenomenon is a significant factor





Source of incidents [The Global State of Information Security Survey 2014, PwC]



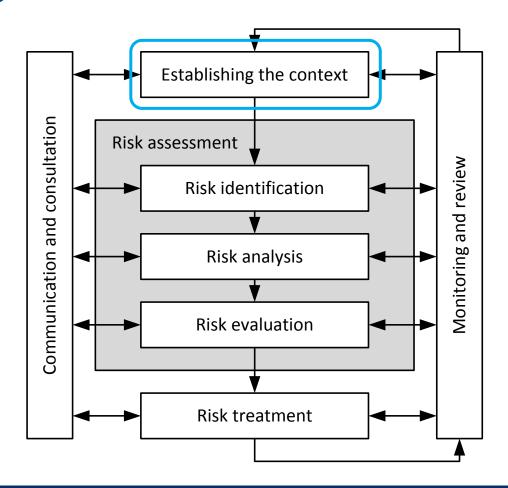

### Summary

- Useful standards to know
  - ISO 31000 on risk management
  - ISO 27000 on information security terminology
  - ISO 27005 on information security risk management
- Essentials of ISO 31000
  - All kinds of risks
  - Focus is on achieving the objectives of an organization
  - Both offensive and defensive Balance risk and opportunity
- Essentials of ISO 27005
  - Information security risk
  - Focus is on protecting the information assets of an organization
  - Defensive Protect what you have



# Part II Risk Assessment Process








- Information security risk management should be a continual process
- Continual activities:
  - Communication and consultation: Information sharing, planning and decision making among relevant stakeholders
  - Monitoring and review: Monitoring of risks and their factors, as well as the organization context
- Iterative sequence of activities conducted on regular basis:
  - Establishing the context
  - Risk identification
  - Risk analysis
  - Risk evaluation
  - Risk treatment

Focus of the remainder of this tutorial







### Establishing the Context

- The context establishment is to define and document the target and objectives of the analysis
  - External context
  - Internal context
  - Target of analysis
  - Assumptions
  - Scope and focus
  - Assets
  - Likelihood and consequence scales
  - Risk evaluation criteria
- The correctness and completeness of the context establishment is crucial
  - The correctness and validity of the risk assessment depends on this

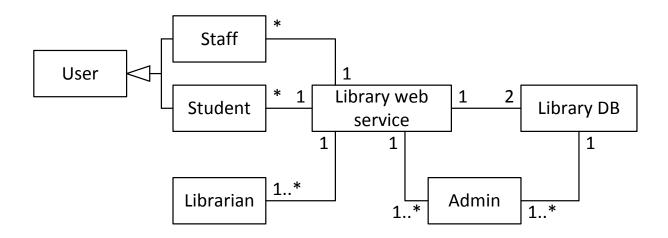


### Target Description

- The target of analysis must be documented in a way that can be understood by all relevant stakeholders
- The target description must be at a level of abstraction and details that is adequate for the desired abstraction level of the risk analysis
- The target description serves as a basis for the risk identification
  - Should show all relevant applications, components, roles, actors, business processes, data flows, etc.
  - Risks are identified by systematically searching for vulnerabilities, attack points, misuses, etc.
- It is recommended to document the target using a precise, unambiguous and well-understood notation
  - E.g. UML, BPMN, DFD, ...

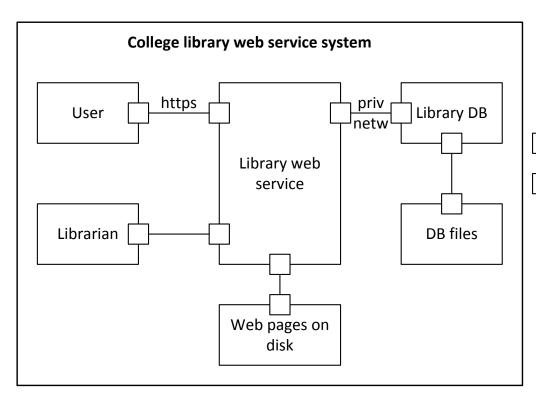


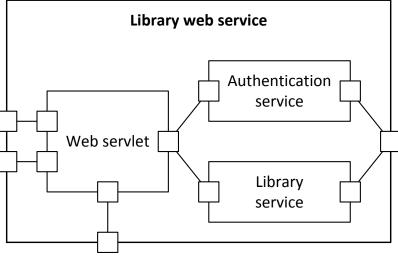
### Running Example


- The example is based on an OWASP example of a college library website
  - https://www.owasp.org/index.php/Application\_Threat\_Modeling
- The website provides online services for searching for and requesting books
- The users are students, college staff and librarians
- Note
  - The examples shown in the slides are small illustrations
  - A full risk assessment requires larger models of higher granularity

### Modeling the Target of Analysis

- It is often useful to describe the target using different kinds of diagrams
- We should provide, for example
  - Conceptual overview
  - Architecture
  - Activities
  - Data flows
  - Interactions
  - •
- Describing the target of analysis can also be done in prose, or by using tables/templates
  - Tables are often useful for more light-weight assessments

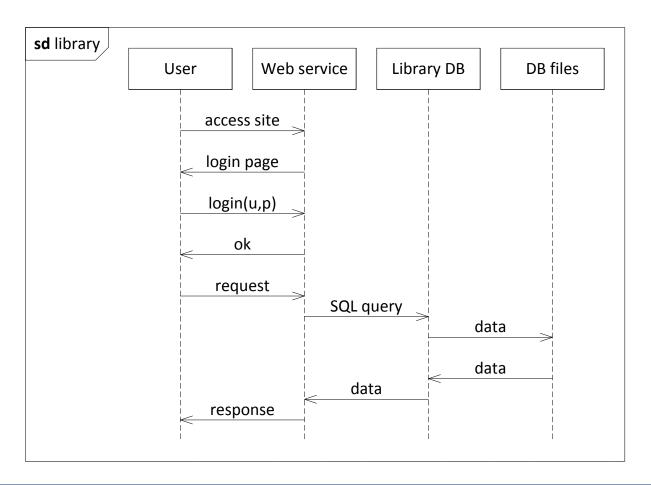




## Target Description - Conceptual Overview



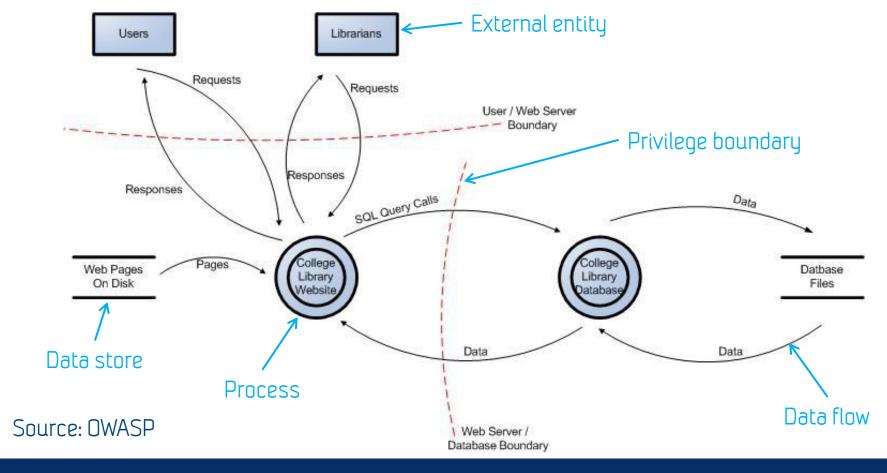


### Target Description - Overall Architecture



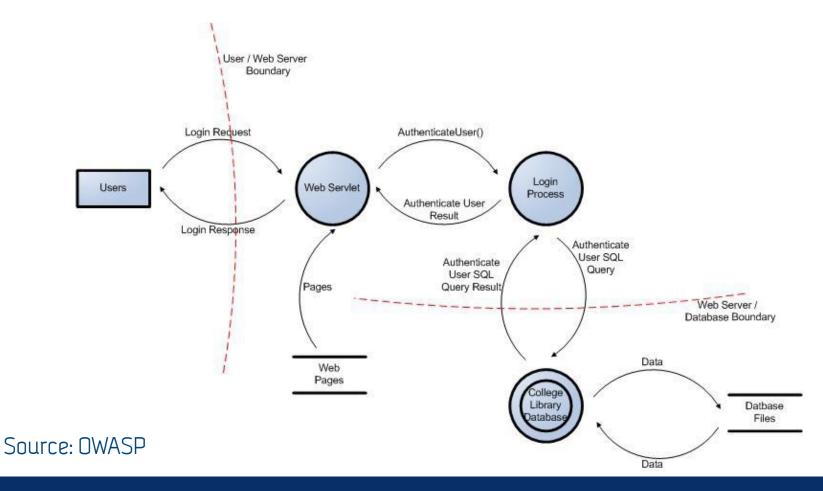



Internal structure of component




## Target Description – Interactions






### Alternative Example Using DFD - Library Website





## Alternative Example Using DFD - User Login





### Assumptions

- All assumptions for the analysis must be made explicit and documented
- The risk assessment is valid only under the assumptions made
- An assumption may be something we hold as true and do not investigate further
- An assumption may also be a requirement or precondition for specific parts of the target
- Examples
  - There are no malicious insiders
  - Power supply never fails
  - System requirements are fulfilled (OS, CPU, RAM)
  - Communication is encrypted
  - •



### Asset Identification

- An asset is anything that has value to the organization and which therefore requires protection
  - Information, services, software, physical, people, reputation, image,...
- Information and software security often focus on information assets and service assets
- The identified assets specify the focus of the analysis
- The risk identification, analysis and evaluation are with respect to the identified assets only
- The identified assets may be ranked and/or assigned value



### Asset Identification – Library Website Example

- Confidentiality of personal user data
- Availability of web service
- Integrity of databases
- For brevity, the assets will in the following be referred to as "confidentiality", "availability" and "integrity", respectively



#### Likelihood and Consequence Scales

- The scales define the values we use for estimating likelihoods and consequences for the identified unwanted incidents
- These estimates are used to derive the risk levels and evaluate the risks
- The scales can be continuous, discrete or by intervals
- The values can be qualitative or quantitative
- Quantitative scales may be by probabilities or frequencies for likelihoods, and e.g. monetary loss or number of DB entries affected for consequences
- Qualitative scales may be by
  - natural language terms (like "often" and "rare", "insignificant" and "catastrophic")
  - general descriptions of how often it is experienced by how many



# Likelihood Scale Example - Qualitative

| Likelihood | Definition                                                                                                                      |
|------------|---------------------------------------------------------------------------------------------------------------------------------|
| Unlikely   | Has never occurred yet throughout the total lifetime of the system                                                              |
| Rare       | Only very few similar incidents on record when considering a large traffic volume or no records on a small traffic volume       |
| Possible   | Several similar occurrences on record - Has occurred more than once for the same user                                           |
| Likely     | A significant number of similar occurrences already on record -<br>Has occurred a significant number of times for the same user |
| Certain    | A very high number of similar occurrences already on record-<br>Has occurred a very high number of times for the same user      |



#### Likelihood Scale Example - Quantitative by Frequencies

| Likelihood | Definition      |
|------------|-----------------|
| Unlikely   | [0,1>: 1 year   |
| Rare       | [1,5>: 1 year   |
| Possible   | [5,20> : 1 year |
| Likely     | [20,50>: 1 year |
| Certain    | [50,∞>: 1 year  |

The defined frequency intervals must be adequate for the target of analysis and its scope



## Likelihood Scale Example - Quantitative by Frequencies

| Likelihood | Definition   |
|------------|--------------|
| Unlikely   | [0, 0.01>    |
| Rare       | [0.01, 0.1>  |
| Possible   | [0.1, 0.25>  |
| Likely     | [0.25, 0.75> |
| Certain    | [0.75, 1]    |

The defined probability intervals must be adequate for the target of analysis and its scope; the probability of occurrence is with respect to a given period



# Consequence Scale Example - Qualitative

| Consequence   | Definition                                                                             |
|---------------|----------------------------------------------------------------------------------------|
| Insignificant | Generally tolerable and easy to manage or recover from                                 |
| Minor         | Tolerable if easy to recover from or if not very frequent                              |
| Moderate      | Several occurrences over time can potentially put the service provider out of business |
| Major         | Failure to recover can potentially put the service provider out of business            |
| Catastrophic  | Can potentially put the service provider out of business                               |

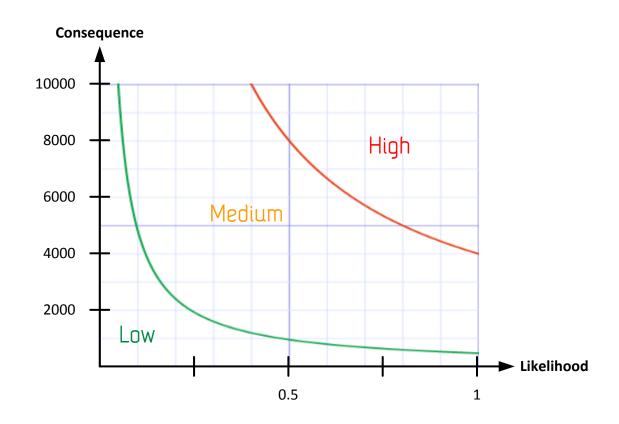


#### Consequence Scale Example - Quantitative

| Consequence   | Definition                                 |
|---------------|--------------------------------------------|
| Insignificant | Range of [0%, 1%> of records are leaked    |
| Minor         | Range of [1%, 10%> of records are leaked   |
| Moderate      | Range of [10%, 20%) of records are leaked  |
| Major         | Range of [20%, 50%) of records are leaked  |
| Catastrophic  | Range of [50%, 100%) of records are leaked |

Note: We often need to define one consequence scale for each asset, for example

- Service availability in terms of downtime
- Confidentiality in terms of number/share of entries that are leaked
- Integrity in terms of number/share of entries that are affected



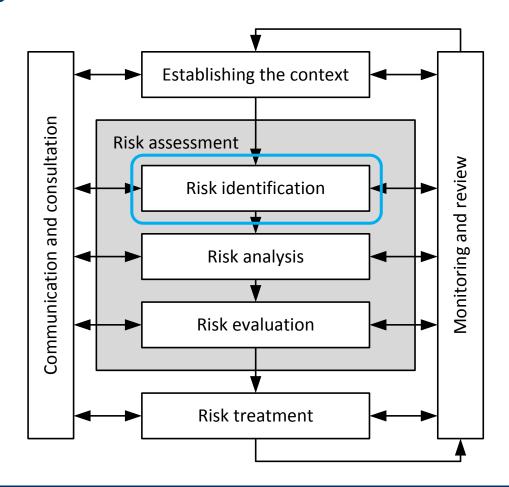

#### Risk Evaluation Criteria

- The risk evaluation criteria specifies the risk tolerance
- In order to define the criteria, we first need to define the risk function
- The risk function is a mapping from consequence and likelihood to risk level
  - Can be by using risk matrices or by a mathematical function (such as multiplication)
- For cases in which we have several assets with different consequence scales, we may need to define one set of criteria for each asset



#### Risk Evaluation Criteria Example – Continuous Scales






# Risk Evaluation Criteria Example – Risk Matrix

|          | Insignificant | Minor | Moderate | Major | Catastrophic |
|----------|---------------|-------|----------|-------|--------------|
| Unlikely | 1             | 2     | 3        | 4     | 5            |
| Rare     | 2             | 3     | 4        | 5     | 6            |
| Possible | 3             | 4     | 5        | 6     | 7            |
| Likely   | 4             | 5     | 6        | 7     | 8            |
| Certain  | 5             | 6     | 7        | 8     | 9            |



## Risk Management Process





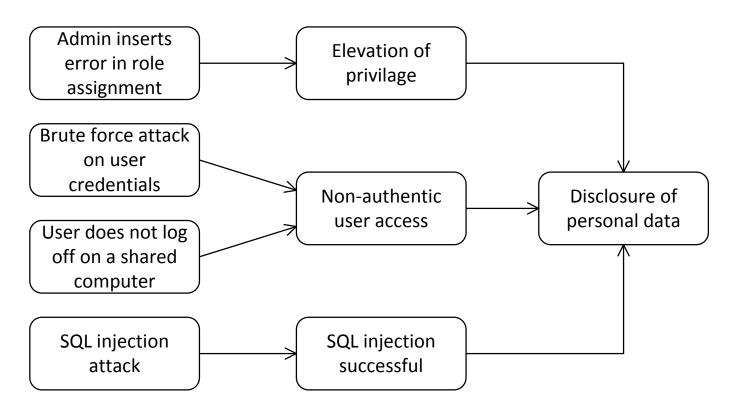
#### Risk Identification

- This activity involves the identification and documentation of the risks and their causes
  - Threats (natural or human, deliberate or accidental)
  - Vulnerabilities
  - Scenarios
  - Incidents
- The risk identification shall be with <u>respect to the identified assets only</u>
- There are numerous techniques and formats available for risk identification and documentation
  - ISO 31010 gives an overview and classification of assessment techniques
  - ISO 27005 gives lists of threats and vulnerabilities
  - Several organizations publish repositories of risk sources



#### Which Technique to Choose?

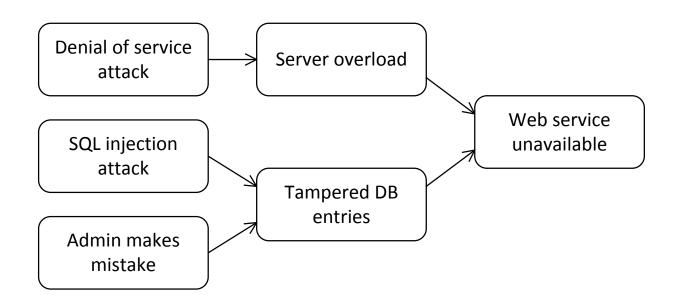
- Need to determine what we wish to document, what kind of analyses we wish to conduct, the level of granularity, the available time and resources, etc.
  - Tables and checklists are useful for quick-and-dirty, high-level assessments
  - Fine-grained modeling techniques are useful for detailed assessments and more rigorous analyses
- Consider also the underlying terminology: Which risk elements to we seek to identify, document and reason about?
- We moreover need to determine how to gather the information
  - ullet Interviews, brainstorming, testing, examination of logs and historical data,  $\dots$
- Examples of techniques:
  - ISO 27005 table formats, event trees, attack trees, Bayesian networks, MS threat modeling, ...




#### Note

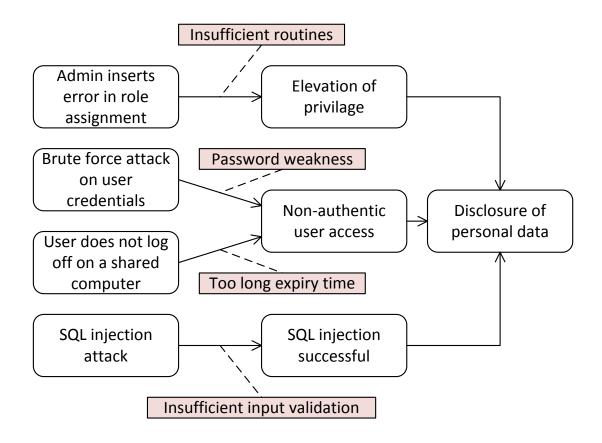
- The diagrams shown in this presentation are not using a specific risk modeling notation
- It is a "dummy notation" used to exemplify some of the key elements of risk modeling and risk assessment in general




## Risk Modeling – Library Example: Confidentiality

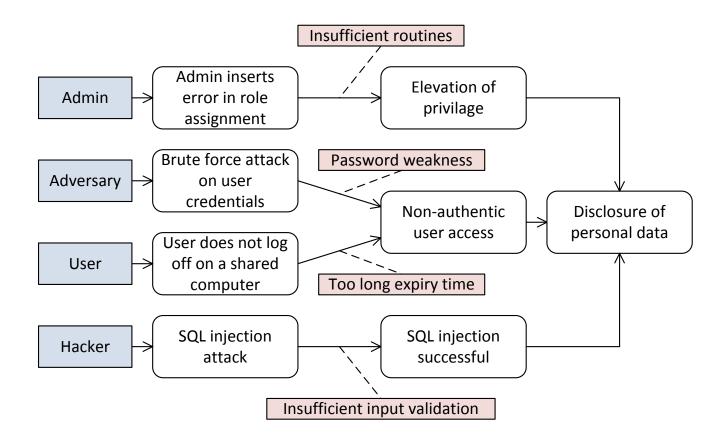


Note: Multiple ingoing arrows to a scenario are OR composition



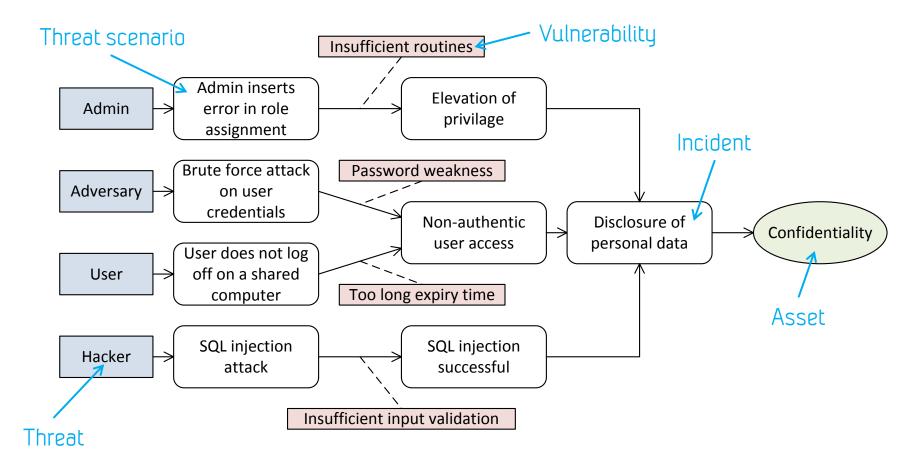

## Risk Modeling - Library Example: Availability





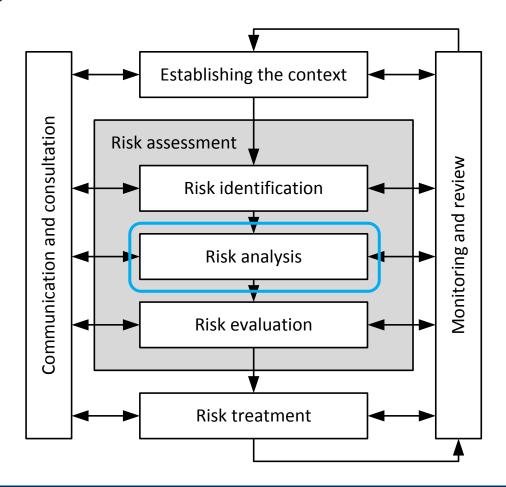

#### Risk Modeling – Library Example: Vulnerabilities






#### Risk Modeling - Library Example: Threats



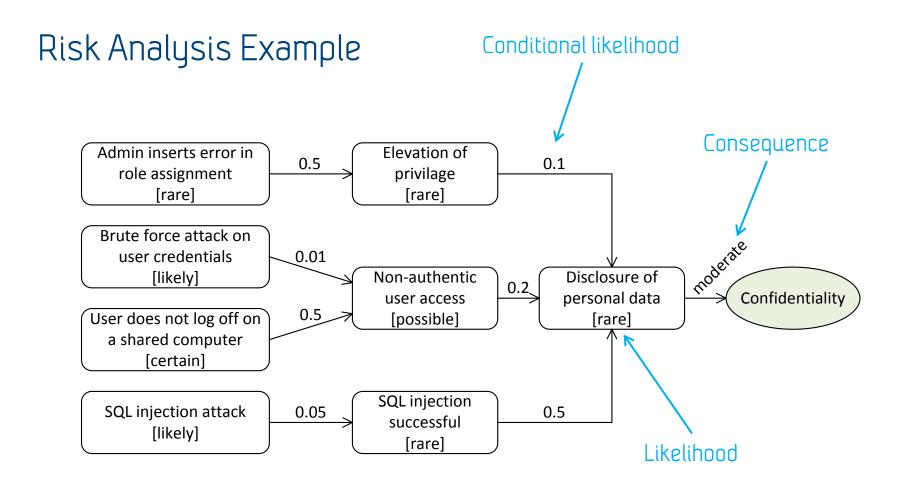



#### Risk Modeling – Library Example: Assets





## Risk Management Process



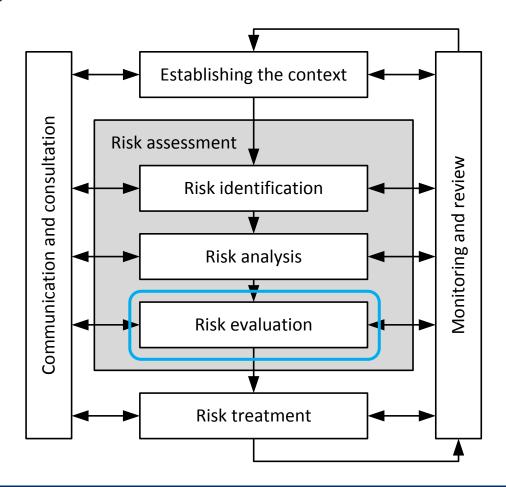



#### Risk Analysis

- The objective of this activity is to estimate the likelihood of incidents and their consequences for the assets they harm
- Qualitative or quantitative, depending on our choice of scales and criteria
- The data is gathered from historical data, interviews, brainstorming, testing, ...
- In addition to estimating likelihoods of incidents, the risk analysis should seek to identify the most important sources of risk
  - Deliberate threats (motivation, required skills, required time and resources,...)
  - Vulnerabilities and existing controls
  - Likelihood of preceding threat scenarios
  - Conditional likelihoods








#### Risk Analysis – Some Guidelines

- Try to estimate the likelihood of each scenario, relation and incident separately
- Use rules for reasoning about likelihoods to identify possible mutual inconsistencies
  - Inconsistencies may indicate elements for which there are mistakes or misunderstandings
- Use rules to calculate missing estimates when estimation cannot be done directly
- Take into account whether the diagram is complete or not
- Take into account statistical dependencies



## Risk Management Process





#### Risk Evaluation

- This activity is to determine which risks are acceptable and which risks need to be considered further for possible treatment
- Risk are evaluated by comparing them against the predefined risk evaluation criteria
- Note that for each incident, we must consider all assets the incident may harm
- Need also to consider the aggregation and combinations of risks



# Risk Evaluation Example

|          | Insignificant | Minor | Moderate | Major | Catastrophic |
|----------|---------------|-------|----------|-------|--------------|
| Unlikely |               |       |          |       |              |
| Rare     |               |       | DFD      |       |              |
| Possible |               |       | WSU      |       |              |
| Likely   |               |       |          |       |              |
| Certain  |               |       |          |       |              |

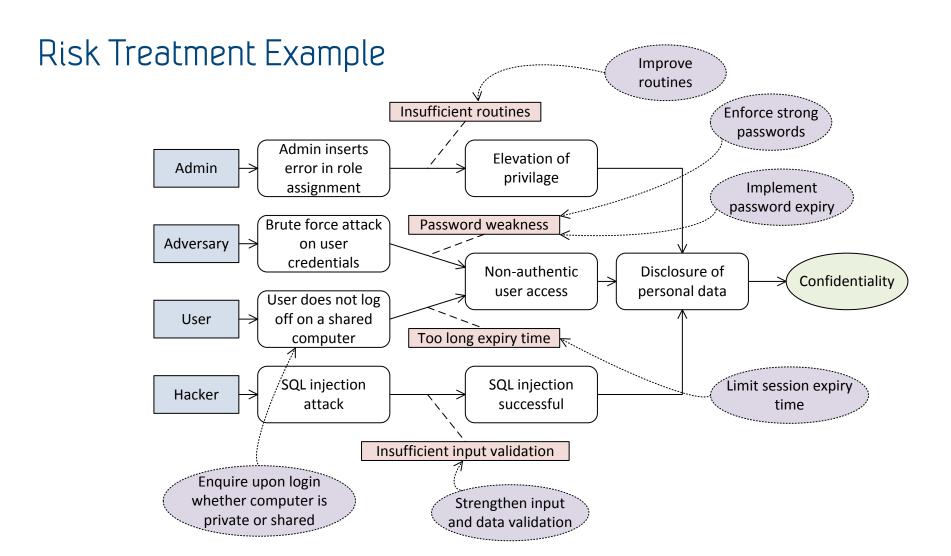


## Risk Management Process





#### Risk Treatment


- This activity is to identify controls for mitigating unacceptable risks
- Treatments are to reduce, retain, avoid or share risks
- For each identified treatment, its cost and benefit should be estimated, and the residual risk should be assessed
  - Note: Even risks that in principle are unacceptable cannot be treated at any cost
- The activity is concluded by specifying and documenting a risk treatment plan



#### Risk Treatment Options

- The options are not mutually exclusive and can often be used in combination
  - Reduce: Implement controls to reduce likelihood and/or consequence of incidents
  - Retain: Accept the risk (by informed decision)
  - Avoid: Terminate the activities or processes that lead to the risk
  - Share: For example by insurance, contracts, outsourcing, sub-contracting
- ISO 27001 comes with a list of controls that can be considered



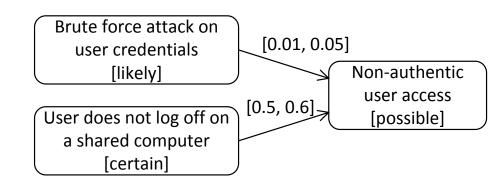




# Part III Selected Issues



#### Uncertainty


- Uncertainty is inherent to risk and risk assessment
- In risk assessment we are confronted with two kinds of uncertainty
  - Aleatory
  - Epistemic
- Aleatory uncertainty is due to the inherent randomness of systems and pertains to chance
  - E.g. the tossing of a coin or the cards a poker player receives
  - It is an uncertainty that cannot be removed from systems (without redesign)
- Epistemic uncertainty pertains to ignorance or lack of evidence
  - It is an uncertainty that we actively seek to reduce by gathering more information and evidence (by empirical studies)

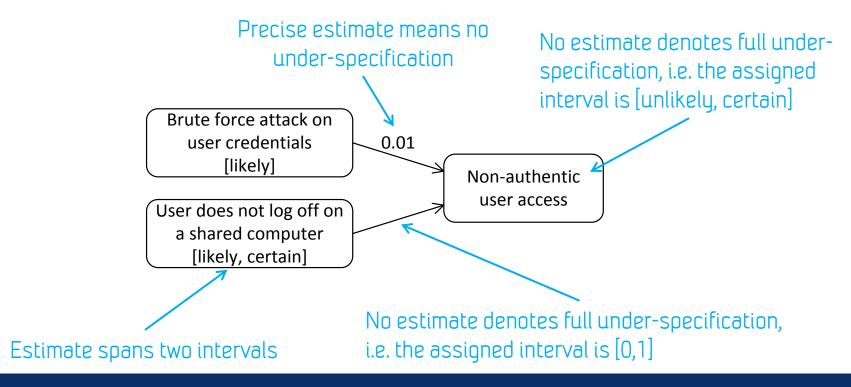


#### Uncertainty of Risk

- Risk assessment is about predicting future scenarios or outcomes
- For each identified outcomes we may e.g. assign a probability  $ho \in [0,1]$
- In cases of perfect knowledge and where  $\rho$  is close to 0 or 1, the outcome is almost certain
  - No epistemic uncertainty and little/no aleatory uncertainty
- If  $\rho$  is close to 0.5 the outcome is increasingly uncertain (aleatory)
- Should knowledge be imperfect we additionally have a degree of epistemic uncertainty
  - This can be documented e.g. by using an interval  $P \subseteq [0,1]$
  - The correct probability is then assumed to be a value  $ho \in P$



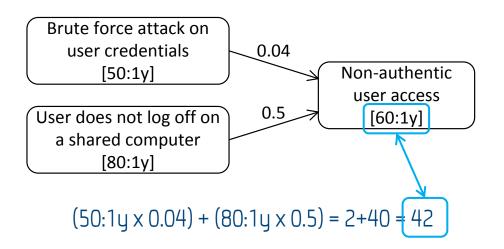



#### Modeling Uncertainty

- In our examples we used intervals for likelihood estimates
  - If the model is correct, the correct likelihoods are within the respective intervals
- We do not explicitly distinguish between aleatory and epistemic uncertainty
- Some approaches to risk assessment use exact values in combination with an estimate of uncertainty
  - This is a possible option, but should be used with care
  - Strive to keep things simple and intuitive to understand!
- Remember: Some degree of uncertainty in risk assessment is unproblematic
  - Eventually, we only need to be able to distinguish between risk levels when the difference is significant for the evaluation and decision making



#### Under-specification of Likelihoods

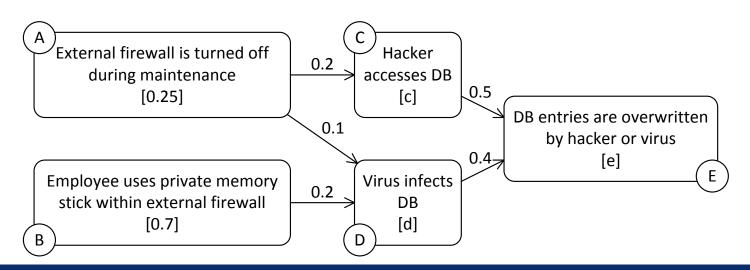

- The use of intervals is a form of under-specification
- By increased knowledge, the under-specification (uncertainty) is reduced





#### Completeness of Diagrams

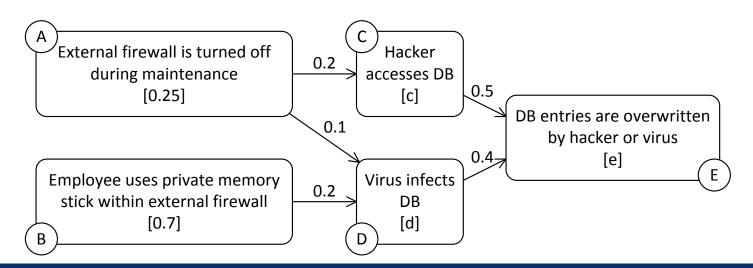
- If the diagram is complete we have modeled all sources of risk
  - In that case we can calculate likelihoods based on preceding scenarios
- If the diagram is incomplete there are risk sources that are not accounted for
  - This is most common in any risk analysis
  - In that case we can calculate lower bounds of likelihoods




The diagram is consistent if incomplete and inconsistent if complete

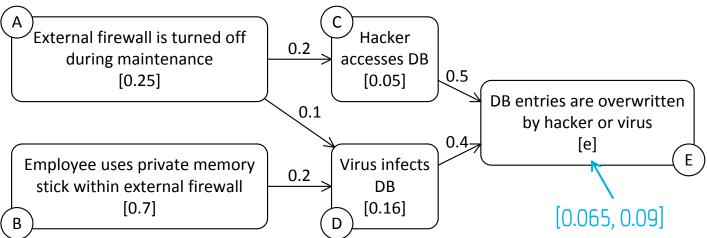


#### Example: Reasoning with Probabilities


- Assume the diagram is complete
- A and B are statistically independent
- C and D are not statistically independent






#### Example: Reasoning with Probabilities

- $c = 0.25 \times 0.2 = 0.05$
- d is calculated from A and B
  - A) 0.25 x 0.1 = 0.025
  - B) 0.7 x 0.2 = 0.14
  - $d = 0.025 + 0.14 (0.025 \times 0.14) = 0.1615$



#### Example: Reasoning with Probabilities

- C and D are neither statistically independent nor mutually exclusive
- We can therefore calculate only the lower and upper bounds of E
  - e cannot be higher than the sum of the contribution from C and D
  - e cannot be lower than the max of the contributions from C and D
- Max:  $(0.05 \times 0.5) + (0.1615 \times 0.4) = 0.025 + 0.0646 = 0.0896$
- Min: 0.0645





#### Concluding Recommendations

- Define the terminology you use and make sure it is commonly understood
- Do not underestimate the importance of establishing the context and describing the target of analysis
  - Develop precise documentation
  - Actively seek for possible misunderstandings
  - Specify and document all assumptions
- Focus on the identified assets
- Ensure that the semantics of the models are well-defined and understood
- Keep things as simple as possible!



#### Thank You!

Acknowledgments:





www.rasenproject.eu



https://securitylab.disi.unitn.it/doku.php?id=emfase

